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Abstract. Optical trapping is an established field for movement of micron-size objects and cells.
However, trapping of metal nanoparticles, nanowires, nanorods and molecules has received lit-
tle attention. Nanoparticles are more challenging to optically trap and they offer ample new
phenomena to explore, for example the plasmon resonance. Resonance and size effects have an
impact upon trapping forces that causes nanoparticle trapping to differ from micromanipulation
of larger micron-sized objects. There are numerous theoretical approaches to calculate optical
forces exerted on trapped nanoparticles. Their combination and comparison gives the reader
deeper understanding of the physical processes in an optical trap. A close look into the key
experiments to date demonstrates the feasibility of trapping and provides a grasp of the enor-
mous possibilities that remain to be explored. When constructing a single-beam optical trap,
particular emphasis has to be placed on the choice of imaging for the trapping and confinement
of nanoparticles.

Keywords: optical trapping and manipulation, optical tweezers, nanoparticles, particle plas-
mons, Rayleigh and Mie scattering, optical Lorentz force.

1 INTRODUCTION

The last thirty years have seen a revolution in our understanding of the light-matter interaction.
The advent of the laser sparked numerous major research areas and one of these has been the
trapping and manipulation of matter by light. Indeed the advances seen at the atomic scale
level have led to the formation of quantum degenerate gases, now established as a standard
experimental tool in many research laboratories. In tandem with the experimental advances, we
have seen a deeper understanding of the complexity of the interaction of light and matter that
has led to ultra-cold gases breaking the so-termed Doppler limit and the ever-growing list of
elements which may now laser cooled to sub milli-Kelvin temperatures. These advances have
been recognised with award of two Nobel prizes, in 1997 and 2001.

The impact of the light matter interaction has also occurred on scales larger than that of
the atomic regime: the pioneering work of Ashkin led to the development of optical trapping
of microscopic particles including biological specimens such as cells. Optical trapping at this
scale has led a major revolution in single-molecule biophysics as they offer well calibrated
force transducers that may measure forces right down to femto-Newtons. Using trapped beads
as anchors to indirectly move macromolecules, researchers have made major strides into our
understanding of molecular systems such as the actin-myosin system, kinesin motion on mi-
crotubules and DNA as well as opening up new studies of non-equilibrium statistical physics.
Whilst optical trapping at the microscopic scale is well documented with various reviews [1–3]
little attention has been paid to the trapping and manipulation of nanometric sized particles
which falls largely in the size region between cells and that of atomic ensembles. In particular
the trapping of metallic particles at the nanometre scale has gained momentum as well as the
direct manipulation of biological macromolecules.

Nanoparticles span the entire size range from some tens of nanometres (the Rayleigh regime)
up to a couple of hundred nanometres. Optical trapping of nanometric objects is still considered
to be more challenging than trapping micron-sized objects. The fundamental limitation is the
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amount of force one can possibly exert on a particle by light on objects of such dimensions.
The magnitude of the force depends upon the relative refractive index and size of the particle
and reduces with decreasing particle volume and lower refractive index difference compared to
the host medium. Despite this, it is possible to manipulate and control atoms by exploiting the
enhancement of forces when operating near an internal atomic resonance.

Nanoparticle manipulation is a highly topical and powerful area for future studies with op-
tical traps and is the focus of this review article. First we present the theoretical aspects of
nanoparticle trapping. In the second chapter we describe the major experiments performed to
date in this area. In the last part we include advice upon the construction of an optical trap with
particular emphasis upon the trapping and visualisation of nanoparticles.

2 THEORY

In general, the change of direction or absorption of a light beam by a body gives rise to a mo-
mentum transfer from the light beam to the body. Within the photon description of light, each
individual photon travels according to the geometrical optics ray picture and transfers all or part
of its linear momentum to the body via an elastic or inelastic collision [4, 5]. This description
can be further enhanced by using a mixed geometrical optics and paraxial approximation ap-
proach to the light beam [6] and thus enable the treatment of focused laser beams. This needs
high order corrections to account for beam focussing. Unfortunately, these methods are not
directly applicable in the case of nanoparticles because of their restricted size compared to the
wavelength. In this size regime, the local electromagnetic field and its phase play a fundamen-
tal role in the theoretical modelling of the optical momentum transfer. Further, depending on
their size, the optical properties of nanoparticles differ from the bulk materials. In the case of
metals, for example, this dependence becomes important when the nanoparticle size becomes
comparable to the mean free path of the conduction electrons [7, 8].

In this section, we start by reviewing the size dependent corrections of the optical properties
of metallic nanoparticles. Then, we present two methods to calculate the optical forces acting
on nanoparticles: a general and a more specific approach. The general method is applicable to
any size and shaped particles and we review four different but equivalent approaches, namely:
the Maxwell stress tensor, two distinct formulations of Lorentz forces and optical surface forces.
The more specific methods considered here take the reduced size of the nanoparticles into ac-
count and consist of the generalised Lorenz-Mie scattering, dipole approximation, and the sum
of the optical gradient and scattering forces.

We have used standard notations for the basic quantities and parameters: E and H are
the electric and magnetic fields. The macroscopic electromagnetic properties of a medium are
defined by its electronic scattering time τ , permittivity ε(ω), permeability µ(ω) and electric
conductivity σ(ω). The latter are all functions of ω, the angular frequency of light. The sub-
script n and h stand for the medium properties of the nanoparticle and host solution while the
subscripts r and 0 stand for the relative and vacuum constants respectively. Bold letters refer to
vector quantities while their non bold version with the subscripts i, j and k stand for their three
Cartesian coordinates each subscript varying from 1 to 3.

2.1 Optical properties

The successful modelling of the optical forces acting on nanoparticles relies upon the knowledge
of their interaction with the electromagnetic field. Within classical electromagnetism, this is
governed by Maxwell’s equations and depends on the shape of the nanoparticle, its dielectric
function εn(ω) and the incident field. Here, we discuss the change of index of refraction n2

n =
εn(ω) due to the reduced size of the nanoparticle assuming a monochromatic field of the form
exp(iωt) where ω is the fields optical frequency. Note that with this sign convention, absorptive
nanoparticles have a negative imaginary index of refraction.
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The index of refraction in a material depends on its electronic properties and the ability of
the electrons to change their configuration under the influence of the electromagnetic field. In
general, the index of refraction is an effective medium concept in which the microscopic polar-
isability is homogenised over the whole particle replacing the local polarisation by an effective
refractive index. The homogenisation method assumes that the individual molecules or atoms
of the material are all in the same average environment equivalent to an infinitely extended bulk
material. This assumption is perfectly valid for dielectric nanoparticles where the local polar-
isability originates from bound electrons, but it is not the case for metallic nanoparticles where
the close proximity of the particle surface changes the electronic behaviour of the conduction
electrons. Indeed, the mean free path of conduction electrons is given by τbulkvf , where vf is
the bulk Fermi velocity and τbulk the bulk electronic scattering time (mean time between succes-
sive collisions). In bulk gold, at room temperature, this mean free path is about 42 nm [9]. For
metallic nanoparticles with a diameter below this dimension, we need to consider the reduced
scattering time for the conduction electrons, which is given by:

1

τn

=
1

τbulk

+
vf

a
, (1)

where a is the radius of the nanoparticles and τn the corrected particle electronic scattering time.
The size corrected mean free path is given by τnvf . This change of the mean free path modifies
the overall conductivity of the nanoparticle inducing a change of its dielectric function,

εn(ω) = εbound(ω) + εcond(ω), (2)

where the dielectric functions εbound(ω) and εcond(ω) represent the part of the dielectric func-
tion originating from the bound and conduction electrons respectively [10]. The bound compo-
nent is not affected by the size of the nanoparticle while the conduction part is affected. It is
possible to use the experimentally measured bulk dielectric function εbulk(ω) and to correct it
by taking into account the mean free path change within the Drude model,

εn(ω) =

[
εbulk(ω) −

4πσbulk

ω(1 + iωτbulk)

]
+

4πσn

ω(1 + iωτn)
, (3)

where σbulk = ωn2τbulk/4π, σn = σbulkτn/τbulk and ωp are the bulk conductivity, particle
conductivity and the plasma frequency respectively. A more elaborate description including
a quantum-mechanical treatment of the size dependence of the optical properties of metallic
nanoparticles can be found in [11] while the size dependent contribution from bound electrons
is taken into account in [12].

Table 1. Optical properties for gold nanoparticles [13, 14] at a wavelength of 500 nm and with a Fermi
velocity vf = 1.41 · 106 m/s [7, 8].

σn (1017s−1) τn (10−15s) εn nn

Bulk gold 3.70 24.7 -2.68-3.09i 0.84-1.84i
100 nm gold 2.18 14.6 -2.68-3.19i 0.86-1.85i
10 nm gold 0.46 3.10 -2.59-4.08i 1.06-1.92i

In addition to the dielectric function depending on the size of one individual nanoparticle,
we also need to consider their collaborative effect on the propagation of the incident beam when
it traverses regions of dispersed nanoparticles. In this case, it is possible to use a generalised
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Maxwell-Garnett homogenisation theory [15] that determines the effective dielectric function
of the suspension depending on the concentration and shape of the nanoparticles. For spherical
particles in a host with εh(ω), we have:

εeff (ω) − εh(ω)

εeff (ω) + 2εh(ω)
= (1 − x)

εn(ω) − εh(ω)

εn(ω) + 2εh(ω)
, (4)

where x is the volume fraction of the host and εeff (ω) denotes the total effective dielectric
function of the solution.

