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Abstract. The Cramer-Rao lower bound (CRLB) on localization precision of unbiased estimators is analyzed for
stochastic optical localization nanoscopy that localizes emitters frame by frame independently. It is found that the
CRLB is a function of the mean number of detected photons per emitter, signal to Poisson noise ratio, signal to
Gaussian noise ratio, point spread function (PSF), pixel size, and relationship of emitter locations. With a slight
and practical approximation, effect of Gaussian noise is equivalent to increasing the mean photon count of
Poisson noise by a number equal to the variance of Gaussian noise. Numerical examples demonstrate that the
CRLB of emitters located on a curve increase fast as the distance of adjacent emitters increases. The mean
CRLB of randomly uniformly distributed emitters in both two-dimensional and three-dimensional imaging increases
exponentially fast as the emitter density increases. The effects of PSF, standard deviation of PSF, mean number of
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1 Introduction
Fluorescence microscopy has played a crucial role in the study
of cellular structure. Due to the physics of light diffraction,
a conventional fluorescence microscope can only achieve the
highest spatial resolution of 250 to 500 nm, fundamentally lim-
ited by the wavelength of fluorescence emission. By using pho-
toswitchable and photoactivatable probes, recent nanoscopy
techniques1–11 have broken the long-standing diffraction barrier
to provide a spatial superresolution of ∼20 nm and enabled the
viewing of nanoscale cellular structures and dynamics that were
unable to be seen before. The nanoscopy techniques have two
categories. The first is called ensemble imaging approaches,1

which employ patterned illumination to modulate spatially
the fluorescence of probe molecules within the diffraction-
limited region to break the diffraction barrier. This includes
stimulated emission depletion (STED) microscopy,2,3 reversible
saturable optically linear fluorescence transitions (RESOLFT),4

and saturated structured illumination microscopy (SSIM).5 The
second is usually called superresolution optical localization
microscopy12 or stochastic optical localization nanoscopy. It
takes advantage of photoswitchable and photoactivatable probes
that are stochastically activated so that single activated probes
within their point spread functions (PSFs) are accurately
localized by the single-emitter fitting. This includes stochastic
optical reconstruction microscopy (STORM),6 photoactivated
localization microscopy (PALM),7 fluorescence photoactivat-
able localization microscopy (FPALM),8 superresolution optical
fluctuation imaging (SOFI),9 multicolor,10 and three-dimensional

(3-D)11 STORM, double-helix PSF,13 3-D interferometric
PALM,14 and 3-D biplane FPALM.15

Localization nanoscopy has a number of advantages1 that
make it particularly useful and potentially powerful. In principle,
localization nanoscopy employs photoswitchable fluorophores
as probes to trade imaging time for a super localization resolu-
tion. In each image frame, only a sparse subset of densely dis-
tributed probes is randomly activated so that single emitters
isolated within their PSFs are spatially resolvable.6 Since the
image data in the region where PSFs of multiemitters are over-
lapped have to be discarded, the probability of probe activation
must be low to reduce the probability of overlapping. Therefore,
a large number of image frames must be acquired to
obtain one snapshot of biological structure, thus significantly
increasing total imaging time or temporal resolution. One way
to reduce the imaging time is to use the probes that can achieve
high photoswitching rates under high laser intensities.16 Another
way is to exploit the location information of multiemitters
embedded in the image data where their PSFs are overlapped.
A number of estimators that can simultaneously localize multi-
emitters with overlapped PSFs have been developed in the liter-
ature. These estimators include the DAOPHOT/DAOSTORM,17

high-density 3-D,18 compressed sensing,19 deconSTORM,20

structured sparse model and Bayesian information criterion,21

and parallel localization of multiple emitters via Bayesian
information criterion recommendation.22 It is expected that a
number of multiemitter location estimators will be developed
in the literature.

The spatial resolution is one of the most important figures
of merit for a microscope. For the first category of nanoscopy
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techniques, the spatial resolution is simply determined by the
size of laser spot where fluorophores are activated. For the sec-
ond category of nanoscopy techniques, in contrast, the localiza-
tion precision of an emitter depends on a number of factors and
is much more complicated to determine. In localization nano-
scopy, as shown in Fig. 1, fluorescence of an emitter passes
through an optical path with a PSF and forms a two-dimensional
(2-D) image taken by a CCD or CMOS image sensor. Then an
estimator of emitter locations—an algorithm—reconstructs
emitter locations from the sensed image. Therefore, localization
precision of an emitter depends not only on diffraction but also
on the relationship of emitter locations, emitter power, noise
power, PSF, and pixel size of image sensor as well as the loca-
tion estimator. Calculated from the Fisher information of sensed
image, the Cramer-Rao lower bound (CRLB)23,24 provides a
fundamental theoretical limit on localization precisions obtained
by all unbiased estimators. While localization precision can be
different and depends on a particular estimator, the CRLB is an
intrinsic property of a localization nanoscopy system that is in-
dependent of a particular estimator. The CRLB of a single 2-D
emitter with the Airy and Gaussian PSFs is analyzed in Ref. 25.
The analysis is extended to a single 3-D emitter,26 a single 3-D
emitter with time-variant intensity,27 a single 3-D emitter in mul-
tifocal plane microscopy,28,29 two 2-D emitters,30 two 3-D emit-
ters,31 and the distance between two emitters.32 The CRLB with
the PSF produced by a fluorescent dipole is analyzed in Ref. 33.
By analyzing the likelihood function and CRLB, a fast single-
molecule localization approach that achieves the theoretical
minimum uncertainty is developed,34 and the approach is
extended to single-frame multiemitter localization.35 By analyz-
ing the CRLB, an information transfer function is derived based
on three assumptions that enable the feasibility of analysis.36

In this paper, we analyze the CRLB23,24 for the stochastic
optical localization nanoscopy that localizes an arbitrary number
of emitters with arbitrary locations independently from each sin-
gle image frame. A rigorous analysis of the CRLB of multiemit-
ters is important but is mostly missing in the literature. The
CRLB is the intrinsic power of a localization nanoscopy system
in localizing emitters. It provides a benchmark of the achievable
localization precision for all estimators existing in the literature
and to be developed. The CRLB of multiemitters analyzed in
this paper is an extension of the CRLBs of a single emitter25,26

and two emitters30,31 and includes them as special instances.
While an analysis of CRLB with multiemitters is considered
in the development of the maximum likelihood estimator of
multiemitter locations,35 our analysis in this paper is far more
in-depth. The aim of our analysis is to establish a theoretical
foundation on which the performances of different systems,
experiments, and estimators are comparable. To this end, the
PSF, Poisson noise, Gaussian noise, signal to Poisson noise
ratio (SPNR), and signal to Gaussian noise ratio (SGNR) are
defined to be universal to all systems and experiments. It is
found that the CRLB is a function of the mean number of
detected photons per emitter, SPNR, SGNR, PSF, pixel size
of image sensor, and relationship of emitter locations. With a
slight and practical approximation, it is found that the effect
of Gaussian noise is equivalent to increasing the mean photon
count of Poisson noise by a number equal to the variance of
Gaussian noise, and the mean of Gaussian noise does not
come into play. An analysis of the Fisher information matrix
points out that a cluster of emitters isolated from other clusters
of emitters can be localized by using the data of this cluster

alone without effect on the CRLB. By applying the analytical
formula of CRLB, we investigate how the CRLB is affected
by the placement of multiemitters in three cases: (1) a number
of emitters are located on a curve with an increasing distance of
adjacent emitters, (2) the number of emitters in a given square
increases, (3) a number of emitters are randomly uniformly dis-
tributed in a 2-D square and in a 3-D cuboid, respectively. The
first case considers 100 emitters on a curve and is different from
the two-emitter case.30–32 It is found that the CRLB of an emitter
increases fast as the adjacent emitter distance decreases except
for the emitters close to the denser end of the curve. In the sec-
ond case, it is demonstrated that the mean CRLB increases
exponentially fast as the number of emitters in a given square
increases. In the third case, it is found that the mean CRLB
increases exponentially fast as the density of emitters located
in either a 2-D square or a 3-D cuboid increases. These studies
indicate that a cluster of emitters mutually affects their CRLBs
through their overlapped PSFs, and the CRLBs of a cluster of
emitters increase as the distances between emitters decrease or
the emitter density increases. A single emitter whose PSF is iso-
lated from others reaches the lower bound of CRLB. We also
numerically investigate the effects of PSF, standard deviation
(SD) of PSF, mean number of detected photons per emitter, sig-
nal to noise ratio (SNR), axial thickness, and pixel size on the
CRLB. The results are generally applicable to 2-D and 3-D sto-
chastic optical localization nanoscopy with an arbitrary spatially
variant or invariant PSF.

