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Abstract. Structured light fields embody strong spatial variations of polarization, phase, and amplitude.
Understanding, characterization, and exploitation of such fields can be achieved through their topological
properties. Three-dimensional (3D) topological solitons, such as hopfions, are 3D localized continuous field
configurations with nontrivial particle-like structures that exhibit a host of important topologically protected
properties. Here, we propose and demonstrate photonic counterparts of hopfions with exact characteristics
of Hopf fibration, Hopf index, and Hopf mapping from real-space vector beams to homotopic hyperspheres
representing polarization states. We experimentally generate photonic hopfions with on-demand high-order
Hopf indices and independently controlled topological textures, including Néel-, Bloch-, and antiskyrmionic types.
We also demonstrate a robust free-space transport of photonic hopfions, thus showing the potential of hopfions
for developing optical topological informatics and communications.
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1 Introduction
Topological solitons with topologically protected spin texture
are of fundamental interest in exploring fascinating physical
phenomena and nonlinear field theories.1 In particular, numer-
ous low-dimensional topological solitonic textures have been
extensively studied in recent years, such as one-dimensional
magnetic domain walls and magnetic skyrmions,2–4 as well as
two-dimensional (2D) electromagnetic skyrmions,5–8 merons,
and bimerons.9–11 Their sophisticated topological structures have
been considered promising information carriers in the next gen-
eration of data storage and communication devices.12–15 3D topo-
logical textures have also been attracting considerable interest
in condensed matter physics and optics, and, following their
theoretical introduction, extending the frontiers of topological
field manipulation.13,16–18

Hopfions, as the most classic 3D topological solitons, were
initially proposed in the Skyrme–Faddeev model.19–21 They are
also known as Faddeev–Hopf knots22,23 and can be elegantly

mapped to a Hopf fibration and characterized by a Hopf
index.24,25 Hopfions have fundamental importance in many
physical systems in high-energy physics,26 chiral and frustrated
magnets,27–32 quantum fields,33,34 condensed matter physics,35–38

cosmology,39,40 fluid dynamics,41 liquid crystals,42,43 and very re-
cently, were realized in free-space photonics.44 Due to their rich
3D spin texture, hopfions can potentially provide many oppor-
tunities in investigations and applications of topological struc-
tures. However, only a very limited number of hopfions have
been experimentally realized to date. For instance, magnetic
hopfions of Bloch (vortex) and Néel (hedgehog) types can be
excited and exist in a stable state in chiral magnets.28 In photon-
ics, only fundamental-order hopfions with a unit Hopf index
have been reported.44 Spatial knot configurations of isophase
in structured light fields have also been studied,45–47 but they
do not fulfill the 3D Hopf map. The generation and properties
of higher-order photonic hopfions and their topological spin
texture tuning have yet to be explored.

In this letter, we theoretically and experimentally demon-
strate a generalized family of photonic hopfions constructed
using superposition of paraxial Laguerre–Gaussian (LG) beams
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with customized polarization patterns. The generated complex
vector fields have spatially varying 3D polarization distribu-
tions, which exhibit hopfion topological textures. The observed
photonic hopfions can be freely transformed to various topologi-
cal states, including Néel-type (hedgehog), Bloch-type (vortex),
and antitype (saddle) textures and many intermediate topologi-
cal classes. For each on-demand texture, a topological charge
(Hopf index) of hopfions can also be tuned to arbitrary integers,
realizing higher-order hopfions. We also demonstrate a free-
space transport of hopfions with protected topology, revealing
the potential to develop the technology of topological informa-
tion transfer.

2 Results
In topology, a hopfion configuration is usually represented by
a 3D real-space distribution of generalized unit spin vectors,
Sðx; y; zÞ ¼ ½sxðx; y; zÞ; syðx; y; zÞ; szðx; y; zÞ�, and achieved
by a stereographic projection from a hypersphere S3 [χ ¼
ðχ1; χ2; χ3; χ4Þ] to a real space R3 [r ¼ ðx; y; zÞ], fulfilling the
Hopf map S ¼ hζjσjζi, where jζi ¼ ðχ4 þ iχ3; χ1 þ iχ2ÞT and
σ ¼ ½σx; σy; σz� correspond to the three Pauli matrices.29 As a
geometric representation of a Hopf map, a point on a S2 sphere
(a so-called 2-sphere) corresponds to a closed line (loop) in a
real space rather than a point in a real space, revealing the addi-
tional dimension of a hypersphere. Each loop corresponds to
an isospin contour [ðsx; sy; szÞ = const] in the hopfion texture.
Extending this description to optics, χ components correspond
to the real and imaginary parts of the complex-valued fields

projected onto the circular polarization basis, thus capturing
both polarization and phase variations in a 3D space. In turn,
S is, therefore, formed by Stokes vectors ðS1; S2; S3Þ, describing
spatial variations of polarization of an optical field, and a
2-sphere is equivalent to a Poincaré sphere. In this framework,
the isospin contours are isopolarization contours of an optical
vector field.