2.2 Momentum conservation

The fundamental principle involved in optical forces is the conservation of the electromagnetic
momentum-energy when light scatters from a particle. Incident light that is scattered or ab-
sorbed by a particle is subject to a change in momentum which is transferred to the mechanical
momentum of the particle. The optical force acting on a nanoparticle can thus be deduced from
integrating the change of momentum of the electromagnetic field as a whole. In the following,
we consider a monochromatic light field of optical frequency ω and the particles to be quasi-
stationary such that Doppler shift effects are negligible. In the linear case, the monochromatic
assumption can be generalised to deal with broad spectra by summing all the optical forces re-
sulting from the individual spectral components. Indeed, in the stationary assumption, the total
optical force is independent of the relative phase/chirp of the spectrum of the incident light field.
Finally, we also note that non-stationary particles are dealt with by considering both momentum
conservation and energy conservation.

For electromagnetic waves, the momentum density in a medium with relative permittivity
εh and permeability µh is defined by the Maxwell stress tensor, Tij ,

Tij = εhε0EiE
∗

j + µhµ0HiH
∗

j −
1

2
δij(εhε0EkE∗

k + µhµ0HkH∗

k), (5)

where we sum over repeating indices and the superscript star corresponds to the complex con-
jugate. This stress tensor gives the flux of momentum across an area and is the starting point
in all field based optical force calculations. The stress tensor itself is not uniquely defined. Its
precise form depends on the conceptual split of the total electromagnetic momentum into two
parts: the momentum carried by the electromagnetic wave and the momentum carried by the
induced polarisation in the medium the wave is propagating through. Fortunately, this split does
not affect the total optical force acting on the particle [16,17]. This total optical force (see curve
A in Fig. 1 and Fig. 2) is given by integrating the momentum flux flow over the surface of the
particle:

< Fi > =
1

2
�

(∫
S

Tijnjds

)
(6)

=

∫
V

< fi > dv =

∫
V

1

2
� (∂jTij) dv, (7)

where V is the volume of the particle, S its surface and nj the vector components of the normal
pointing outwards from this surface. The brackets < ... > correspond to the time average
over an optical cycle T = 2π/ω and � to the real part of a complex number. Here, we also
introduced the optical force density fi, visualising a volumetric density of force across the
particle. The described Maxwell stress tensor method is a versatile tool and applied in a variety
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Fig. 1. Optical forces acting on a dielectric nanoparticle (nn = 1.59) in water as a function of its volume
(lower x-axis) and diameter (upper x-axis). The nanoparticle is in the focal plane of a linearly polarised
Gaussian beam (waist w0 = 1 µm, wavelength λ = 500 nm) laterally offset by 300 nm. The transversal
(a) and longitudinal (b) optical forces acting are calculated for the different models: A Maxwell’s stress
tensor Eq.(5); B Surface gradient forces Eq.(11); C Lorentz force Eq.(8); D Lorentz force Eq.(9); E
Lorenz-Mie forces; F Gradient and scattering forces Eq.(14); G Dipole approximation forces Eq.(17); H
Gradient and scattering forces using Lorenz-Mie scattering and absorption coefficients.

of different scenarios, ranging from nanoparticles in evanescent fields [18, 19] and arrays of
nanoparticles [20, 21], just to mention a few examples.

An alternative approach is to calculate the total optical force using the Lorentz force. This
leads to a different optical force density distribution which, when integrated across the volume
of the particle, gives the same total force as the force density in Eq.(6). Indeed, the electric field
induces a local polarisation which gives rise to a current on which the electromagnetic field acts
through the Lorentz force. This Lorentz optical force density reads [22]:

< f > =
1

2
�[(P · ∇)E∗ + ∂tP × µ0H

∗], (8)

where P = (εn− εh)E is the relative polarisation in the particle with respect to the surrounding
medium (see curve C in Fig. 1 and Fig. 2). Alternatively, the Lorentz force density can be
written as [23]:

< f > =
1

2
�[−(∇ · P)E∗ + ∂tP × µ0H

∗]; (9)

(see curve D in Fig. 1 and Fig. 2). This force density is again different from the two previous
ones (Eq. (6) and (8)) but gives rise to the same total optical force. Equations (8) and (9)
consider only non magnetic host and nanoparticles (µh = 1). Including a magnetic dipole into
the force calculation leads to the complete Lorentz force density [24]. The additional forces
become important when considering meta-material nanoparticles and are expressed as:

< f > =
1

2
�(ρeE

∗ + ρmH∗ + je × µ0H
∗ + jm × ε0E

∗), (10)

where ρe = −∇ · Pe, je = ∂tPe, ρm = −∇ · Pm and jm = ∂tPm correspond to the
electric and magnetic densities and currents. These in turn, depend on the electric and magnetic
polarisation Pe = (εn − εh)E and Pm = (µn − µh)H.
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It is also possible to express the optical force as a surface force which acts on the interface
between different media. This force density is defined by further simplifying Eq.(5), which
leads to:

< f > = −
ε0
4

(E · E∗)∇(ε′r) −
µ0

4
(H · H∗)∇(µ′

r)

+
ε′′r ε0
2

�[(E∗ · ∇)E] +
µ′′

rµ0

2
�[(H∗ · ∇)H]

−
ω

2
�(εrµr)�(E∗ × H), (11)

which generalises [25, 26] to include absorptive and magnetic media (see curve B in Fig. 1
and Fig. 2). For convenience, we have split the relative local permittivity and permeability
εr = ε′r + iε′′r and µr = µ′

r + iµ′′

r into real and imaginary parts. Contrary to the Lorentz
force density discussed earlier, this force density places the force on the surface formed by the
discontinuity between the particle and the host material and implies bulk forces only in presence
of absorption by the particle.

Regardless of the form used, if applied correctly, all these notations give the same total
optical force and they all have one thing in common: in order to evaluate these expressions, we
need the knowledge of the field interacting with the particle i.e. we need to solve Maxwell’s
equations, taking into account the incident field and its scattering by the particle. There are a
variety of methods to solve this problem and it is the restricted size of the nanoparticle playing a
role in the choice of the method used. In the following, we consider three different approaches
that take into account the reduced size of the nanoparticle. These are the generalised Lorenz-
Mie scattering, the dipole approximation, and the sum of the optical gradient and scattering
forces.

2.3 Rayleigh and Lorenz-Mie scattering

In general, for particles smaller than λ/20, we can calculate the optical forces using the Rayleigh
scattering coefficients [27]. This approximation is also called the quasi static theory [28] as it
assumes the field to be constant across the particle i.e. it is valid for particles much smaller than
the wavelength. For these point-like dipole particles it is possible to estimate their total mi-
croscopic polarisation as proportional to the incident electric field. The induced polarisation of
these particles is given by p = ε0εhαE, where α is the polarisability. The induced polarisation
varies together with the incident electric field implying an oscillating dipole that is associated
with a current j = ∂tp. This current, in conjunction with the optical Lorentz force (Eq.(8) for
example), gives the total optical force acting on the nanoparticle [29, 30]

< f > =
ε0εh

2
� [α(E · ∇)E∗ + α∂tE × µ0H

∗)] . (12)

Conceptually, this force can be split into the sum of two parts, namely the gradient force
and the scattering force. This approach to calculating optical forces is very useful as it gives a
direct and quick method for predicting the optical forces acting on nanoparticles by observing
the incident field (see the experimental work in Sec. 3.2.1 and Sec. 4.3 for examples). The
gradient force causes the nanoparticles to be attracted by high intensity parts of the field, such
as the focal spot, and depends on the gradient of intensity of the incident beam:

< Fgrad > =
ε0εh

4
�(α)∇(E · E∗), (13)
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Fig. 2. Optical forces acting on a gold nanoparticle (nn = 0.86 − 1.85i) in water as a function of
its volume (lower x-axis) and diameter (upper x-axis). The transversal (a) and longitudinal (b) optical
forces acting are calculated for the different models: A Maxwell’s stress tensor Eq.(5); B Surface gradient
forces Eq.(11); C Lorentz force Eq.(8); D Lorentz force Eq.(9); E Lorenz-Mie forces; F Gradient and
scattering forces Eq.(14); G Dipole approximation forces Eq.(17); H Gradient and scattering forces using
Lorenz-Mie scattering and absorption coefficients. The inset shows small the particle limit.

where we used the vector calculus identity ∇(E · E∗) = 2�[(E · ∇)E∗ + E × (∇ × E∗)]
and Maxwell’s equation ∇ × E = −µ0∂tH. The nature of the gradient force depends on the
sign of the real part of the polarisability. The gradient force corresponds to the zeroth order
approximation of the total optical force. Indeed, this force depends only on the incident optical
intensity and does not directly involve the amount of optical interaction with the incident field.