2 Method

2.1 Cramer-Rao Lower Bound with Poisson Noise

2.1.1 Imaging model

A flow chart of localization nanoscopy is illustrated in Fig. 1.
Consider that in an image frame,M photoactivatable probes in a
specimen at the cuboid of ½0; Lx� × ½0; Ly� × ½−Lz; Lz� are acti-
vated and, henceforth, called emitters throughout. The emitters
are located at ðxm; ym; zmÞ for 3-D imaging or ðxm; ymÞ for 2-D
imaging, m ¼ 1; : : : ;M. In the following, 3-D imaging will be
considered, and all results are applicable to 2-D imaging. Each
of the emitters emits I photons per second on average, and the
point process of photon emission is a Poisson process. Due to
diffraction and other optical effects, a photon emitted from the
m’th emitter at ðxm; ym; zmÞ passes through the optical path and
arrives at location ðx; yÞ in the 2-D plane of image sensor with
a probability density function qmðx; yÞ, called PSF. It is worth
pointing out that as a probability density function, the PSF
qmðx; yÞ has a unit integral in the 2-D space R2 regardless of
emitter location. A photon is detected by the image sensor
with probability η. In other words, a photon is absorbed or van-
ished with probability 1 − η. The mean number of detected pho-
tons of an emitter per second in the image plane is Iη. It is
notable that in the literature of optical nanoscopy, a PSF is
defined in different ways6,7,9,11,13,15,17–22,33,36 such that a PSF
depends on the number of detected photons of an emitter,
depends on the pixel size of image sensor, and/or has a nonunit
integral. In contrast, the PSF defined here is independent of the
pixel size and the number of detected photons of an emitter and
therefore is universal to all systems and experiments.

Let Δt be the time of one frame in second during which an
image sensor detects photons. The frame rate equals 1∕Δt Hz.
The mean density function of detected photons in the image
plane produced by the M emitters during Δt is then equal to
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sðx; yÞ ¼ IηΔtQðx; yÞ; (1)

where

Qðx; yÞ ¼
XM
m¼1

qmðx; yÞ: (2)

A 2-D image is taken by the image sensor with x and y pixel
sizes of Δx and Δy, respectively. Assume that Lx and Ly are
integer multiples Kx ¼ Lx∕Δx and Ky ¼ Ly∕Δy of Δx and
Δy, respectively, and then Kx and Ky are image sizes in
pixel. The mean number of photons in pixel ðkx; kyÞ ∈ Ω ¼
f0; 1; : : : ; Kx − 1g × f0; 1; : : : ; Ky − 1g is equal to the spatial
integral of sðx; yÞ in the area of ½Δxkx;Δxðkx þ 1Þ�×
½Δyky;Δyðky þ 1Þ�, given by IηΔtΔxΔyQðkx; kyÞ, where

Qðkx; kyÞ ¼
XM
m¼1

qmðkx; kyÞ; (3)

with

qmðkx; kyÞ ¼
1

ΔxΔy

Z
Δyðkyþ1Þ

Δyky

Z
Δxðkxþ1Þ

Δxkx

qmðx; yÞdxdy: (4)

Here, for notation brevity, Qðkx; kyÞ and qmðkx; kyÞ denote the
averages ofQðx; yÞ and qmðx; yÞ over pixel ðkx; kyÞ, respectively.

In each pixel ðkx; kyÞ, the number of detected photons
Sðkx; kyÞ produced by the emitters is Poisson distributed with

a mean of IηΔtΔxΔyQðkx; kyÞ. In addition, the background
autofluorescence produces Poisson noise37 Bðkx; kyÞ with a
mean of b photons per second per nm2 and therefore yields
a mean of ΔtΔxΔyb photons per pixel. Then the total mean
photon count in pixel ðkx; kyÞ is equal to

vðkx; kyÞ ¼ IηΔtΔxΔy½Qðkx; kyÞ þ γ−1p �; (5)

where we define SPNR as

γp ¼ Iη
b

ðnm2∕emitterÞ: (6)

SPNR characterizes the emitter emission relative to the back-
ground emission and is independent of frame time and pixel size
of a particular system. The mean of a Poisson process is equal to
its variance; therefore, the mean number Iη of detected photons
of an emitter per second in the image plane is the total power of
the emitter with exclusion of its direct-current (DC) component.
Moreover, b is the mean number of photons per second per nm2,
representing the power density of Poisson noise with exclusion
of the DC component. Hence, SPNR can be considered as a sig-
nal to Poisson noise power ratio. As will be seen, γp is an in-
dependent parameter in determination of CRLB. Under γp, the
CRLB is scalable to pixel size, PSF, and other parameters. In
contrast, SNR for a nanoscopy system is usually defined as
the ratio of the number of photons per emitter at the peak
value of PSF-like image to the mean number of background
photons per pixel.8,9,13,21,22 Such a definition depends on and
therefore is not scalable to the PSF and pixel size. Moreover,
the peak value of PSF-like image is a realization of a random
variable and therefore depends on a particular observation.
SPNR defined in Eq. (6) is universal to all systems so that
it can be used to compare the performances of different
systems and experiments. Nevertheless, since γp ¼ ΔtΔxΔyIη∕
ðΔtΔxΔybÞ, given a particular nanoscopy system, SPNR can be
estimated using the image data where a single emitter is pre-
sented and the data where no emitter is presented. To make
SPNR a reasonable number in practice, we consider Poisson
noise per μm2 and therefore SPNR ¼ 10−6γp (μm2∕emitter)
is used.

Since the event that a photon emitted either from an emitter
or from the background autofluorescence arrives at a pixel is
independent of others, it follows from the property of classifying
a Poisson number of events38 that the number of detected pho-
tons Vðkx; kyÞ ¼ Sðkx; kyÞ þ Bðkx; kyÞ in pixel ðkx; kyÞ ∈ Ω
is an independent Poisson random variable with a mean of
vðkx; kyÞ.

2.1.2 Cramer-Rao lower bound

An estimator estimates 3-D locations of emitters from an image
Vðkx; kyÞ, ðkx; kyÞ ∈ Ω. Since Vðkx; kyÞ is a realization of a sto-
chastic process, estimates x̂m, ŷm, ẑm of emitter location coor-
dinates xm, ym, zm are realizations of random variables. With
different realizations of Vðkx; kyÞ, estimates are different in gen-
eral. Their SDs represent the estimation precision and perfor-
mance of an estimator. The SD also provides a measurement
on the power of distinguishing different emitters and, therefore,
a measurement of localization precision. Depending on its
capability of exploiting information of emitter locations in
Vðkx; kyÞ, an estimator may achieve a different localization pre-
cision. Nevertheless, the highest localization precision (i.e.,
the minimum SD) achieved by all unbiased estimators for a

Fig. 1 A flow chart of localization nanoscopy. The 2-D image sensor
can be CCD or CMOS. The estimator of emitter locations plays an
important role in determination of localization precision.
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localization nanoscopy system is determined by the Fisher
information of emitter locations contained in Vðkx; kyÞ of the
imaging model and is independent of a particular estimator.
Specifically, the minimum SD is determined by the CRLB
calculated from the Fisher information matrix.24 In convention,
the full width at half maximum (FWHM) of a probability
distribution function is used as the spatial resolution of a
microscope. It is known39 that with some conditions, the
maximum likelihood estimator is an asymptotically unbiased
Gaussian random vector with a covariance matrix equal to
the inverse of the Fisher information matrix. In this case, the
FWHM is equal to 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
≅ 2.355 times the SD. To be com-

parable to the FWHM of spatial resolution in the conventional
microscopy, we consider 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
times the CRLB (called

FWHM CRLB henceforth) on the SDs of unbiased estimators
as the intrinsic power of stochastic optical localization nano-
scopy in localizing emitters.