An example of the mapping is illustrated in Fig. 1. Latitude,
α, and longitude, β, of each point on a parametric 2-sphere,
which represents a spin vector, are shown in Fig. 1(a) with
hue color and lightness, respectively. The corresponding stereo-
graphic projection of an isopolarization contour in a real space
is shown as a loop with the same color in Figs. 1(b) and 1(c).
The loops mapped from the points on the same latitude β of
a parametric sphere form a set of the torus knots (a set of
knots that lies on the surface of a torus), completely covering
a torus when scanning the points with different longitudes α
[Fig. 1(b)]. Thus, the full unwrapping of the parametric sphere
(for all latitudes and longitudes) results in the torus knots
on the nested tori with each torus corresponding to different
latitudes β, akin to matryoshka [Fig. 1(c)]; this construction
is termed the Hopf fibration. In two extreme cases of the
mapping, the spin-down contour (left circular polarization in
optics), corresponding to the south pole of a 2-sphere, is the
ring at the core of the nested tori (black line), whereas the
spin-up contour (right circular polarization), corresponding to
the north pole, is the line in the z direction along the axis of
the nested tori.

(a) (c) (d) (e)

(f)(b)

Fig. 1 (a) The parameter-space visualization of a hypersphere: the longitude and latitude degrees
(α and β) of a parametric 2-sphere are represented by hue color and its lightness (dark towards
the south pole, where spin is down, and bright towards the north pole, where spin is up). Each point
on a parametric 2-sphere corresponds to a closed isospin line located in a 3D Euclidean space.
(b) The lines projected from the selected points of the same latitude β and different longitude α on
the hypersphere (highlighted by the solid dots with the corresponding hue colors) form torus knots
covering a torus (with different tori corresponding to different β). (c) The real-space visualization of
a Hopf fibration as a full stereographic mapping from a hypersphere: toroidally knotted lines (torus
knots) arranged on a set of coaxially nested tori, with each torus corresponding to different latitude
β of a parametric 2-sphere. The black circle corresponds to the south pole (spin down) and the axis
of the nested tori corresponds to the north pole (spin up) in (a). (d) The 3D spin distribution in
a hopfion, corresponding to the isospin contours in panel (c), with each spin vector colored by its
α and β parameters of a parametric sphere in panel (a), as shown in the inset. (e), (f) The cross-
sectional view of the spin distribution in panel (d): (e) x–y (z ¼ 0) and (f) y–z (x ¼ 0) cross sections
show skyrmion-like structures with the gray arrows marking the vorticity of the skyrmions. Color
scale corresponds to the spin direction in panel (d).
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How knotted each torus knot is depends on the topological
charge (Hopf index, QH) (see Supplementary Note I and
Ref. 48). The Hopf index (topological charge) is determined
by an around-torus index p and a through-torus index q via
QH ¼ p × q, which describes how many times an isospin con-
tour goes around the torus (p) and through the torus hole (q).
A fundamental hopfion corresponds to one around and one
through a torus configuration (QH ¼ 1).

The 3D spin texture of a hopfion is shown in Fig. 1(d), where
the colors of vectors correspond to the isospin contours in
Fig. 1(c). A 3D hopfion is closely related to 2D skyrmions.
Hopfion textures have a skyrmionium (a doughnut-shaped
texture composed by two nested skyrmions with opposite polar-
ities) in the x–y cross section at z ¼ 0 [Fig. 1(e)], and the
y–z cross section (x ¼ 0) corresponds to two skyrmions with
opposite vorticity and opposite skyrmion topological charges
[Fig. 1(f)]. These are the signatures of a hopfion, since the
hopfion can be represented by an end-to-end twisted skyrmion
tube.31 Due to the closed connection to skyrmions, hopfions
can be classified by the type of skyrmionium in the x–y cross
section, which in turn is classified by the type of 2D skyrmions
forming it (see Supplementary Note II for details).11–13

The topological number of a hopfion (Hopf index) is defined
by25 QH ¼ p × q ¼ 1

ð4πÞ2
RRR

F · Adx dy dz, where Fi ¼ εijkS·

ð∂jS × ∂kSÞ∕2, in which i; j; k ¼ fx; y; zg, ε is the Levi–Civita
tensor, and A is the vector potential satisfying ∇ × A ¼ F and is
closely related to the skyrmion number (p and q correspond to
the skyrmion numbers of the skyrmions in the x–z and x–y cross
sections of a hopfion43), which can be defined by the product of
topological numbers of polarity QP and vorticity QV of the sky-
rmion spin texture.13,49 The polarity QP ¼ 1