The scattering force corresponds to a first order approximation term of the optical force
originating in the momentum loss or transfer from the incident light to the particle. The mo-
mentum transfer/loss is directly linked to the amount of scattering and absorption of the particle,
taking its optical interaction with the electromagnetic field into account. This force is plotted in
Figs. 1 and Fig. 2 (see curve F and H) and is given by:

< Fscat > + < Fabs > =
nh

c
Cscat< S > +

nh

c
Cabs< S >, (14)

where < S >= 1/2�(E × H∗) is the optical cycle averaged Poynting vector and where
Cscat = n4

hk4
0/(6π)|α|2 and Cabs = −nhk0/ε0�(α0) are the scattering and absorption cross

sections within the Rayleigh approximation (k0 is the vacuum wavevector and � denotes the
imaginary part of a complex number). The use of these cross sections is valid for incident fields
that vary slowly in amplitude compared to the size of the nanoparticle.

In order to evaluate the gradient and the scattering forces we need to determine the polaris-
ability of the particle. This is obtained through the Clausius-Mossotti homogenisation procedure
with

α0 = 4πa3
εn − εh

εn + 2εh

, (15)

α = α0/[1 + in3

hk3

0α0/(6π)], (16)

where a corresponds to the radius of the nanoparticle. Here, the standard polarisability α0 is
corrected to include the radiative reaction of the nanoparticle [31]. The radiative reaction cor-
rection takes into account the amount of scattering by the nanoparticle corresponding effectively
to the attenuation seen by the incident filed. The correction leads to a complex polarisability,
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dephasing the oscillation of the dipole with respect to the incident field, effectively absorbing
the incident field. Additionally, it is possible to include into the microscopic polarisability the
internal structure of the nanoparticle such as nanoshell fabricated by coating nanoparticles [28].

The slowly varying amplitude restriction can be relaxed through the use of a more general
Rayleigh force formula which is deduced from the second form of the Lorentz force in Eq.(9).
Again, considering a nanoparticle with a microscopic polarisability α = α′+iα′′, we have [32]:

< Fi >Rayleigh =
ε0εh

2
�(αEj∂iE

∗

j ) (17)

=
ε0εhα′

4
∂i(EjE

∗

j ) +
ε0εhα′′

2
�(E∗

j ∂iEj), (18)

where the total Rayleigh force is split into a gradient and a scattering force [33] (see curve G
in Fig. 1 and Fig. 2). In this instance, the radiative correction becomes important as, without
it, dielectric particles would have a purely real polarisability and thus would not be subject to
scattering forces.

As the size of the nanoparticle increases, its optical behaviour becomes more complex and
can no longer be described by a simple dipole model but needs to be generalised to include
multipole effects. This is achieved within the Lorenz-Mie scattering theory which decomposes
an incident plane wave or, more generally, an arbitrary beam into vector spherical harmon-
ics. Imposing the continuity of the tangential fields at the spherical interfaces it is possible
to define Mie coefficients similar to the transmission and reflection in multi-layered struc-
tures [34–36]. Knowing these Mie coefficients allows us to analytically integrate Maxwell’s
stress tensor around the particle and to determine the amount of momentum transferred to the
particle in the Lorenz-Mie scattering process (see curve E in Fig. 1 and Fig. 2).

Within the generalised Lorenz-Mie scattering theory, the incident beam is assumed to be a
correct solution to Maxwell’s equations that is decomposed onto the incident spherical harmonic
fields. Tightly focussed beams can be described using higher order corrections to Gaussian
beams [37]. Decomposing these beams into the infinite series of spherical harmonics proves to
be a challenge because of the slow convergence. Alternative procedures involve the description
of the incident beam using the localised beam model [38,39], partial waves [40] or s-expansion
methods [41]. The treatment of non-spherical particles is accomplished within the T-matrix
method which is equivalent to Lorenz-Mie scattering for spherical particles [42–44].

In Fig. 1 and Fig. 2 we compare the theoretical calculated optical forces acting on nanopar-
ticles as a function of their size. For all eight methods considered, we calculated the force along
(longitudinal) and across (transversal) the direction of propagation of a linearly polarized Gaus-
sian beam having a total power of P0 = 1 W, a focal waist w0 = 1 µm and a wavelength of
λ = 500 nm. The nanoparticle is positioned in the focal plane of the beam 300 nm from its axis
along the polarization direction. We calculated the optical forces for a dielectric particle and for
a metallic nanoparticle. To facilitate the observation of the linear link between the nanoparticle
volume and optical force we chose to represent these forces as a function of the total particle
volume. For convenience, we indicate the corresponding diameter of the nanoparticle on the
top x-axis.

We observe that all four methods based on Maxwell’s stress tensor (see curves A-D in
Fig. 1- 2) give the same optical forces within the numerical error. All these four methods are
based on calculating the local electromagnetic fields and deriving the amount of momentum
transfer to the nanoparticle from these fields. This is calculated either by considering the flux of
momentum across the particles boundary or through the local Lorentz force density. It is thus
not surprising that even though the four force field densities are different they all lead to the
same total force. Lorenz-Mie based force calculation is also an exact approach. The difference
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between the forces calculated using Lorenz-Mie and the local field methods is due to the differ-
ent description of the incident beam which is mostly visible for the transversal force in the case
of the metallic nanoparticle. Indeed, due to its absorption, the metallic particle is sensitive to
the precise phase profile of the Gaussian beam. The phase profile is the only difference between
the two representations. We also observe that the approximate dipole based methods work quite
well for very small particles except in the case of the transversal force calculation for metallic
nanoparticles. Here, these methods fail to take into account the plasmonic resonance of the par-
ticle leading to the repulsive transversal force as calculated by the exact methods. This feature
is not present in the case of dielectric nanoparticles.

Further, in Fig. 2b, we observe that the linear relationship between volume and longitudinal
force beaks down in the case of metallic nanoparticles. For very small nanoparticles the linearity
is preserved whereas the force acting on larger sized particles varies as the square of their
diameter. This effect is linked to the skin depth of the metallic particles. If the size of the
nanoparticle is smaller then its skin depth, the field interacts with the whole volume of the
particle resulting in a linear dependence between force and volume. For nanoparticle sizes
larger than the skin depth, the field interacts only with a thin outer layer of the nanoparticle.
This layer increases with the surface of the particle, giving rise to a quadratic behaviour of
the force as a function of the particles radius. Fig. 2b shows the transition between these two
regimes as a change of slope.

3 EXPERIMENTS

Optical trapping of nanometric objects is a rapidly growing field and its relevance is already
stretching beyond physics towards biology and chemistry. In this chapter we highlight exper-
imental achievements to date and point out remaining challenges. There are various kinds of
nanoparticles: quantum dots, molecules, dielectric, semiconductor and metal nanoparticles -
all very exciting and interesting objects of study that would benefit from controlled manipula-
tion. Nanoparticles are larger than atoms but smaller than the commonly tweezed micron-sized
beads and cells. Most of them have resonances (excitons, plasmons, fluorophores, cavities) af-
fecting their trapping properties. In order to address the different facets of these various types of
nanoparticles, we divide this chapter into three sections: optical trapping of dielectric, metallic
and molecular nanoparticles.

3.1 Trapping dielectric nanoparticles

The force exerted on a trapped object is fundamentally limited by size and relative refractive
index (the ratio of the refractive index of the trapped object and the host medium). It decreases
with the particle’s polarisability α which is proportional to the volume of the particle. Thus
this force is small for nanoparticles and even smaller for dielectrics because of the low index
difference to the host medium. Consequently high powers are required to trap a dielectric
nanoparticle with single-beam optical tweezers [45]. Alternative trapping geometries such as
counter-propagating beams have proved to be more favourable than single-beam tweezers [46].
Extending one dimension of the dielectric nanoparticle to micron-size increases the volume of
the trapped particle. This enhances the force that can be exerted on the trapped object such as
carbon nanotubes or semiconductor nanowires [47, 48].

So far, there have been very few experimental attempts to trap dielectric nanoparticles [45,
49]. Already in his pioneering optical tweezing experiment in 1986, Ashkin pointed out the
challenges for trapping very small dielectric beads [45]. He derived a stability criterion depend-
ing upon the size, the refractive index of the particle and the beam waist of the applied laser.
A very important constraint emerged in the experiment: the power needed to tweeze a particle
may exceed the damage threshold of the particle itself. Ashkin demonstrated optical tweezing
of differently sized dielectric spheres ranging from 10 µm down to 25 nm. The required laser
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a) b)

Fig. 3. a) The nanowires sink to the bottom of the sample chamber where they are picked up with optical
tweezers, here pictured from the side. b) GaN nanowires and SnO2 nanoribbons optically laser-fused after
they were manipulated in the correct place with optical tweezers. Pauzauski et al. imaged the nanowire
structures with darkfield microscopy (see Sec. 4.4). Adapted from [48] and reprinted by permission from
Macmillan Publishers Ltd: Nature Materials, copyright (2006).

power increased with decreasing particle diameter, being up to 1.4 W for 25 nm silica particles.
The silica spheres were immersed in water which is advantageous as the damping decreases the
Brownian motion and hence it is more likely or easier to trap them as the Brownian escape times
are increased. In the experiment, Ashkin used a single focused beam as a trapping laser which
was inserted into a high numerical aperture water immersion microscope objective. The spheres
were observed indirectly via the scattered light of the particles. This method even supplied an
approach to determine the size of the silica spheres from observing the scattering pattern and
comparing it to a sphere’s scattering pattern of known size.