For 3-D imaging, let θ ¼ ðθ1;1; θ1;2; θ1;3; : : : ; θM;1; θM;2;
θM;3ÞT ¼ ðx1; y1; z1; : : : ; xM; yM; zMÞT be a vector of 3M emitter
location coordinates. For 2-D imaging, let θ ¼ ðθ1;1; θ1;2;
: : : ; θM;1; θM;2ÞT ¼ ðx1; y1; : : : ; xM; yMÞT be a vector of 2M
emitter location coordinates. The FWHM CRLBs of xm, ym,
zm are denoted by ΔðθmjÞ for j ¼ 1, 2, 3, respectively.

Based on the imaging model, the CRLBs of all emitters
can be derived by analyzing a likelihood function of emitter
locations. Since Vðkx; kyÞ’s are spatially (pixel-wise) inde-
pendent, a likelihood function of θ that is also the joint proba-
bility distribution function of all pixels in an image can be
written as

f ¼
Y

ðkx;kyÞ∈Ω
g½kx; ky; Vðkx; kyÞ�; (7)

where

g½kx; ky; Vðkx; kyÞ� ¼
½vðkx; kyÞ�Vðkx;kyÞ

Vðkx; kyÞ!
exp½−vðkx; kyÞ� (8)

is the probability distribution function of Vðkx; kyÞ.
The derivative of ln f with respect to a location coordinate θij

for i ¼ 1; : : : ;M, j ¼ 1, 2, or 3 is equal to

∂ ln f
∂θij

¼ IηΔtΔxΔy

X
ðkx;kyÞ∈Ω

�
Vðkx; kyÞ
vðkx; kyÞ

− 1

�
∂qiðkx; kyÞ

∂θij
:

(9)

The Fisher information matrix is a symmetric matrix F
whose ðθij; θmlÞ’th element is

Fðθij; θmlÞ ¼ E

�
∂ ln f
∂θij

∂ ln f
∂θml

�
;

where the expectation E is taken with respect to Vðkx; kyÞ.
Then,

Fðθij; θmlÞ ¼ ðIηΔtΔxΔyÞ2
X

ðkx;kyÞ∈Ω
E

��
Vðkx; kyÞ
vðkx; kyÞ

− 1

�
2
�

×
∂qiðkx; kyÞ

∂θij

∂qmðkx; kyÞ
∂θml

(10)

¼ IηΔtΔxΔy

X
ðkx;kyÞ∈Ω

1

Qðkx;kyÞþ γ−1p

∂qiðkx;kyÞ
∂θij

∂qmðkx;kyÞ
∂θml

:

(11)

To obtain Eq. (10), two properties are applied: (1) Vðkx; kyÞ’s
are mutually independent and (2) the score has a zero
mean,23 i.e., Ef∂ ln g½kx; ky; Vðkx; kyÞ�∕∂θijg ¼ 0. Equation (11)
follows from the property that Vðkx; kyÞ has the same mean and
variance of vðkx; kyÞ. Denote by F̃ðθij; θmlÞ the ðθij; θmlÞ’th
element of the inverse of F. The variance of any unbiased esti-
mate θ̂ij for θij is lower bounded by the θij’th diagonal element
of the inverse of F as Varðθ̂ijÞ ≥ F̃ðθij; θijÞ.24 Then the FWHM
CRLB of θij is equal to

ΔðθijÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2F̃ðθij; θijÞ

q
: (12)

Given an imaging model and emitter locations, the CRLBs of all
emitters can be calculated.

The CRLB derived above can be extended to the limit of
finest pixelation in which pixel sizes Δx → 0, Δy → 0, and
an image sensor covers the entire 2-D plane R2. By the mean-
value theorem, Qðkx; kyÞ → Qðx; yÞ, qmðkx; kyÞ → qmðx; yÞ,
and then it follows from Eq. (11) that

Fðθij;θmlÞ ¼ IηΔt

Z
R2

1

Qðx;yÞþ γ−1p

∂qiðx;yÞ
∂θij

∂qmðx;yÞ
∂θml

dxdy;

(13)

by which the FWHM CRLB is obtained through Eq. (12).
It is known25 that the CRLB of a single 2-D emitter is inde-

pendent of emitter location. However, a cluster of emitters with
overlapped PSFs can mutually affect and make each other’s
CRLBs higher. A PSF qmðx; yÞ in optical nanoscopy usually
has an effective region, say the set of all ðx; yÞ with
kðx; yÞ − ðxm; ymÞk < β for some β > 0 for a 2-D Gaussian
PSF, such that the PSF and its derivative with respect to the emit-
ter location outside the effective region are equal to zero approx-
imately. For a 2-D Gaussian PSF in Eq. (42) in Appendix A, the
set of kðx; yÞ − ðxm; ymÞk < β for β ¼ 2σ encompasses 95%
detected photons emitted from an emitter. The emitters with
overlapped PSFs (or overlapped effective regions) increase
each other’s CRLBs in two ways. First, when M ≥ 2, we
have Qðx; yÞ ≥ qmðx; yÞ for all ðx; yÞ belonging to the effect
region of m’th PSF for any m where the equality is true if
and only if the PSF of m’th emitter is not overlapped with
others’. The j’th emitter whose PSF is overlapped with the PSF
of m’th emitter generates a term of interemitter interference
qjðx; yÞ in 1∕½Qðx; yÞ þ γ−1p � that affects similarly to the noise
and therefore increases the CRLB of the m’th emitter. Con-
versely, the m’th emitter also generates a term of interemitter
interference qmðx; yÞ that increases the CRLB of the j’th emitter.
All the emitters whose PSFs are overlapped with the PSF of
the m’th emitter generate the total interemitter interferenceP

j≠mqjðx; yÞ to the m’th emitter. Clearly, the more the PSFs
overlapped with the PSF of the m’th emitter, the severer the
interemitter interference and the higher the CRLB of the
m’th emitter. A single isolated emitter does not suffer from
interemitter interference. Second, if the PSFs of the i’th
and m’th emitters are not overlapped, then approximately
½∂qiðx; yÞ∕∂θij�½∂qmðx; yÞ∕∂θml� ¼ 0 for all ðx; yÞ and therefore
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Fðθij; θmlÞ ¼ 0 by Eqs. (11) and (13). On the other hand, if
the PSFs of the i’th and m’th emitters are overlapped, then
Fðθij; θmlÞ ≠ 0. By multiplying the Fisher information matrix
with two proper permutation matrices to switch accordingly
the rows and columns (which does not change the CRLB),
a cluster of emitters whose PSFs are overlapped yields a sub-
matrix F1 such that the new Fisher information matrix can be
written as

F ¼
�
F1 0
0 F2

�
;

where F2 is yielded by other emitters. Consequently, the inverse
of Fisher information matrix F is

F−1 ¼
�
F−1
1 0
0 F−1

2

�
:

Clearly, the FWHM CRLB ΔðθijÞ of one emitter depends on
and only on the locations of all emitters in the same cluster.
The closer two emitters in the cluster are, the larger the corre-
sponding off-diagonal elements in F1. The more the emitters in
the cluster are, the more the off-diagonal elements in F1. Both
cases result in larger diagonal elements in F−1

1 and larger
CRLBs. Hence, CRLB of an emitter is higher as its neighbor
emitters are closer and/or as the number of emitters in the cluster
is larger, both meaning a higher density of emitters. A single
isolated emitter reaches the lower bound of CRLB. These prop-
erties will be illustrated by the numerical examples in Sec. 3.
Two isolated clusters of emitters yield two submatrices without
common nonzero elements in the Fisher information matrix F.
Therefore, emitters can be localized cluster by cluster independ-
ently without effect on localization precision. This has been a
practice in the literature.17,21,22 In a practical experiment, the
probability of probe activation needs to be sufficiently low in
order for an image to be split into a number of discrete clusters
rather than one cluster spanning the entire image.