2
½cos βðrÞ�r¼a

r¼0 ¼ �1

is defined by the vector direction down (up) at the center r ¼ 0
and up (down) at the skyrmion boundary r → rσ for QP ¼ 1

(QP ¼ −1), and the vorticity QV ¼ 1
2π ½αðϕÞ�ϕ¼2π

ϕ¼0 can be an
arbitrary integer that controls the azimuthal distribution of the
transverse vector field components. For a fixed vorticity, an
initial phase θ should be added to distinguish the helicity to
completely decide the transverse distribution of the vector field,
i.e., αðϕÞ ¼ mϕþ θ, which is termed helicity. For instance, a
skyrmion with vorticity charge QV ¼ 1 represents a hedgehog-
like texture for a helicity θ ¼ 0 (named Néel Type-I), a squeezed
hedgehog-like texture when helicity is π (named Néel Type-II),
and a right- or left-handed vortex texture when helicity is π∕2 or
3π∕2 (named Bloch type), whereas for the vorticity charge of
−1, the skyrmion has a saddle-like texture (named antitype).
The classification can be applied to hopfions, i.e., Néel, Bloch,
antitype hopfions, given that the skyrmion appears in the x–y
cross section of the hopfion.

Using structured light technologies to sculpture complex
nonseparable states of an optical vector field,50–52 a photonic
hopfion can be constructed by the polarization Stokes vectors
of a 3D-structured vector beam with the electric field given
by ψðx; y; zÞ ¼ ψRðx; y; zÞêR þ ψLðx; y; zÞêL, where êR (êL) is
the eigenstate of right-handed (left-handed) circular polarization
and ψR (ψL) is the corresponding spatial mode. The Stokes
vector can be related to the electric field by S ¼ hψjσjψi, using
the same form of a Hopf map mentioned above. The developed
experimental setup (see Supplementary Note III for the details
of the experiment) allowed us to generate photonic hopfions
with tunable topology via the interference of controlled LG
beams and perform 3D tomography of the Stokes vectors

distribution by measuring the spatial polarization distributions.
The isopolarization contours exactly follow the Hopf fibration
when ψR ¼ LG0,0 þ LG1,0 and ψL ¼ LG0;−1, where LGp;l
is the LG beam with radial index p and azimuthal (orbital
angular momentum, OAM) index l [Eq. (S17) in the
Supplementary Material].44 Arbitrary photonic hopfions can be
obtained using interference of two LG beams, ψR ¼ LG0,0þ
eiφLG1,0 and ψL ¼ eiθLG0;l, with two intermodal phases,
φ and θ, that do not affect the configuration of the Hopf
fibration.

Antitype
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Fig. 2 Left, simulated Stokes vector distributions in the skyrmio-
nium textures in the x–y (z ¼ 0) plane of the photonic hopfions of
(a) Néel Type-I (QP ¼ 1;QV ¼ 1; θ ¼ 0), (b) Bloch type (QP ¼ 1;
QV ¼ 1; θ ¼ π∕2), (c) Néel Type-II (QP ¼ 1;QV ¼ 1; θ ¼ π), and
(d) antitype (QP ¼ 1;QV ¼ −1; θ ¼ π). The insets in black circles
highlight the corresponding texture of the x–y components.
Right, theoretical and experimental polarization distributions
represented by Poincaré parameters (orientation and ellipticity
of the polarization ellipse) in the x–y and y–z planes for the topo-
logical hopfions in panels (a)–(d). The x and y scales are normal-
ized to the fundamental mode waist radius w0, and the z-scale is
normalized to the Rayleigh range zR . The color scale is as shown
in Fig. 1.
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Topological protection of photonic hopfions is provided by
the required Gouy phase difference [Eq. (S17) in the Supple-
mentary Material] between the modal components. A finite size
of a beam causes spread of the transverse wave vector compo-
nents and a corresponding reduction of the longitudinal wave
vector component, resulting in an additional (Gouy) phase.
The three modal components must have a fixed ratio of the
Gouy phases (e.g., LG0,0∕LG0;−1∕LG1,0 ¼ 1∶2∶3 for funda-
mental order hopfions), so that the hopfion topology can be
stable and protected irrespectively of how absolute values of
the intermodal phases change during propagation. In the oppo-
site situation, for example, if the vortex component of the hop-
fion has mixed modes with the Gouy phases that do not satisfy
the above condition, the beam will show a drastically variant
structure upon propagation.11,53

Using the developed approach, photonic hopfions of arbi-
trary topological numbers QH and with all kinds of hopfionic
textures can be generated, including Néel, Bloch, antitypes,
and intermediate states. For example, choosing l ¼ 1, the tex-
ture of a photonic hopfion can be switched by simply tuning θ
between Néel Type-I (θ ¼ 0), Bloch type (θ ¼ π∕2), Néel
Type-II (θ ¼ π) [Figs. 2(a)–2(c)]. Choosing l ¼ −1, the pho-
tonic hopfion of the antitype is observed in the case of θ ¼ π
[Fig. 2(d)]. The experimentally measured polarization distribu-
tions in the optical hopfions of Néel Type-I (l ¼ 1; θ ¼ 0),
Bloch type (l ¼ 1; θ ¼ π∕2), Néel Type-II (l ¼ 1; θ ¼ π),
and antitype (l ¼ −1; θ ¼ π) are in excellent agreement with
the theoretical results (Fig. 2).