In a counter-propagating geometry the axial scattering force components balance from op-
posing directions and the essential gradient force component dominates the trap site. As a result
it is possible to trap very small dielectric spheres at very low powers. Zemanek et al. designed
a specific counter-propagating geometry where the Gaussian standing wave creates nodes and
antinodes resulting in a very strong axial gradient force that exceeds the axial gradient force
of single-beam tweezers [46]. As a result, this geometry is not as sensitive to beam aberra-
tions and also works at lower numerical aperture as the optical tweezers system. Zemanek et
al. demonstrated trapping of 100 nm polystyrene spheres at trapping powers as low as 7 mW
in a so-called Gaussian standing wave trap. The trap is formed by a focussed Gaussian beam
passing the sample chamber and reflected on a coated coverslip.

A very interesting area is the optical trapping of objects having 2 dimensions in the nanome-
tre range and the third dimension is micron-sized. This is how we may consider nanowires and
carbon nanotubes. Several groups have been working on manipulating carbon nanotubes [47,
50, 51]. In all cases bundles of carbon nanotubes are trapped and manipulated. Single-beam
tweezers have been used but Plewa et al. showed the potential of holographic tweezers arrang-
ing carbon nanotubes in various shapes and even rotating entire bundles [50]. Several groups
report enhanced diffusion of carbon nanotubes into the trap site, however trapping of single
carbon nanotubes or trap stiffness measurements have not been reported to date. Enhanced
diffusion is also observed in molecular trapping experiments; we will discuss this further in
Sec. 3.3.

Semiconductor nanowires or nanorods have also been optically manipulated with single-
beam tweezers [48,52]. Once trapped, the automatic alignment of the nanorod in the trap along
the axis of the beam can be used as an advantage to manipulate the entire nanorod (Fig. 3).
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Agarwal et al. created several single-beam traps by means of holographic beamshaping and
placed these along one nanowire [53]. Advancing this multiple beam geometry into counter-
propagating tweezers, created with an acousto-optic deflector (AOD), enabled van der Horst et
al. to freely manipulate nanowires in three dimensions [52]. A line trap is another trapping
geometry that has been suggested by Yu et al. [53]. They manipulated CuO nanorods and
precisely put these in place to bridge two electrodes. Nanorods can also be fused once they have
been put in the correct place with optical tweezers and build more complex three dimensional
structures [48, 54]. In this case by shortly increasing the power, the trapping beam is used to
fuse the nanorods. Furthermore there have been theoretical suggestions about resonantly based
trapping of semiconductor nanoparticles (nanometric in all three dimensions), exploiting the
excitonic resonance [55]. However it was argued whether the assumed narrow linewidths of the
excitonic resonance are realistic [56]. In this particular case, a narrow linewidth is required to
achieve strong optical forces in order to stably trap semiconductor nanoparticles.

3.2 Trapping metal nanoparticles

Metal nanoparticles exhibit particle plasmons, a resonant excitation of free electrons in the
metal, and thus are more complex than their dielectric counterparts. An electromagnetic wave
at the resonance wavelength excites the particle plasmon in the nanoparticle. This resonance
wavelength is situated in the visible for gold and silver nanoparticles. If the wavelength of
a trapping laser coincides with the plasmon resonance wavelength, the trapping properties of
the nanoparticle are significantly altered. Manipulating metal nanoparticles close to their par-
ticle plasmon resonance thus requires a sensible choice of the laser wavelength. Conversely,
the particle properties far from resonance remain constant over a broad wavelength range and
optical trapping of metal nanoparticles far from resonance resembles trapping high refractive
index dielectric nanoparticles. We first review the pioneering works of trapping metal nanopar-
ticles. These experiments have been conducted far from the nanoparticle’s plasmon resonance,
preferably using a trapping wavelength at 1064 nm. In the second part, we discuss the newest
developments in plasmon resonance based trapping. For a detailed discussion of the theoretical
aspects of the specific force components we refer the reader to Sec. 2.3.

3.2.1 Non-resonant optical trapping

In the early years of optical trapping it was believed that tweezing of metal particles was impos-
sible [57]. Since metallic objects are highly reflective it was concluded that they were pushed
out of any high intensity region of a trapping laser. In 1992, Svoboda and Block [27] performed
a key experiment showing that it is indeed possible to optically tweeze metal nanoparticles. By
choosing a trapping laser in the infrared they conducted their experiment far from the particle
plasmon resonance. At this wavelength, the 40 nm gold nanoparticles have a large refractive
index relative to the host medium und therefore the gradient force is increased as compared to
a dielectric particle of the same size. This increase in polarisability is more dominant than the
increase in scattering and absorption cross sections (see Sec. 2.3). The authors used an inter-
ferometric position detection; a precise method that relies on the interference of two trapping
beams acting as one optical trap. The interference pattern is imaged on a photodetector that
translates the optical signal into a voltage. This method gives an exact measure of the particle
displacement in the trap site and is further discussed in Sec. 4.4. Electronic interference detec-
tion is now widely used as it gives an accurate description of the trapping potential and therefore
a measure to compare trap stiffness for various particle sizes and materials. Additionally, Svo-
boda and Block employed direct imaging with video-enhanced differential-interference contrast
(DIC) microscopy to observe the metal nanoparticles.

The ability to successfully control metal nanoparticles in three dimensions soon led to ap-
plications for touchless tweezing. Kawata et al. optically tweezed a single gold nanoparticle
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Fig. 4. Darkfield images of silver nanoparticles show the colourful plasmon excitation. The plasmon
resonance shifts and broadens when two nanoparticles are combined to one larger particle by manipulating
them in close proximity to one another. The change in resonance is visible by eye in the darkfield images
and in the recorded scattering spectra. The solid lines are calculated fits to Lorentzian line shapes (thin
lines). The spectrum of a coupled nanoparticle pair is very sensitive to the particle separation (d). Adapted
from [58] and reprinted by permission from ACS Publications: Nano Letters, copyright (2004).

and used it as a near field scanning probe [59]. The advantage of this method is that the probe
particle has no contact with any interface or tip. This contact-free SNOM probe may then be
utilised for fluorescence or near field imaging.

Another possibility is to exploit optical tweezers as an experimental tool to investigate single
particle properties. Prikulis et al. [58] tweezed a single silver nanoparticle, obtained its spectrum
and demonstrated the resonance shift and broadening when two 90 nm silver particles interact
in close proximity (Fig. 4). To monitor the trapped particle they used darkfield microscopy. In
this configuration the numerical aperture (NA) of the trapping objective has to be smaller than
the numerical aperture of the condenser objective in order to keep the darkfield microscopy
working. This limited Prikulis et al. in their trapping abilities so that they were constrained
to 2D trapping as the maximum used NA was 0.7. They also applied an indirect detection
method, coupling the scattered light of the nanoparticle into a fibre spectrometer to analyse
the particle’s distinct spectrum. This gives a detailed insight into the particle’s properties and
allows determining the material and size of the metal nanoparticle. The position of the plasmon
resonance of a Rayleigh particle of a certain material can easily be predicted. This resonance
position shifts to the red for larger particles. Additionally Prikulis et al. demonstrated that two
particles in close proximity show a very distinct scattering pattern as they may be combined of
the scattering spectra of the individual particles. Soon after, pairs of 40 nm silver spheres were
combined to form hot pairs for surface-enhanced Raman Spectroscopy in the focus of optical
tweezers [60].

Recently Lene Oddershede’s group started to conduct very detailed studies pushing the un-
derstanding of tweezing metal nanoparticles even further [61, 62]. A wide size range of gold
and silver nanoparticles has been investigated as well as a study to optimise optical tweezing
of metal nanoparticles with respect to an aberration-compensated focus [63]. They examined
the trapping potential for various sizes analysing the scattered light of a trapped particle with a
quadrant photodiode. Here, the trapping laser is the probe laser at the same time. The interfer-
ence pattern of the incoming trapping beam and the scattered light of the nanoparticle fall on
the four quadrants of the diode and the displacement of the nanoparticle can be monitored with
nanometre precision. Particles larger than 70 nm have been observed in brightfield microscopy.
Below this diameter differential interference contrast microscopy (see Sec. 4.4) had to be ap-
plied to render the nanoparticles visible. They also mentioned that water immersion objectives
are more effective than oil immersion for metal nanoparticle trapping. However, changing the
refractive index of the immersion oil and position of the trap focus also proved beneficial for
increasing the trap stiffness κ as shown in Fig. 5. The group further demonstrated the im-
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Fig. 5. Changing the refractive index n of the immersion oil for the trapping objective increases the
trap stiffness κ. The trapping potential in single-beam tweezers is harmonic and can be described as
F = −κ(x − x0) with the trap stiffness κ, the equilibrium position of the particle x0 and the position of
the particle x. Increasing the trap stiffness κ allows to use less laser power and still exert the same force
on the particle. The correct choice of the position (depth) of the beam focus and thus the trapping position
in the sample chamber is also important. Reprinted by permission from the Optical Society of America:
Optics Letters [63], copyright (2007)

portance of aberration analysis in the optical trap site leading to tremendous improvements in
trapping efficiency which is crucial for power reduction. This is essential to minimise heating
and damaging effects for further applications.