Equations (11) to (13) also indicate that the FWHM CRLB
ΔðθijÞ decreases as SPNR increases and is inversely propor-
tional to the square root of the mean number of detected photons
per emitter ðIηΔtÞ0.5. ΔðθijÞ is invariant to the lateral translation
and rotation of all emitter locations as a whole. Therefore,
ΔðθijÞ depends on the lateral relationship of emitter locations
regardless of their absolute locations.

2.2 Cramer-Rao Lower Bound with Additional
Gaussian Noise

2.2.1 Gaussian noise

Electronic devices in an image sensor produce thermal readout
noise wðt; x; yÞ measured in voltage. A CMOS sensor40 produ-
ces more significant readout noise than an electron-multiplying
CCD (EMCCD) sensor that yields a readout noise much smaller
than 1 photoelectron RMS.41 It is common to consider the ther-
mal noise as an additive, stationary, white, and Gaussian proc-
ess.42 Specifically, assume that the Gaussian noise process
wðt; x; yÞ is spatially and temporarily independent and is iden-
tically Gaussian distributed with mean μ and variance G. The
autocorrelation function of wðt; x; yÞ is equal to

E½wðt1; x1; y1Þwðt2; x2; y2Þ�
¼ ðGþ μ2Þδðt1 − t2Þδðx1 − x2Þδðy1 − y2Þ: (14)

By Eq. (14), the power spectral density function of wðt; x; yÞ is a
constant Gþ μ2, a white spectrum.Gmeasures power in energy
per second per nm2 with exclusion of the DC component. The
total Gaussian noise readout in pixel ðkx; kyÞ is

Wðkx; kyÞ ¼
Z

Δt

0

Z
Δyðkyþ1Þ

Δyky

Z
Δxðkxþ1Þ

Δxkx

wðt; x; yÞdxdydt:

It is clear thatWðkx; kyÞ is spatially (pixel-wise) independent
and identically Gaussian distributed with mean μw ¼ ΔtΔxΔyμ
and variance

σ2w ¼ ΔtΔxΔyG: (15)

σ2w is also the energy of Gaussian noise in a pixel with exclusion
of DC component. With the additional Gaussian noise, the
intensity of pixel ðkx; kyÞ in an image sensor is Uðkx; kyÞ ¼
Vðkx; kyÞ þWðkx; kyÞ, by which we assume that the photon
count in an image sensor is measured in voltage.

We further define SGNR as

γg ¼
Iη
G

ðnm2∕emitterÞ: (16)

As a signal to noise power ratio, SGNR characterizes the emitter
power relative to the Gaussian noise power density excluding
the DC component. As will be seen, similar to SPNR, SGNR
plays an independent role in CRLB and is scalable to
PSF and pixel size. SGNR is universal to all systems and
therefore can be used to compare the performances of different
systems and experiments. However, since γg ¼ ΔtΔxΔyIη∕
ðΔtΔxΔyGÞ, given a particular nanoscopy system, SGNR can
be estimated using the image data where a single emitter is pre-
sented and the data where no emitter is presented. For a practical
system, we use SGNR ¼ 10−6γg (μm2∕emitter).

The photon emission of emitters, Poisson noise, and
Gaussian noise are mutually independent.

2.2.2 Cramer-Rao lower bound

Given a readoutUðkx; kyÞ of pixel ðkx; kyÞ, a likelihood function
of emitter locations that is also the probability density function
of Uðkx; kyÞ is

p½kx; ky; Uðkx; kyÞ� ¼
X∞
l¼0

gðkx; ky; lÞh½Uðkx; kyÞ − l�; (17)

where

h½Wðkx; kyÞ� ¼
1ffiffiffiffiffi
2π

p
σw

exp

�
−
½Wðkx; kyÞ − μw�2

2σ2w

�

is the probability density function of Wðkx; kyÞ. Due to the
independence of Vðkx; kyÞ and Wðkx; kyÞ, the likelihood func-
tion in Eq. (17) is actually equal to p½kx; ky; Uðkx; kyÞ� ¼
Efh½Uðkx; kyÞ − Vðkx; kyÞ�g with the expectation E taken over
Vðkx; kyÞ. Since Uðkx; kyÞ’s are mutually independent, a likeli-
hood function of θ obtained from the image is
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f ¼
Y

ðkx;kyÞ∈Ω
p½kx; ky; Uðkx; kyÞ�: (18)

Then

∂ ln f
∂θij

¼
X

ðkx;kyÞ∈Ω

1

p½kx; ky; Uðkx; kyÞ�
∂p½kx; ky; Uðkx; kyÞ�

∂θij
;

where

∂p½kx;ky;Uðkx;kyÞ�
∂θij

¼ ∂vðkx;kyÞ
∂θij

X∞
l¼0

½gðkx;ky;l−1Þ−gðkx;ky;lÞ�h½Uðkx;kyÞ− l�

¼ ∂vðkx;kyÞ
∂θij

fp½kx;ky;Uðkx;kyÞ−1�−p½kx;ky;Uðkx;kyÞ�g:

(19)

Since Ef∂ lnp½kx; ky; Uðkx; kyÞ�∕∂θijg ¼ 0 (the mean of a
score equals zero23), where the expectation E is taken with
respect to Uðkx; kyÞ, we obtain

Fðθij; θmlÞ ¼
X

ðkx;kyÞ∈Ω
E

�
1

p2½kx; ky; Uðkx; kyÞ�
∂p½kx; ky; Uðkx; kyÞ�

∂θij

∂p½kx; ky; Uðkx; kyÞ�
∂θml

�

¼
X

ðkx;kyÞ∈Ω
E

�fp½kx; ky; Uðkx; kyÞ − 1� − p½kx; ky; Uðkx; kyÞ�g2
p2½kx; ky; Uðkx; kyÞ�

�
∂vðkx; kyÞ

∂θij

∂vðkx; kyÞ
∂θml

¼ ðIηΔtΔxΔyÞ2
X

ðkx;kyÞ∈Ω

�Z
R

p2ðkx; ky; u − 1Þ
pðkx; ky; uÞ

du − 1

�
∂qiðkx; kyÞ

∂θij
∂qmðkx; kyÞ

∂θml
; (20)

which yields the FWHM CRLB through Eq. (12).

2.2.3 Gaussian approximation

The role that the mean and variance of Gaussian noise play in
the Fisher information matrix of Eq. (20) is difficult to see.
Moreover, the integral in Eq. (20) is computationally complex
in a numerical evaluation. To overcome these difficulties, a
slight approximation shall be applied to Eq. (20). pðkx; ky; uÞ
and pðkx; ky; u − 1Þ are probability density functions of
Uðkx; kyÞ and Uðkx; kyÞ þ 1, respectively. When the mean num-
ber of detected photons vðkx; kyÞ in pixel ðkx; kyÞ is ≥10, a
Poisson random variable Vðkx; kyÞ can be well approximated
by a Gaussian random variable. This condition is generally
true in a practical fluorescence microscope since Poisson
noise alone generally satisfies ΔtΔxΔyb ≥ 10.17–19,21 Then
Uðkx; kyÞ and Uðkx; kyÞ þ 1 can be well approximated as
Gaussian random variables with means of vðkx; kyÞ þ μw and
vðkx; kyÞ þ μw þ 1, respectively, and the same variance of
vðkx; kyÞ þ σ2w. Therefore, it can be proved that

Z
R

p2ðkx; ky; u − 1Þ
pðkx; ky; uÞ

du ¼ exp

�
1

vðkx; kyÞ þ σ2w

�
: (21)

