Paper
9 March 2015 Optical differentiation wavefront sensor based on binary pixelated transmission filters
J. Qiao, A. Travinsky, G. Ding, Christophe Dorrer
Author Affiliations +
Abstract
High-resolution wavefront sensors are used in a wide range of applications. The Shack-Hartmann sensor is the industry standard and mostly used for this kind of analysis. However, with this sensor the analysis can only be performed for narrowband radiation, the recoverable curvature of the wavefront slopes is also restricted by the size of a single lens in the microlens array. The high-resolution Shack Hartmann wavefront sensor (>128×128) is also significantly expensive. The optical differentiation wavefront sensor, on the other hand, consists of only simple and therefore inexpensive components, offers greater signal to noise ratio, allows for high-resolution analysis of wavefront curvature, and is potentially capable of performing broadband measurements. When a transmission mask with linear attenuation along a spatial direction modulates the far field of an optical wave, the spatial wavefront slope along that direction can be recovered from the fluence in the near field after modulation. With two orthogonal measurements one can recover the complete wavefront of the optical wave. In this study the characteristics of such a wavefront sensor are investigated when the linear transmission modulation is implemented with a pixelated binary filter. Such a filter can be produced as a gray-scale quasi-continuous transmission pattern constructed using arrays of small (e.g., 10-micron) transparent or opaque pixels and therefore it can simply be fabricated by conventional lithography techniques. Simulations demonstrate the potential ability of such a pixelated filter to match the performance of a filter with continuously varying transmission, while offering the advantage of better transmission control and reduction of fabrication costs.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. Qiao, A. Travinsky, G. Ding, and Christophe Dorrer "Optical differentiation wavefront sensor based on binary pixelated transmission filters", Proc. SPIE 9356, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications IV, 935608 (9 March 2015); https://doi.org/10.1117/12.2079846
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wavefronts

Wavefront sensors

Binary data

Sensors

Fourier transforms

Modulation

Near field optics

Back to Top