The refractive index of metal nanoparticles contains a larger imaginary part compared to di-
electric particles, representing the increased absorption in metal nanoparticles. This absorption
potentially induces heating that may seriously affect the usefulness of tweezing metal nanopar-
ticles for biological applications [64]. Seol et al. presented an experiment where they in-
vestigated the same optical trap with three different methods to determine the trap stiffness κ
based on the equipartition theorem, power spectrum and hydrodynamic drag. The discrepan-
cies arising in these measurements were attributed to significant heating of the nanoparticle.
When the nanoparticle heats up, the host medium within it is dispersed in changes its viscosity
and therefore affects the power spectrum as well as the hydrodynamic drag. The viscosity of
water decreases with increasing temperature and affects these two approaches that assume a
constant viscosity. Seol et al. make a very valid point; however heating effects might not be as
detrimental if an appropriate trapping geometry and wavelength is used for the specific applica-
tion. Optimising the single-beam tweezers [63] such that minimal powers are required to trap
nanoparticles is one approach. Alternative trapping geometries to trap metal nanoparticles out
of high intensity regions provide an additional technique to avoid potential heating [65]. Further
advances in plasmon based trapping may provide innovative means to decrease the amount of
power necessary for optical trapping of metal nanoparticles.

Combining single-beam tweezers and evanescent wave trapping allowed Sasaki et al. to
analyse the scattering force acting on 250 nm gold particles [66]. They created an evanescent
field with a 1064 nm laser beam at one interface of the sample chamber by total internal reflec-
tion. The nanoparticle was manipulated close to the evanescent field with the help of a second
beam shaped as standard single-beam tweezers (see Fig 6a). The gradient forces attracted the
nanoparticle towards high intensity regions while the scattering force component of the evanes-
cent field laterally displaced the nanoparticle. Although the particle was stably trapped in the
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Fig. 6. a) Combining single-beam tweezers and evanescent fields lead to further insight in the interplay
of scattering and gradient force components for metal nanoparticles [66]. b) A vortex trap is an alternative
trapping geometry to single-beam tweezers [65]. The metal nanoparticle is confined in the dark vortex
core of a Laguerre-Gaussian beam, avoiding the high intensity region of the laser.

single-beam tweezers, it could be further manipulated with the evanescent field. Sasaki et al.
concluded that gradient force attraction is possible even for gold particles as large as 250 nm in
a 1064 nm laser field. Further trapping geometries, for example the dual beam trap, have been
suggested, but have not been realised for metal nanoparticles.

3.2.2 Trapping near the plasmon resonance

A particle plasmon is a resonant excitation of free electrons in the metal resulting in wavelength
dependent scattering, absorption and polarisability of the nanoparticle. This resonant property
influences the forces one may exert with an incident laser beam. The gradient force changes
significantly with the wavelength dependent polarisability. The polarisability of a particle gives
a measure how much charge separation can be acquired within the particle itself. For atoms or
certain nanoparticles the polarisability may even become negative and thus lead to a repulsive
gradient force. Close to the particle’s resonance scattering and absorption also increase consid-
erably. Consequently there has to be a well chosen balance of counteracting forces that compete
in an optical trap to achieve the best possible trapping.

Theoretical investigations approaching the plasmon resonance for optical trapping sug-
gested a wavelength dependent interaction process leading to a repulsive or attractive gradient
force [33, 67]. The sign of the gradient force is directly related to the sign of the particle’s po-
larisability α which changes for certain metal nanoparticles close to resonance. This idea was
theoretically studied further within the context of an evanescent wave trapping geometry [68].
Only within the last two years, experimental exploration of tweezing nanoparticles close to their
resonance has gained momentum.

The first experiment investigated gold nanorods with the longitudinal resonance around 800
nm [69]. Pelton et al. showed repulsion of gold nanorods by a trapping laser tuned below the
resonance wavelength and attraction into the trapping region for a trapping laser tuned above
the resonance. Further trapping of bipyramids and Au-Ag core-shell nanorods strengthened
the observation of an enhanced gradient force at the red-detuned side of the nanoparticle’s
resonance [70]. In both experiments a tuneable Ti:Sapphire laser served as trapping laser and
a second modelocked laser at 800 nm with a tenth of the power of the trapping laser induced
two photon fluorescence of the nanorods. This fluorescence was analysed with a photodiode
recording residence times of the nanorods in the trap (see Fig. 12 and Sec. 4.4). Pelton et al.
observed repulsion of the gold nanorods from the trap site when the laser was tuned below
resonance resulting in a shorter residence time in the trap site. Using a laser wavelength above
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the resonance of the gold nanorods, so-called red-detuning of the trapping laser, resulted in an
increase in trap residence time of the nanorods.

Non-spherical metal nanoparticles are complex structures sustaining more than one plas-
monic resonance mode. Nanorods for example have two resonances corresponding to the long
and short axis excitation. The long-axis resonance is red-shifted compared to the resonance of
a spherical particle of equivalent dimensions. This red-shifting of the resonance is controlled
with the aspect ratio (length over thickness) of the nanorod. Furthermore, the long axis plasmon
excitation exhibits lower nonradiative damping at resonance. The interband damping mecha-
nism is suppressed as the lower (red-shifted) resonance energy does not exceed the necessary
threshold energy to excite interband transitions [71]. Interband damping is a nonradiative decay
of the particle plasmon by creating excitons (electron-hole pairs). Contrary to plasmon reso-
nances in nanospheres, the excitation of particle plasmons in non-spherical objects depends on
the orientation of the nanoparticle with respect to the polarisation of the trapping laser.

Close to the plasmon resonance the absorption cross section of a nanoparticle increases and
is likely to induce heating as discussed in Sec. 3.2.1. To keep the heating effect at a minimum
one may optimise the power requirements for single-beam tweezers or consider different meth-
ods of optical trapping. An alternative trapping geometry, commonly used in atom trapping,
relies on the repulsive nature of the trapping laser [65]. The metal nanoparticles are repelled
out of the high intensity regions of the trapping laser rather than being attracted to the focus
(see Fig. 6b). This repulsion may either originate from a negative gradient force or a strong
scattering force component. Both processes occur at the blue-detuned side of the resonance of
a nanoparticle. Depending upon the specific material properties either of these two processes
may dominate. A single ringed (radial index p = 0) Laguerre-Gaussian (LG) beam generates
an annular trapping laser profile (zero intensity in the core). Once loaded into the trap site the
particles are surrounded by the high intensity region of the beam. Choosing the appropriate
laser wavelength with respect to the particle plasmon resonance is crucial for resonant optical
trapping and we are going to discuss this further in Sec. 4.3.

3.3 Trapping molecules

Indirect trapping of single molecules, DNA in particular, has been extensively investigated [72–
74]. Here the molecule is attached with suitable chemistry to a micron-sized dielectric bead.
Instead of exerting optical forces directly on the molecule, the dielectric bead is trapped and
easily manipulated with single-beam tweezers. The gradient force holding an object in the trap
is directly dependent on the polarisability α of the particle and therefore its volume; decreasing
for smaller nanoparticles and increasing for larger micron-sized beads. The main difficulty is
the submicron size of the molecules and thus the decreased forces a trapping laser can possibly
exert on a single molecule. Applying higher trapping laser powers and experimenting with
the resonance of fluorescent labels provided the means to achieve direct trapping of molecules
during the past decade [75–78].

Compact DNA as in a globular or supercoiled state is denser and therefore easier to tweeze
than elongated molecules. Stable trapping for single DNA molecules has been reported at laser
powers around 200 mW using red or infrared trapping lasers [75,76]. As there is less biological
damage from a 1064 nm laser, increasing the beam power up to 500 mW enables trapping
of simple coiled (elongated) DNA molecules as pictured in Fig. 7 [77]. These do shrink in
the trap but not as much as in a supercoiled state. In all described experiments the trapping
mechanism is attributed to larger gradient forces for the more compact molecular structure. In
these experiments the DNA was labelled with a fluorescent dye to observe it with a Silicon-
Intensified Target (SIT) camera. Analysing the images of the fluorescent dyes provided the
information needed for data acquisition.