Consequently, the integral in Eq. (20) can be well approximated
by the right-hand side of Eq. (21). Furthermore, expðxÞ ≅
1þ x for jxj ≪ 1. Hence, from Eqs. (5), (15), (16), and (20),
we obtain

Fðθij; θmlÞ ¼ IηΔtΔxΔy

X
ðkx;kyÞ∈Ω

1

Qðkx; kyÞ þ γ−1p þ γ−1g

×
∂qiðkx; kyÞ

∂θij

∂qmðkx; kyÞ
∂θml

; (22)

which yields the FWHM CRLB by Eq. (12).
Compared to Eq. (11) where there is no Gaussian noise,

Eq. (22) indicates that the Gaussian noise effectively increases

the Poisson noise; according to Eq. (15), the effectively
increased mean photon count of Poisson noise is equal to the
variance of Gaussian noise per pixel. Therefore, when both
the Poisson and Gaussian noises exist, the total effective SNR
is equal to

γ ¼ γpγg
γp þ γg

¼ Iη
bþ G

ðnm2∕emitterÞ: (23)

In practice, we shall use SNR ¼ 10−6γ (μm2∕emitter).
In the limit of finest pixelation,

Fðθij; θmlÞ ¼ IηΔt

Z
R2

1

Qðx; yÞ þ γ−1p þ γ−1g

×
∂qiðx; yÞ
∂θij

∂qmðx; yÞ
∂θml

dxdy; (24)

which is comparable with Eq. (13) where there is no
Gaussian noise.

It follows from Eqs. (22) and (24) that the CRLB is deter-
mined by the mean number of detected photons of an emitter,
SPNR, SGNR, PSF, pixel sizes, and relationship of emitter
locations. The CRLB is inversely proportional to ðIηΔtÞ0.5
and decreases as SPNR and/or SGNR increase. Equation (21)
also indicates that the mean of Gaussian noise does not play
a role in the CRLB. In practice, the mean of Gaussian noise
can be always subtracted first from an image and the estimation
accuracy of an estimator is not affected. Approximating the
Gaussian noise as another Poisson noise process may also
make a practical estimator computationally simpler. In this
case, a new image can be produced by Ūðkx; kyÞ ¼ Uðkx; kyÞ þ
σ2w − μw so that the total noise is Poisson distributed with a mean
of bþ G photons per second per nm2. The CRLB obtained from
the new image is unchanged and is given by Eqs. (22) and (24).

It is clear that even from the same image, a localization nano-
scope yields a different CRLB for each emitter depending on the
relationship of multiemitter locations in a cluster.
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3 Results and Discussion
The analysis in the preceding section indicates that emitter loca-
tions can be estimated cluster by cluster without effect on the
CRLB. It is desired to know when the image data for a cluster
of emitters are worth using in estimation of emitter locations,
and when the data shall be discarded. In this section, by numeri-
cal examples, we investigate how the CRLBs of emitters located
on a curve are affected by the adjacent emitter distance and how
the mean CRLB is affected by the number of emitters randomly
uniformly distributed in a small square. We also investigate how
the mean CRLB of emitters randomly uniformly distributed in a
2-D plane or in a 3-D cuboid is affected by the emitter density.
Finally, we demonstrate how the mean CRLB is affected by the
PSF, PSF SD, mean photon count per emitter, SNR, axial thick-
ness, and pixel size. Three PSFs that are usually applied in
localization nanoscopy are considered: 2-D Airy, 2-D Gaussian,
and 3-D Gaussian with astigmatism. Their derivatives with
respect to emitter locations, which are needed in the formulas
of CRLB, are presented in Appendix A. Table 1 presents
most parameters used in the simulations and figures. It is
reported16 that individual Alexa647 molecules are switched
off in ∼2 frames on average at a frame rate of 500 Hz with
an average of 3500 detected photons per switching event.
This means an Alexa647 molecule can yield averagely Iη ¼
875000 detected photons per second. In Table 1, with the
assumption of a frame rate of 100 Hz, it is practical to consider
IηΔt ¼ 3000 and 5000 photons per frame per emitter. The
specimen lateral size of Lx ¼ Ly ¼ 4096 nm is taken. In most
cases, the pixel size is Δx ¼ Δy ¼ 128 nm, which is close to
166 nm used practically,19 and then the image size is Kx ¼
Ky ¼ 32 pixels. Equations (22) and (12) are used in the
calculation of FWHM CRLB. All simulations are carried out

in MATLAB (The MathWorks Inc.) using the customer
codes. The Poisson and Gaussian noise samples are generated
using the functions embedded in MATLAB.

3.1 Effect of Adjacent Distance of Emitters on a Curve

To study the effect of adjacent emitter distance on CRLB, con-
sider that a hundred emitters are located on a 2-D curve as
shown in Fig. 2(b). The most inside emitter is indexed with
1, and the rest of the emitters are indexed in order on the
curve and so the most outside emitter is indexed with 100.
As the index increases, the distance between adjacent emitters
linearly increases with the increment of ∼2.65 nm per emitter.
The minimum distance of adjacent emitters is 24.80 nm and
the maximum is 287.63 nm. The 2-D Gaussian PSF (see
Appendix A) with SD of 78.26 nm is used. The SD is equivalent
to that of Airy PSF with numerical aperture of 1.4 and wave-
length of 520 nm as calculated by Eq. (49) in Appendix B.
The other parameters are presented in Table 1.

Shown in Figs. 2(a) to 2(c) are an image with the noise added
according to the SPNR and SGNR in Table 1, the original and
estimated emitter locations, and the FWHM CRLB versus the
adjacent emitter distance, respectively. Figure 2(b) demonstrates
how the reconstructed image of emitter locations looks, com-
pared with the original emitter locations, if the same pattern
of emitter locations appears five times in an acquired movie.
As shown in Figs. 2(b) and 2(c), the FWHMCRLB of an emitter
increases as the adjacent emitter distance decreases. Though
having smaller distances of adjacent emitters, the emitters
close to the inner end of the curve have less interemitter inter-
ference; consequently, their CRLBs with respect to the distance
of adjacent emitters are convex down in Fig. 2(c). For a desired

Table 1 Parameters used in the numerical examples.

Figure Dim PSF σ (nm)
Lx ¼ Ly
(nm)

2Lz
(nm)

Δx ¼ Δy
(nm) Kx ¼ Ky

IηΔt
(ph/emt)

Signal to Poisson
noise ratio
(μm2∕emt)

Signal to Gaussian
noise ratio
(μm2∕emt)

Density
(emt∕μm2)

Figs. 2(a) to 2(c) 2-D Gauss 78.26 4096 0 128 32 3000 0.4 0.6 NA

Figs. 3(a) to 3(c) 2-D Gauss 78.26 4096 0 128 32 3000 0.4 0.6 Vary

Fig. 4(a) 2-D Airy 78.26 4096 0 128 32 5000 0.4 0.6 20b

Fig. 4(b) 2-D Airy/
Gauss

78.26 4096 0 128 32 5000 0.4 0.6 Vary

Fig. 4(c) 2-D Gauss Vary 4096 0 128 32 5000 0.4 0.6 20, 16, 12, 8b

Fig. 5(a) 3-D Gauss a 4096 512 128 32 5000 0.4 0.6 4c

Fig. 5(b) 3-D Gauss a 4096 512 128 32 5000 2 2 Vary

Fig. 6(a) 3-D Gauss a 4096 512 128 32 Vary 2 2 3c

Fig. 6(b) 3-D Gauss a 4096 512 128 32 5000 Vary 3c

Fig. 6(c) 3-D Gauss a 4096 Vary 128 32 5000 2 2 3c

Fig. 6(d) 3-D Gauss a 4096 512 Vary 5000 2 2 3c

aThe x and y SDs of three-dimensional (3-D) Gaussian point spread function (PSF) in Appendix A are determined by c ¼ 205 nm, d ¼ 290 nm,
σx0 ¼ 140 nm, Ax ¼ 0.05, Bx ¼ 0.03, σy0 ¼ 135 nm, Ay ¼ −0.01, By ¼ 0.02.
bIn Figs. 4(a) and 4(c), the emitter density of 20, 16, 12, and 8 emitters∕μm2 corresponds to 230, 184, 138, and 92 emitters, respectively.
cIn Figs. 5(a) and 6(a) to 6(d), the lateral emitter density of 3 and 4 emitters∕μm2 corresponds to 34 and 46 emitters, respectively.
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FWHM CRLB, the allowable minimum distance of adjacent
emitters can be determined from Fig. 2(c). For example, to
obtain a localization precision >30 nm in both x and y direc-
tions, the adjacent emitter distance must be >121.88 nm,
which is satisfied by the emitters indexed with 38 through
100. This means that no unbiased estimator can achieve a locali-
zation precision >30 nm if the adjacent emitter distance is
<121.88 nm in this case. In practice, to obtain a 30 nm or greater
localization precision, the image data for a cluster of emitters
located on a curve should not be used in emitter localization
if the adjacent emitter distance is <122 nm. Similarly, to achieve
a localization precision better than the PSF FWHM of
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
× 78.26 ¼ 184.29 nm, the adjacent emitter distance