In a fundamental-order hopfion, each fiber as a torus knot in
the Hopf fibration goes one time through and one time around
the torus, resulting in a topological charge of QH ¼ �1 (“�”
decides chirality). For higher-order hopfions, if each torus-knot

fiber goes p times through and q times around the torus, the
topological charge is QH ¼ �p × q.48 The vector fields of vari-
ous higher-order hopfions can also be characterized by a closed-
form expression related to p and q (see Supplementary Note I).
Three examples of the torus-knot configurations of three
higher-order hopfions with ðp; qÞ ¼ ð−2; 1Þ, ðp; qÞ ¼ ð2; 1Þ,
and ðp; qÞ ¼ ð3; 2Þ were generated, using LG beams with l > 1
(Fig. 3). In general, for a given value of l, the torus-knot indices
are determined by ðp; qÞ ¼ ðl; jlj − 1Þ. For each higher-order
hopfion, the x–y cross section shows corresponding higher-
order skyrmionium textures with vorticity equal to QH , and the
y–z cross section shows two skyrmions with opposite higher-
order vorticity.

In the past, a hopfion was always considered a static topo-
logical quasiparticle. Our developed approach provides a unique
possibility to stimulate and observe free-space transport of
hopfions with the preserved topology. This is achieved by
tuning a phase parameter φ. In Figs. 2 and 3, φ ¼ 0 and the
hopfion center is located at z ¼ 0. If the phase parameter is
tuned, the hopfion configuration controllably propagates along
the z axis (the hopfion center moves in a z direction). For ex-
ample, when φ ¼ −π∕2, the hopfion is centered at z ¼ −zR
(where zR is the Rayleigh length). When the value of φ is gra-
dually increased to π∕2, the hopfion center moves to z ¼ zR
(Fig. 4). The propagation can be explained and simulated con-
sidering the Gouy phase mediated intramodal phase changes.
These lead to the variations of the amplitude profile of ψR along
the radial direction upon propagation,54 which determines the
z-position of a 3D polarization texture of hopfions. As the initial
intramodal phase φ is modified, the center of a hopfion ring,
which corresponds to a plane with φ ¼ 0, moves along the
z direction (Supplementary Note IV).
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Theory Experiment Theory Experiment Theory ExperimentTheory ExperimenTheory Experimen
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Fig. 3 (Top) The torus-knot configurations of a toroidal layer in the Hopf fibration for the higher-
order hopfions with Hopf indices of (a)QH ¼ −2, (b)QH ¼ 2, and (c)QH ¼ 3. (Bottom) Theoretical
and experimental polarization distributions in the x–y and y–z planes for the hopfions in panels
(a)–(c). Gray arrows indicate the vorticity. The geometric scales and the color scale are as shown
in Fig. 2.
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3 Discussion and Conclusion
We presented both theoretical and experimental demonstrations
of reconfigurable higher-order hopfionic textures and their
free-space transport in paraxial structured light. The topological
transformations between hopfions of Néel, Bloch, and antitypes
were achieved, and the developed principle can be applied to
other types of hopfions. The implemented mechanism to trans-
port a hopfion structure maybe of interest for development of
topological classical and quantum information carriers for op-
tical communications and data manipulation, with robust topo-
logical protection against perturbations, such as scattering and
disorder. Hopfions encompass the control of new topologies of
structured light, which provides many degrees of freedom for
these applications.

In this work, we studied optical hopfions in free space and
realized their higher-order transformation with a controlled
topological number. The described technique can be extended
to other kinds of topological quasi-particles with sophisticated
textures, such as torons55 and heliknotons,56 that were studied in
solid-state systems but have never been explored in light fields.
Because the topological numbers are mainly controlled by the
OAM of a light field, the unresolved challenge is to achieve
independent tuning of Hopf link numbers p and q.

It is also straightforward to generalize the results to an
isotropic, nonmagnetic, and achiral medium, which would
only introduce a scaling factor related to its refractive index.
Similarly, media with the mode-independent gain and loss
should also preserve the topological structure. A more complex
and rich physics is expected for the optical hopfions in aniso-
tropic, magnetic, and chiral media, or in the presence of strong
mode-dependent gain and loss, which would influence the evo-
lution of different modal components differently.
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