Another trapping mechanism has been suggested, taking the role of the fluorescent labels
into account. The attached fluorophores have their own distinct resonance, resulting in an
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Fig. 7. a) Direct optical trapping of a coiled T4 DNA molecule imaged in fluorescent microscopy. The
free molecule fluctuates due to Brownian motion and once the laser is switched on (t=0) the coil is pulled
into the trapping laser focus. b) The radius of the DNA fluorescent image decreases over time and thus
represents the accumulation of the entire molecule in the laser focus. Reprinted by permission from the
Physical Society of Japan: Journal of the Physical Society of Japan [77], copyright (2005).

increased polarisability and therefore enhanced gradient forces at the fluorophore’s resonant
wavelength. These labels are essential in visualising and detecting single molecules. The flu-
orescent labels are either excited directly by the trapping laser or with a second probe laser.
Recent investigations showed that the trapping efficiency depends upon the number of fluo-
rophores attached to a single antibody [78]. Li et al. found clear evidence that the resonant
excitation of these labels enables trapping for single antibodies up to 1 s at powers as low as
0.75 mW. The exact mechanism remains to be explored as the resonance effect shows molecule
attraction into high intensity region of the trapping laser even for blue-detuned traps. Li et al.
conclude that the dipolar model employed for the attached fluorophores might not be appropri-
ate.

In addition to direct optical trapping of single molecules several groups observed biased
diffusion of molecules into a high intensity region of a laser beam [78–81]. The diffusion

Journal of Nanophotonics, Vol. 2, 021875 (2008)                                                                                                                                    Page 16



statistics of the molecules do not follow the expected Poisson statistics at short time scales. This
process suggests that the molecules are attracted towards regions of high laser intensity. The
laser intensities applied in these diffusion experiments are with 10-31 mW generally lower than
in the trapping experiments. Osborne et al. discuss resonant and non-resonant contributions to
the biased diffusion of single molecules [79].

The most common data acquisition method when trapping molecules is to count the photon
bursts of the fluorescence. The fluorescence signal from the trap site is focussed on a photo-
multiplier or avalanche photodiode that are coupled to photon counting units. This gives time
dependent photon counts providing fluorescence spectra that are further analysed with Poisson
or autocorrelation statistics. Here, the short time scale analysis is in particular important as the
trapping expresses itself as an increase in photon burst during a very short timescale while the
molecule is hold in the trap site. A different method of analysis was performed by Singer et al.
who used a helium neon laser at 633 nm as probe beam [81]. Depending on the content of the
trap, the beam was scattered in a distinct manner. By blocking the central part of the beam and
only analysing the rays scattered at angles larger than the incoming beam, the sensitivity was
increased even further. The scattering pattern was recorded with a CCD camera and processed
with Matlab software analysing the intensity changes.

4 OPTICAL TWEEZERS: OPERATION AND CONSTRUCTION

Optical tweezers is an established method for manipulating single microscopic particles in three
dimensions. The assembly of an optical tweezers system involves some important governing
principles and due consideration of certain mechanical components. A more comprehensive
technical discussion of this may be found elsewhere [82] but here we give the reader an overview
of the issues involved. Many considerations when assembling any optical trapping system are
based upon choice of numerical aperture of the objective, the types of lasers and the beam
delivery which are pertinent to the design. In particular, with relevance to this paper, one major
challenge when experimenting with nanoparticles is their visualisation and detection. There are
various methods where nanoparticles can be observed directly. We focus initially upon a generic
optical trap but will concentrate in following sections upon how we achieve successful trapping
for nanoparticles with particular choices of objectives and lasers for that particular particle
size. Subsequently, we address different methods of nanoparticle imaging and detection. We
complete this experimental section with a discussion about measuring optical forces.

4.1 Single-beam tweezers

Full control of the position and form of a single laser beam is core to successful optical tweezers.
Such a system may be readily implemented around a standard microscope which already comes
with a high numerical aperture (NA) objective lens [82]. The standard microscope body adds
robustness to the system and provides very high quality optics for a tweezers platform. Alter-
natively one may build the optical tweezers from standard cage plate or other opto-mechanical
components. This offers an inherent flexibility and adaptability for optical trapping and may
lead to more compact geometries. In relation to nanoparticle trapping, this may be achieved
either on a microscope with suitable imaging or with a cage-plate system. Figure 8 illustrates a
diagram of a standard tweezers setup.

In general, nanoparticles and molecules are dispersed in aqueous solutions as most of them
are not stable when isolated. A practical reason is to damp the particle motion thus decreasing
the Brownian motion of the nanoparticles. Dispersed particles at all size scales typically exhibit
overdamped motion within the trap. Also, they are mostly small enough to float throughout
the entire sample chamber instead of sinking to the bottom of the sample. This removes the
requirement of additional beams for lifting the particles back up and manoeuvring them in
the right trapping position as one can rely on diffusion of the nanoparticles into the trap site

Journal of Nanophotonics, Vol. 2, 021875 (2008)                                                                                                                                    Page 17



dichroic mirror

dichroic mirror

CCD camera

microscope
objective

condenser
objective

quadrant
photo diode (QPD)

light source

f3

f1

f3f4

f4

f5 + f6

f5

f6

conjugate
plane

lens 4

lens 2

lens 5

beam expander

relay telescope

lens 6

lens 3

lens 1

steering mirror

co
nju

ga
te

pla
ne

sample

laser

f1 f2

Fig. 8. To trap nanoparticles the standard optical tweezers have to be set up carefully to achieve the
highest quality trap and imaging. The focal lengths of the lenses are labelled accordingly (e.g.lens 1 with
a focal length f1). The beam expander, relay telescope and the steering mirror make sure that the back
aperture of the high NA trapping objective is slightly overfilled with the laser beam. This is essential for
good axial (z) trapping. Additional care has to be taken for setting up the illumination. Shown here is
brightfield Koehler illumination. Direct imaging of the sample is possible with a CCD camera, whereas
indirect observation and precise measurement requires a quadrant photodiode.

because of Brownian motion. In practice, approximately 10 microliters of solution is placed on
a sample chamber which is typically around 1 cm in diameter and 100 microns deep. In the case
of biological cells, these are often suspended in suitable buffer solution. The sample chamber
consists of two glass coverslips comprising the sample and separated with a thin spacer, for
instance adhesive stickers, vacuum grease or nail varnish, which determines the height of the
sample chamber and seals it to prevent the sample from drying up.

The sample is inserted into the sample plane of the optical tweezers which is situated at
the focus of the trapping microscope objective (see Fig. 8). It is either illuminated from the
top (inverted microscope) or from the bottom (upright microscope) depending upon the type
of microscope setup. The various methods to illuminate and image the sample are discussed
in Sec. 4.4. For nanoparticle imaging, the condenser lens ideally consists of a microscope
objective to have a larger NA than a lens increasing the total resolution of the system. In
transmission microscopy the trapping laser is inserted in the sample opposing the illumination
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Fig. 9. Setting up the beam steering mirror mirror 1 at the conjugate plane of the back aperture of the
trapping objective assures that the beam can be manipulated without walking of the back aperture of the
objective. This allows moving the trapping position of the beam in the sample plane. At the same time
the trapping laser always slightly overfills the back aperture of the microscope objective ensuring maximal
axial as well as lateral trapping strength.

beam through a high NA microscope objective. The trapping and illumination objective are
fixed, only the sample stage and the laser beam inside the objective can be moved. Optical
conjugate planes and the appropriate telescope are used to steer the beam inside the objective in
all three dimensions.

Optical conjugates enable the optimum steering of the trapping beam before entering the
microscope objective. The input beam needs to be translated across the sample stage whilst
ensuring the beam does not “walk off” or is deviated in a way that might cause it to miss or
clip any apertures in the beam path, most notably the back aperture of the microscope objective.
Ensuring that the input beam is centred upon the back aperture during steering ensures a good
quality trapping beam at the focal plane at all times. It is also important to eliminate any off-
axis aberrations that might be present, arising from the misalignment in the optical train, for
example astigmatism and coma.

In Fig. 9 we show how to implement the idea of optical conjugates for the steering of the
trapping beam. The back aperture of the microscope objective is imaged onto a mirror. Thus
positioning the light onto this mirror is equivalent to positioning the beam through the objective:
tilting the mirror in the lateral plane now moves the beam at the sample plane but does not move
it across the back aperture of the microscope objective. The beam steering system is composed
of two lenses, lens 1 (focal length = f1) and lens 2 (focal length = f2), and a steering mirror
mirror 1. The lenses are spaced at the sum of their focal lengths and mirror 1 is positioned at
one focal length f1 away from lens 1. By placing the back aperture of a microscope objective
at one focal length f2 away from lens 2, a beam steering lens system is formed. Here, the
rotating mirror 1 and the back aperture of the microscope objective form optical conjugates.
Both the blue line (deflected beam) and the red line illustrate the rays from rotating mirror 1.
The position of the central rays is maintained at the back aperture of the microscope objective.

4.2 Choice of objective

A key goal for a powerful optical tweezers system is to attain a strong trap stiffness which
ultimately means a tightly focused beam spot. To achieve a diffraction-limited beam spot with
the laser at the focal plane, a high numerical aperture (min NA ≈ 1) microscope objective lens is
a natural choice. Today, microscope objectives can produce an image at infinity. With so-termed
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“infinity corrected” objectives, researchers may use additional telescoping lenses and optical
conjugates to relay the collimated laser source to the microscope objective (within the “infinity
space”) without affecting the bright-field or fluorescence imaging aspect of the system. The
optical telescope is desirable for achieving a diffraction limited spot for true three dimensional
tweezing as it assists in slightly overfilling the back aperture of the microscope objective [82].