must be >94.87 nm, which is satisfied by the emitters indexed
with 28 through 100. In practice, the image data for a cluster of
emitters located on a curve should be discarded if the adjacent
emitter distance is <94.87 nm in order to obtain a localization
precision greater than the PSF FWHM. While increasing with
the adjacent emitter distance decreasing, the FWHM CRLB of
an emitter increases slowly for the last 70 emitters of which the
adjacent emitter distance is >102.96 nm, and then suddenly
deteriorates and increases exponentially fast for the remaining
30 emitters with the adjacent emitter distance <102.96 nm.

3.2 Effect of the Number of Emitters in a Small
Square

The system setup is the same as in Sec. 3.1 as presented in
Table 1. The 2-D region of Lx × Ly ¼ 4096 × 4096 nm2 is par-
titioned into 16 small squares each of size 1024 × 1024 nm2. In
each square, M emitters are randomly generated with a uniform
distribution in a smaller centered square of size 512 × 512 nm2,
where M ¼ 1; 2; : : : ; 16, respectively. The corresponding emit-
ter density is equal to 3.81 (single emitter), 7.63, 11.44, 15.26,
19.07, 22.89, 26.70, 30.52, 34.33, 38.15, 41.96, 45.78, 49.59,
53.41, 57.22, 61.04 emitters∕μm2, respectively.

A realization of emitter locations in a square is randomly
generated according to the uniform distribution. The FWHM
CRLBs of all emitters in the square are calculated by
Eqs. (22) and (12). Then the mean FWHM CRLB is obtained
by averaging the FWHM CRLBs over all emitters in the square
and over 1000 realizations. The mean FWHM CRLB is an
appropriate measure on the quality of the reconstructed
image of emitter locations. Figure 3(a) shows the image of
one realization of emitter locations with the noise added accord-
ing to the SPNR and SGNR in Table 1. Figure 3(b) illustrates
the corresponding original and five estimated locations for each
emitter. Figure 3(c) demonstrates the mean FWHM CRLB in
each square versus the number of emitters (or emitter density
accordingly).
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Fig. 2 How the Cramer-Rao lower bounds (CRLBs) of emitters located
on a curve are affected by the distance of adjacent emitters. (a) An
image of 100 emitters located on a 2-D curve with the noise added
according to the signal to Poisson noise ratio (SPNR) and signal to
Gaussian noise ratio (SGNR) in Table 1. The bar size is 500 nm.
(b) The original (red) and estimated (blue) emitter locations. The loca-
tions of emitters 1, 28, 38, and 100 are indicated, and the locations of
emitters 28, 38 are also denoted by +. The five estimated locations for
each emitter are generated based on the full width at half maximum
(FWHM) CRLB [calculated by Eqs. (22) and (12)] with an assumption
of Gaussian estimates. (c) The FWHM CRLB for x (red) and y (blue) ver-
sus the adjacent emitter distance. The FWHM CRLBs of emitters 1, 28,
38, and 100 are indicated, and the FWHM CRLBs of emitters 28, 38 are
also denoted by +. The single emitter bound (- -) and point spread func-
tion (PSF) FWHM (···) are shown. For a desired FWHMCRLB, the allow-
able minimum distance of adjacent emitters can be obtained from (c).
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Fig. 3 How the mean CRLB of emitters located in a square is affected by
the number of emitters (or emitter density). (a) An image for the reali-
zation of emitter locations in (b) with the noise added according to the
SPNR and SGNR in Table 1. The bar size is 500 nm. (b) The original
(red) and estimated (blue) emitter locations for one realization of emitter
locations. The five estimated locations for each emitter are generated
based on the FWHM CRLB [calculated by Eqs. (22) and (12)] with
an assumption of Gaussian estimates. (c) The mean FWHM CRLB (-)
in each square, averaged over 1000 realizations of emitter locations,
versus the number of emitters. The mean FWHM CRLB well fits to an
exponential function (o). The single emitter bound (- -) and PSF FWHM
(···) are shown.
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It is interesting that the mean FWHM CRLB in the scale of
10-based logarithm is presented as a straight line and therefore is
phenomenally presented as an exponential function of emitter
number M as

Δ̄ ¼ ρ0aM: (25)

It is found that the mean FWHM CRLB fits well to
Δ̄ ¼ 3.38 × 1.34M in the least square sense, implying that the
mean FWHM CRLB exponentially increases as the number of
emitters (or emitter density) in a square increases. Figure 3(c)
indicates that to obtain an FWHM CRLB <30 nm, the number
of emitters in a square must satisfy M ≤ 7 (or emitter density
≤26.70) on average. Hence, in practice, the image data for
a cluster of M ≥ 8 emitters in a square of size 512 × 512 nm2

shall be discarded if an unbiased estimator is applied. It also
indicates that when M ≥ 13 (or emitter density ≥49.59), no
unbiased estimator can produce on average a localization pre-
cision greater than the PSF FWHM of 184.29 nm.

3.3 Effect of Emitter Density in a Large Square or
Cuboid

To further investigate the effect of emitter density, we consider
the mean FWHM CRLB of emitters that are randomly uni-
formly distributed in a relatively large square or cuboid. A reali-
zation of emitter locations in a 2-D square or 3-D cuboid
is randomly generated according to the uniform distribution.
The FWHM CRLBs of all emitters in the realization are then
calculated by Eqs. (22) and (12). The mean FWHM CRLB is
obtained by averaging the FWHM CRLBs over all emitters
in the square or the cuboid and then over a large number of
realizations.

3.3.1 2-D imaging

For 2-D imaging, the mean FWHM CRLB is computed with
both the 2-D Airy and 2-D Gaussian PSFs presented in
Appendix A. Given numerical aperture na and emission
wavelength λ, the Airy PSF is determined by Eq. (41) with
α ¼ 2πna∕λ. To fairly compare the performances of the two
PSFs, the SD of an Airy PSF is computed and then used in
the Gaussian PSF. In the simulation, we consider na ¼ 1.4
and λ ¼ 520 nm, which are normal in a practical system.25

The Airy PSF SD computed from Eq. (49) is equal to
σ ¼ 78.26 nm, which is used in the Gaussian PSF. The emitters
are randomly uniformly distributed in a square of
½350;3746� × ½350;3746� nm2, where the 350 nm margins are
used to eliminate the boundary effect. The other parameters
are given in Table 1.