When employing an oil-immersion microscope objective for tweezing, the beam propagates
through a layer of index matching oil through a thin piece of glass (the coverslip) and then into
the sample solution which is of a lower refractive index than the glass and oil. The beam will
undergo a large change in refractive index that imposes spherical aberrations and results in
broadening of the beam spot along the axial plane. Thus, a well aligned optical tweezers may
exhibit inherent aberrations due to refractive index mismatches that can result in poor trapping
particularly at depth. As the result, the trap performance may degrade when tweezing deeper
into the sample [29]. Another method is to use water immersion objectives for optical trapping
of nanoparticles. They are corrected for the refractive index of water and, by removing the oil
and coverslip, are inserted directly into the sample which reduces the spherical aberration. As
discussed in Sec. 3.2.1 Reihani et al. conducted a detailed study about aberrations and trap focus
position [63]. They demonstrated that oil immersion objectives, when used in combination with
the correct index matching liquid, are potentially more suitable to trap metal nanoparticles than
water immersion objectives.

Other optical techniques to obviate these aberrations are available in the form of dynamic
holographic [83] elements or a deformable mirror [84] technology by imposing correction terms
of the appropriate Zernike polynomials upon the input wavefront of the tweezing beam.

4.3 Laser choice

The choice of laser has a major influence upon optical trapping. This is not only in terms of the
wavelength deployed but also the mode of laser operation i.e. continuous wave or mode locked
(short pulse). Most optical trapping experiments use single wavelength continuous wave (CW)
sources. For large biological objects it is important to avoid high absorption of the light by the
subject being trapped. The laser wavelength is chosen within the so-termed therapeutic window
in the near-infra red region to avoid damage to biological specimens. In more detailed studies,
wavelengths of 830 nm and 970 nm have been shown to be particularly favourable [85]. The
authors explored the wavelength dependent nature of the photodamage in E. Coli compared to
Chinese hamster ovary (CHO) cells. The cloning efficiency of CHO cells after irradiating for
5 minutes was studied and the wavelengths 830 nm and 970 nm were observed to offer highest
efficiency (and thus optimal cell viability), whilst the wavelength range from 870 nm - 930
nm was found to be the most damaging. More generic studies quite often use wavelengths at
≈1064 nm due to the ease of obtaining very high quality fibre laser sources. One also has to
consider the impact upon the heating of the surrounding medium which can be detrimental in
such experiments.

In the near infra red, there are ample laser sources with good beam shape that is typically
characterized by the M2 parameter: this denotes how close an output beam is to a perfect
Gaussian beam profile (M2 = 1 for a single-mode TEM0 Gaussian beam) [86]. Additionally
beam pointing stability is a major issue: motion of the beam here can radically alter any detailed
force measurements. For studies focused upon colloidal science, high power lasers in the visible
range of the spectrum (notably at 532 nm) are favourable due to the low absorption of water
that reduces heating effects. Ultra-short pulsed lasers have also been used when one wishes to
combine optical trapping with nonlinear phenomena (two photon excitation). If the repetition
rate of the laser is high enough, anomalies due to particle diffusion in between pulses is not
significant and the forces exerted equal to their continuous wave counterparts [87]. Short pulsed
lasers have also been used for visualisation of trapped nanoparticles [69].
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Fig. 10. The particle plasmon resonance results in a wavelength dependence of the optical forces exerted
with a laser on metal nanoparticles. a) As an example we calculated the polarisability α and the scattering
cross section of a 100 nm gold sphere. Compared to the typical trapping wavelength at 1064 nm, α is
decreased for 514 nm. Contrary, the scattering cross section is increased at 514 nm. A 514 nm laser thus
exerts less attractive force than a 1064 nm laser and pushes the nanoparticles out of high intensity regions
because of the increased scattering force components. b) Instead of manipulating 100 nm gold particles
with single-beam tweezers we show how one may confine the nanoparticles to a dark vortex core of a
514 nm Laguerre-Gaussian beam. The particle remains in the dark core as shown in the movie stills of
this process. The video data is further analysed with particle tracking and in c) we plot all positions one
nanoparticle visited during confinement.

Whilst spatial coherence of the light source is crucial for a tightly focused beam, temporal
coherence is not such an issue (except of course where the laser bandwidth encroaches upon an
absorption band within the trapped sample). Some recent experiments have even used “white
light” laser sources based on a supercontinuum generation [88]. Such a source offers the po-
tential for spectroscopy simultaneously with the trapping and the prospect of tuning around the
plasmon resonance.

Metal nanoparticles, as well as other particles exhibiting a resonance, require extra thought
for choosing the trapping laser wavelength. A resonant effect can only be induced with a laser
wavelength close the resonance wavelength of the particle. Here, attractive gradient forces may
be reduced or even turned into repulsive gradient forces. Additionally, scattering and absorption
are likely to increase. In order to exploit the particle plasmon resonance for optical trapping,
the selected trapping geometry has to work in favour of the induced optical forces.

The resonantly induced change in optical forces may be explained in the quasi static limit
where the total force acting on the particle consists of a dipolar gradient force as well as scatter-
ing and absorption forces as we discussed earlier in Sec. 2.3. The latter forces depend linearly
upon the scattering and absorption cross section of the nanoparticle. The gradient force de-
pends linearly upon the polarisability α of the particle. The polarisability gives a measure of
the amount of charge separation the electric field induces in the metal nanoparticle. In Fig. 10a
we plot the polarisability for a 100 nm gold sphere. The polarisability α and thus the gradient
force is reduced below resonance when comparing α at 1064 nm (a wavelength far off reso-
nance) and 514 nm (a wavelength on the blue-detuned side of the resonance). At the same time,
the scattering cross section and therefore the scattering force increases for 514 nm compared
to 1064 nm laser excitation. Consequently the balance between scattering and gradient forces
that enable optical trapping at 1064 nm is destabilised close to resonance. It turns out to be
impossible to tweeze 100 nm gold spheres in the high intensity region of a 514 nm laser focus
and one has to use an alternative trapping geometry to trap the particle.

A dark-field vortex trap is one alternative to single-beam tweezers, confining the nanoparti-
cle to the dark core of a Laguerre-Gaussian beam [65]. The geometry is explained in Sec. 3.2.2
and the movie stills of the experiment are shown in Fig. 10b. The nanoparticle is enclosed by
a high intensity region of laser light. The positions the nanoparticle residences are plotted in
Fig. 10c. In the case of gold nanoparticles the repulsion out of the high intensity regions relies
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Fig. 11. A 100 nm gold sphere freely moving in solution imaged with Koehler illumination, DIC
microscopy and transmission darkfield microscopy. a) In Koehler illumination the sample is uniformly
illuminated with a bundle of parallel light rays at different angles. It is possible to image metal nanopar-
ticles down to approximately 80 nm with this method. b) DIC is ideally applied to transparent samples
but sometimes used for metal nanoparticles. c) The best solution appears to be darkfield imaging as it is
possible to image particles much smaller than 80 nm without any additional labelling.

on resonantly enhanced scattering. However for other materials such as silver the repulsion
is potentially the result of a negative gradient force when the polarisability becomes negative.
This effect remains to be experimentally explored.

The described resonance detuning for trapping in a dark vortex core is widely used in atom
trapping. The volume of atoms is extremely small and hence a standard gradient force trapping
can not exert enough forces on atoms as the gradient force decreases with volume. The trap-
ping laser is slightly detuned with respect to the atomic resonance. The resulting attractive or
repulsive forces - red and blue detuned trapping respectively - are strong enough to manipulate
atoms in three dimensions. The atomic resonance is much sharper as compared to the plasmonic
resonance and thus requires only few nanometres of wavelength detuning of the trapping laser
to change the forces exerted on atoms significantly.

4.4 Imaging and detecting nanoparticles

Direct imaging of nanoparticles faces two challenges: they are smaller than the diffraction limit
and in some cases (dielectric nanoparticles) there is only little refractive index difference be-
tween the nanoparticles and the host medium. However, there are approaches to render nanopar-
ticles visible that are frequently complemented with precise indirect detection techniques. We
are going to illustrate selected methods that have proved useful and subsequently describe indi-
rect measurement techniques.

Metal nanoparticles have a large refractive index and hence are easier to image in brightfield
illumination than their dielectric counterparts of the same size. Standard brightfield microscopy
requires Koehler illumination [89] to achieve the best possible resolution and contrast by evenly
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Fig. 12. a) The induced two-photon fluorescence has not been recorded with a CCD but with a spectrom-
eter and compared to the extinction spectrum to really show that two-photon fluorescence was observed.
b) Transmission-electron-microscopy or scanning electron microscopy is a very nice tool to analyse fine
features of nanoparticles. This is only possible once they are immobilised on a conducting substrate. The
time trace of the two-photon fluorescence in c) confirms when particles are in the trap. Reprinted by
permission from the Optical Society of America: Optics Letters [69], copyright (2006).

illuminating the field of view. With this method it is possible to image metal nanoparticles down
to a size of approximately 80 nm (Fig. 11a). Differential interference contrast microscopy (DIC)
is a technique for even smaller or transparent dielectric nanoparticles. DIC requires polarised
light and two Wollaston prisms inserted in the illumination path [89]. These separate and rejoin
the two differently polarised illuminating rays before and after the object. The polarised rays
do not pass the sample in the exact same position and thus acquire a phase difference relative
to one another as they travel through differently optically dense media. Bringing the rays into
interference after passing through the sample shows the phase difference by creating a high-
contrast image (Fig. 11b).