Figure 4(a) shows an image of one realization of emitter loca-
tions with the noise added according to the SPNR and SGNR
in Table 1. Figure 4(b) illustrates the mean FWHM CRLB for
both the Airy and Gaussian PSFs versus the emitter density.
With the Gaussian PSF, at each point, the mean FWHM
CRLB is obtained by averaging over 500 realizations of
randomly generated emitter locations. The double integral in
Eq. (4) with the Gaussian PSF can be decomposed into two
single integrals in Eqs. (32), (45), and (46) with which the
computational time is acceptable in a PC implemented with a
CPU of Core i7. However, with the Airy PSF, the double integral
in Eq. (4) is time-consuming. To make the computational time
acceptable, the mean FWHM CRLB with the Airy PSF is

obtained by averaging over 100 realizations of emitter locations
for the emitter density ≤12, 50 realizations for the emitter
density equal to 14 and 16, and 25 realizations for the emitter
density ≥ 18 emitters∕μm2. Since the Airy and Gaussian PSFs
are symmetric to the origin, the mean FWHM CRLBs in the
x and y directions are analytically identical. To save the com-
putational time, the mean FWHM CRLB in the calculation is
also averaged over both the x and y directions.

As shown in Fig. 4(b), in the low-density regime where the
emitter density is ≤16 emitters∕μm2, the mean FWHM CRLBs
using the Airy and Gaussian PSFs are almost equal and both
increase exponentially fast. They well fit to an exponential func-
tion of emitter density D as

Δ̄ ¼ ρ0aD; (26)

where Δ̄ ¼ 4.04 × 1.10D with the Airy PSF, and Δ̄ ¼
3.96 × 1.11D with the Gaussian PSF. Both are <23 nm, repre-
senting a superresolution. In the high-density regime where
the emitter density is ≥22 emitters∕μm2, the mean FWHM
CRLB increases much faster and exponentially and
well fits to Δ̄ ¼ 0.17 × 1.30D with the Airy PSF and
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Fig. 4 How the mean CRLB is affected by the Airy and Gaussian PSFs,
emitter density, and PSF standard deviation (SD) in 2-D imaging. (a) An
image of a realization of emitter locations for 230 emitters (or emitter
density of 20 emitters∕μm2) with the noise added according to the
SPNR and SGNR in Table 1. The bar size is 500 nm. (b) The mean
FWHM CRLB of multiemitters versus the emitter density with the
Airy (- -) and Gaussian (–) PSFs. Both well fit to an exponential function
(o) for the emitter density ≤16 emitters∕μm2 and for the emitter density
≥22 emitters∕μm2, respectively. The single emitter bounds with the
Airy PSF (-·-·) and with the Gaussian PSF (lower ···) and the PSF
FWHM (upper ···) are shown. (c) The mean FWHM CRLB with the
Gaussian PSF versus the PSF SD for the emitter densities (–) of 20,
16, 12, and 8 emitters∕μm2, respectively, all fitting well to an exponen-
tial function (o) when the PSF SD is approximately larger than a half of
the pixel size (>128∕2 ¼ 64 nm). The single emitter bound (-·-·) and the
PSF FWHM (···) are shown.
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Δ̄ ¼ ð1.51 × 10−5Þ × 2.05D with the Gaussian PSF. Therefore,
in the regime of low emitter density, practically using a
Gaussian PSF with the SD calculated by Eq. (49) is expected
to obtain almost the same localization precision as using the
Airy PSF. According to Fig. 4(b), no unbiased estimator can
produce a mean localization precision < 30 nm if the emitter
density is greater than ∼18.2 emitters∕μm2. In practice, the
image data with an emitter density >18.2 emitters∕μm2 should
be discarded in order for an unbiased estimator to obtain a locali-
zation precision < 30 nm on average. Moreover, no unbiased
estimator can yield a mean localization precision greater than
the PSF FWHM of 184.29 nm when the emitter density is
≥26.43 with the Airy PSF or ≥ 22.70 emitters∕μm2 with the
Gaussian PSF.

Figure 4(c) further illustrates how the Gaussian PSF SD σ
affects the mean FWHM CRLB under different emitter den-
sities. By Eq. (49), the range of σ ∈ ½52.67;158.02� nm in the
figure is equivalent to the range of na ∈ ½1.0; 1.4� and
λ ∈ ½350;750� nm with the Airy PSF, which covers most prac-
tical values.43 A mean FWHM CRLB is obtained by averaging
over 1000 realizations of emitter locations. When the PSF SD σ
is sufficiently large, say 2σ > Δx ¼ Δy ¼ 128 (or σ > Δx∕2 ¼
Δy∕2 ¼ 64), the mean FWHM CRLB increases exponentially
fast as σ increases. The increase is more significant when the
emitter density is larger, incurred by the severer overlapping
of multiemitter PSFs. The mean FWHM CRLB well fits to
an exponential function Δ̄ ¼ ρ0aσ in the regime of large PSF
SD, that is, Δ̄ ¼ 0:382 × 1:059σ , Δ̄ ¼ 0:320 × 1:053σ , Δ̄ ¼
0:585 × 1:040σ , and Δ̄ ¼ 0:864 × 1:030σ for the emitter density
of 20, 16, 12, and 8 emitters∕μm2, respectively. It is notable that
for a large emitter density and a small PSF SD, the mean FWHM
CRLB decreases as the PSF SD increases. This is due to the fact
that with the given pixel size, when the PSF SD is small, say
σ ≅ Δx∕2, two neighbor emitters located within one pixel are
difficult to localize since their emitted photons might be mostly
located in the same pixel. It is known25 that without pixelation,
the FWHM CRLB of a single emitter is linearly proportional to
the Gaussian PSF SD σ. The PSF FWHM 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σ is also

linear in σ. Therefore, both of them are presented as a logarithm
function in the scale of 10-based logarithm in Fig. 4(c).

3.3.2 3-D imaging

In 3-D imaging, the 3-D Gaussian PSF in Eqs. (27) to (31) in
Appendix A is employed with the parameters presented in
Table 1. The x and y parameters are slightly asymmetric,
which is possible in practice.34 The parameters are close to
those11 estimated from a practical system. A specimen is
assumed to be located in a cuboid of size Lx ¼ 4096,
Ly ¼ 4096, and Lz. Emitters are randomly uniformly dis-
tributed in a smaller cuboid of ½350;3746� × ½350;3746�×
½−Lz; Lz� nm3. Other parameters are presented in Table 1.
The mean FWHM CRLB is computed in the same way as in
the 2-D imaging.

Figure 5(a) shows an image of one realization of emitter loca-
tions with the noise added according to the SPNR and SGNR in
Table 1. There are 46 emitters corresponding to the lateral emit-
ter density of 4 emitters∕μm2. Figure 5(b) illustrates the mean
FWHM CRLB versus the lateral emitter density. The mean
FWHM CRLB is obtained by averaging the FWHM CRLBs
over all emitters in 1000 realizations of emitter locations. Since
the x and y FWHM CRLBs are slightly different with the slight
asymmetry of PSFs in the x and y directions, only the x and z

mean FWHM CRLBs are shown. In the single-emitter case, the
lateral emitter density is ∼0.0876 emitters∕μm2.

In both the lateral plane and axial direction, the mean FWHM
CRLB in the scale of 10-based logarithm is presented as a
straight line, implying an exponential function of lateral emitter
density. As shown in Fig. 5(b), the mean FWHMCRLB well fits
to Δ̄ ¼ 8.86 × 1.52D in the x direction and Δ̄ ¼ 20.91 × 1.45D

in the z direction. In terms of the exponential functions, in
practice, the image data with the lateral emitter density
>2.91 emitters∕μm2 on average should be discarded in order
for an unbiased estimator to obtain a mean localization precision
< 30 nm in x direction or < 61.65 nm in z direction. At the focal
plane of x direction, the PSF SD of σx0 ¼ 140 nm is equivalent
to an FWHM of 329.67 nm. By the exponential function, for the
lateral emitter density >8.64 emitters∕μm2, no unbiased estima-
tor can obtain on average a lateral localization precision greater
than the PSF FWHM.