Darkfield microscopy is complementary to the previously discussed methods. The incident
illumination merely passes the sample at a glancing angle and misses the observation objective.
This objective only collects the scattered light of the nanoparticles that appear at high con-
trast in front of a dark background [89]. Darkfield microscopy is particularly useful when the
nanoparticles show certain resonance effects such as particle plasmons or exciton resonances
in semiconductors (Fig. 11c). However, combining darkfield microscopy with optical trapping
remains challenging. The sample is imaged through the same objective which is used for optical
trapping. The numerical aperture of the imaging/trapping objective has to remain smaller than
the numerical aperture of the darkfield condenser. This requirement limits the combination of
possible objectives. Optical trapping requires high numerical aperture oil or water immersion
objectives to achieve stable 3D tweezing of nanoparticles. Consequently the condenser objec-
tive has to be an oil immersion objective in order to attain a higher numerical aperture. A dif-
ferent approach is to use reflected light darkfield microscopy. This requires a special objective
(labelled as Neo, BF/DF, or BD depending upon the manufacturer) in combination with a block
in the illumination path and a ring-shaped mirror. This mirror reflects a cylinder of light into the

Journal of Nanophotonics, Vol. 2, 021875 (2008)                                                                                                                                    Page 23



objective where the illuminating light is guided in an outer hollow collar whereas the trapping
laser and the collected reflected light pass through the inner core of the objective [90, 91].

An alternative imaging technique uses a secondary beam that excites two-photon fluores-
cence in the nanoparticles. These signals are shifted in frequency compared to the scattered light
of the nanoparticles and thus are easy to separate from any background radiation (Fig. 12a). The
two-photon fluorescence is collected with a CCD camera and the recorded images or videos can
then be further processed to analyse the particle’s position and movement [69]. Another widely
used method is fluorescent labelling of DNA or dielectric nanoparticles with fluorescent stains.
There is a variety of very well developed microscopic techniques such as confocal fluorescence
microscopy as well as far - and near field microscopy. Far-field imaging employs higher laser
powers for sub-millisecond time resolution whereas near-field microscopy yields higher spatial
resolution [79]. Fluorescent imaging is applied in a variety of conditions; however its applica-
bility is sometimes constrained because of the limiting effects of photobleaching.

Instead of directly imaging the nanoparticles there are indirect techniques to determine their
position and movement as discussed in Sec. 4.5. Nowadays the most common method is the
interferometric position detection with a quadrant photodiode. Here an interference pattern of
the trapping beam and the scattered light of the particle impinge onto the four quadrants of
the photodiode where it is converted into an electric signal, mostly a voltage. Subtracting and
adding the electronic signals of the four quadrants yields nanometre precise position data for the
nanoparticle. It is possible to retrieve a power spectrum that gives valuable information about
trap stiffness and trapping potential. A common method, mostly applied in molecular studies,
is the use of an avalanche photodiode or photon counter (Fig. 12c). Here the residence times of
particles in a trap are recorded and further analysed [80].

4.5 Measuring optical forces

In Section 3.2.1 we review experiments from Oddershede’s group and others about optical trap-
ping of metal nanoparticles that focus in particular on measuring trap stiffness and characteris-
ing the trap [27,61,63]. In this section, we discuss how the optical forces are derived from these
experiments. Optical tweezers offer a very accurate force measurement system. This may be
understood by considering the underlying physical principles of its operation. This knowledge
is then combined with an understanding of the particle dynamics and Brownian motion. The
fundamental tenet is that an optical tweezers may be considered as a highly overdamped simple
harmonic oscillator. A parabolic potential well is created by the optical trapping beam within
which the particle resides. When the particle is at equilibrium, it tends to rest at centre of the
potential well (trap) where it has the minimum energy. Though it may be considered as in a
metastable state, it can escape the potential well if the well depth is not very high. For any
motion away from the equilibrium position, over a small distance from that equilibrium, the
particle will experience a restoring force that is proportional to the distance away from centre
of the well. Thus the trapped object obeys Hooke’s law and is rather like a microscopic spring.
Most importantly the particle position may be determined to dimensions one order of magni-
tude smaller than that of the trapping wavelength which is the crux of the reason why such
small displacements (and thus forces) may be discerned with this method. Mathematically we
represent this situation by a one dimensional equation of motion in direction x for a Brownian
particle in a harmonic potential:

m
∂2x

∂t2
+ γ

∂x

∂t
+ κx = Ff (t). (19)

In this equation, the first term represents the inertial force component for a particle with mass
m, the second term is the velocity dependent viscous damping force (γ is the drag coefficient)
and the final term is the optical restoring force for the trap stiffness κ. The right hand side of the
equation represents the fluctuating force Ff (t) initiated by Brownian motion. Normal trapping
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Fig. 13. The power spectrum of a trapped 100 nm gold (blue) and 100 nm polysterene (red) sphere can
be fitted wit a Lorentzian curve. The curve fit provides the roll off frequency f0 for each particle in at a
given power in a specific optical trap. The roll off frequency determines the trap stiffness κ.

conditions in a sample medium with buffer means viscous forces dominate and we are in the
low Reynolds number regime [92]. We may thus ignore inertial effects as m∂2x

∂t2
� (γ ∂x

∂t
+κx)

and the objects in our sample solution adhere to overdamped particle dynamics.
To use optical tweezers for measuring small forces, we require the addition of an optoelec-

tronic sensor capable of measuring the mean position of the trapped object in all three dimen-
sions and the corresponding trap stiffness κ. The sensor and detection circuitry is calibrated by
moving the trapped objects over a known distance. With the relationship of signal (voltage) and
the distance (nanometre), the sensor can be calibrated for specific distances. Once this position
calibration factor and the stiffness κ of the optical tweezers are quantitivity collected, the optical
tweezers can then be implemented as a force transducer. The trap stiffness κ is calculated from
analysis of the thermal motion of the trapped object or by application of known viscous drag
forces.

A popular method of detection is the imaging of the back focal plane interference pattern
from the trapped object [93] onto an optoelectronic detector (quadrant photodiode or position
sensitive detector) [94]. The signal can be collected from either back scattered light or forward
scattered light with the aid of probe laser beam, in general the trapping beam itself [95,96]. The
detector measures the geometrical centre of the trapped particle, in three dimensions, over a
given time scale. The motion of a trapped nanoparticle is determined by the balance between the
thermal Brownian motion and the tweezers trapping force. In addition to the position detection,
the quadrant photodiode acquires the power spectral density for all three dimensions x, y and z.
An example is plotted in Fig. 13. The power spectrum provides the corner or roll off frequency
f0 that is used to determine the trap stiffness κ = f02πγ. We refer the reader to the paper by
Lee et al. [82] that explains in detail the assembly and calibration of an optical tweezers and the
choices regarding the detection system.

Neuman and Block also make pertinent comments regarding the quadrant photodiode and
position sensitive detector detection system [2]. A direct comparison of video and quadrant
photodiode detector techniques has also been investigated by Keen et al. [97]. To measure the
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movement produced by single-protein conformational change we expect displacements in the
nanometre range. In the domain of nanoparticles, the use of a quadrant photodiode for particle
position monitoring and data accquisition to characterise trap properties is now an established
method [61].

4.6 Summary

Trapping nanoparticles has advanced significantly over the past decade. It has evolved from
some initial scepticism into a well established field. Optimisation of trapping geometries and
parameters as well as better understanding of trapping processes between the Rayleigh and Mie
regimes have helped to improve our understanding of optical forces at this size scale. There are
multiple methods to model optical forces acting on nanoparticles. Within the Rayleigh approxi-
mation, the optical forces are decomposable into a gradient and a scattering force. As the size of
the nanoparticle increases, this approach fails and one has to take higher order corrections into
account. The Lorenz-Mie scattering theory and the T-matrix method deliver these necessary
corrections. A direct numerical calculation of optical forces is also feasible by using, for exam-
ple, finite elements methods and integrating either Maxwell’s stress tensor or its derivatives over
the nanoparticle volume and surface. This large choice of methods presents the perfect ground
to study the transition between atoms and much larger optical objects where geometrical optics
is applicable.

In many respects the trapping of nanometric objects is in its infancy: substantially more ex-
periments remain to confirm theoretical predictions and forces on these objects at the nanoscale.
Intrinsic resonance may assist greatly in imaging, obviating the need for tagging. Metal nanopar-
ticles due to their strong response and tremendous field enhancements still need further inves-
tigation close to their resonance to make full use of controllability and employ them as nano-
metric sensors and antennas. Direct manipulation of macromolecules such as DNA has started
to be successful. This opens up the opportunity for parallel studies of molecules with beam
multiplexing, exploring their motion on optical landscapes, would greatly benefit this area. The
future for nanoscale manipulation looks very bright.
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