Compared with Fig. 4(b) for 2-D imaging with the same
emitter density, the mean FWHM CRLBs in Fig. 5(b) for
3-D imaging are much higher. The reason is that the 3-D
PSF SD of 140 nm is much larger than the 2-D PSF SD of
78.26 nm, although the effect of pixelation in the 2-D case is
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Fig. 5 How the mean CRLB of three-dimensional (3-D) emitters that are
randomly uniformly distributed in a cuboid is affected by the lateral
emitter density. (a) An image of one realization of emitter locations
for 46 emitters (or lateral emitter density of 4 emitters∕μm2) with the
noise added according to the SPNR and SGNR in Table 1. The bar
size is 500 nm. (b) The mean FWHM CRLB versus the lateral emitter
density in the z direction with multiemitters (–), in the x direction
with multiemitters (- -), in the z direction with a single emitter (-·),
and in the x direction with a single emitter (···). The upper line (···) is
the PSF FWHM in the x direction. The mean FWHM CRLB of multie-
mitters perfectly fits to an exponential function (o) in both the x and z
directions.
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relatively severer. Hence, the mean FWHM CRLB is more
sensitive to the emitter density than the pixelation.

3.4 Effect of Other Parameters in 3-D Imaging

With the same setup of the above 3-D imaging, the effect of
other parameters on the mean FWHM CRLB is investigated
as follows. The parameters are presented in Table 1.

Mean photon count per emitter IηΔt: Equations (11), (13),
(22), and (24) indicate that given SPNR and SGNR, the
FWHM CRLB monotonically decreases with the mean number
of detected photons per emitter at the rate of ðIηΔtÞ−0.5. This is
verified in Fig. 6(a).

SNR: Figure 6(b) illustrates that the mean FWHM CRLB
decreases monotonically as SNR increases. Moreover, SNR
is divided into two regimes. In the regime of low
SNR ≤ 0.5 μm2∕emitter, the mean FWHM CRLB is high
and decreases fast as SNR increases. In the regime of high
SNR > 0.5 μm2∕emitter, the mean FWHM CRLB is low and
holds approximately a constant. This property is true in both
the lateral plane and axial direction and in both the multiemitter
and single-emitter cases.

Axial thickness 2Lz: Figure 6(c) demonstrates that the mean
FWHM CRLB is convex up with respect to axial thickness 2Lz.
In the regime of 100 ≤ 2Lz ≤ 1200 nm, the mean FWHM
CRLB is low. For 2Lz < 100 nm, the x and y PSF SDs are
approximately equal, and therefore a z location is slightly
more difficult to estimate and so are lateral locations. In the
regime of 2Lz > 1200 nm, both the x and y PSF SDs are large;
therefore, stronger interemitter interference and more noise enter
the region of a PSF. Consequently, the mean FWHM CRLB of
multiemitters increases exponentially as the axial thickness
increases. In contrast, in the single-emitter case, increasing

axial thickness only increases the noise in the region of
a PSF and then slightly increases the mean FWHM CRLB.

Pixel size Δx ¼ Δy: Figure 6(d) demonstrates that as the
pixel size increases, the mean FWHM CRLB increases slowly
in the regime of pixel size smaller than two times the PSF SDs
at the focal planes (i.e., Δx ¼ Δy < 2σx0 ¼ 280 nm or 2σy0 ¼
270 nm), and then increases exponentially fast in the regime
of large pixel size where the interemitter interference is severe.
In sharp contrast, the mean FWHM CRLB of a single emitter
barely increases in the entire range of pixel size considered.

4 Conclusions
We analyzed the CRLB of unbiased estimators for stochastic
optical localization nanoscopy that estimates locations of an
arbitrary number of emitters frame by frame independently. It
is found that the CRLB is a function of the mean number of
detected photons per emitter, SPNR, SGNR, PSF, and relation-
ship of emitter locations. With a slight and practical approxima-
tion, the effect of Gaussian noise is equivalent to increasing the
mean photon count of Poisson noise by a number equal to the
variance of Gaussian noise; the mean of Gaussian noise does not
come into play. The PSF, Poisson noise, Gaussian noise, SPNR,
and SGNR are defined to be universal to all systems and there-
fore can be used to compare performances of different systems,
experiments, and estimators. A cluster of emitters through their
overlapped PSFs causes interemitter interference and increases
each other’s CRLBs. An isolated single emitter reaches the
lower bound of CRLB. An isolated cluster of emitters can be
localized using only the image data of the cluster without effect
on CRLB.

The CRLBs of emitters located on a curve increase fast as the
adjacent emitter distance decreases. The mean CRLB of emitters
randomly located in a small square with a uniform distribution
increases exponentially fast as the number of emitters or the
emitter density in the square increases. In order to achieve a
desired mean CRLB, the image data for a cluster of emitters
in a small region shall be discarded if the number of emitters
or the emitter density is greater than a threshold. As the emitter
density increases, the mean CRLB of emitters randomly uni-
formly distributed in a relatively large region increases exponen-
tially fast in all cases of 2-D, 3-D, Airy PSF, and Gaussian PSF.
In the regime where the PSF SD is greater than a half of pixel
size, the mean CRLB increases exponentially fast as the PSF SD
increases. The optimum pixel size is about two times the PSF
SD. The mean CRLB decreases linearly as the square root of the
mean photon count per emitter increases. In the regime of low
SNR, the mean CRLB decreases fast as the SNR increases; in
contrast, in the regime of high SNR, the mean CRLB is low and
decreases slightly as the SNR increases. The mean CRLB is
convex up with respect to the axial thickness and is low and
flat in a range of axial thickness of practical interest. In the
regime where the pixel size is smaller than two times the
PSF SD, the mean CRLB increases slowly as the pixel size
increases; but in the regime of large pixel size, it increases
exponentially fast. In contrast, the CRLB of a single emitter
in both 2-D and 3-D barely changes in the entire considered
ranges of pixel size and PSF SD.

The analytical formulas of CRLB provide a theoretical
foundation on which the performances of different systems,
experiments, and estimators are comparable. The analytical and
numerical results provide a guideline for the design of emitter
location estimators and a benchmark for the achievable
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Fig. 6 The mean FWHM CRLB of 3-D emitters in the same setup of
Fig. 5 versus (a) the mean number IηΔt of detected photons per emitter,
(b) SNR, (c) axial thickness 2Lz, and (d) pixel size Δx ¼ Δy. The curves
are for multiemitters in the z direction (–) and x direction (- -), and for a
single emitter in the z direction (-·) and x direction (···). The vertical lines
(···) in (d) indicate 2σy0 ¼ 270 nm and 2σx0 ¼ 280 nm, respectively.
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localization precision. All the results are generally extensively
applicable to 2-D and 3-D stochastic optical localization nano-
scopy with an arbitrary spatially variant or invariant PSF.
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Appendix A: Derivatives of Three PSFs
The formulas of CRLB derived in Sec. 2 are applicable to a
regular PSF qmðx; yÞ in 2-D and 3-D nanoscopy systems.
The PSF can be spatially invariant, i.e., identical to all emitters,
or spatially variant so that each emitter has a different PSF. A
spatially variant PSF can be produced by aberration of an optical
lens. To numerically evaluate the CRLB, the derivatives of PSF
with respect to emitter locations need to be given in Eqs. (11),
(13), (22), and (24). We consider three spatially invariant PSFs
that are usually employed in localization nanoscopy: 3-D
Gaussian, 2-D Airy, and 2-D Gaussian. Their derivatives are
utilized in the numerical examples in Sec. 3. The derivatives
of the 2-D Airy and 2-D Gaussian PSFs are derived in Ref. 25
and the derivative of 3-D Gaussian PSF is derived in Ref. 34. For
completeness, the derivatives of these three PSFs are presented
in this appendix in the context of this paper.

A.1 3-D PSF with Astigmatism
In 3-D nanoscopy with astigmatism, a cylindrical lens is added
to a light path to produce an astigmatic PSF11,44,45 such that the x
and y SDs depend on z location of an emitter. In general, an
astigmatic PSF can be approximated by a Gaussian density
function as34

qmðx; yÞ ¼ qðmÞ
x ðxÞqðmÞ

y ðyÞ; (27)

where

qðmÞ
x ðxÞ ¼ 1ffiffiffiffiffi

2π
p

σxðzmÞ
exp

�
−
ðx − xmÞ2
2σ2xðzmÞ

�
; (28)

qðmÞ
y ðyÞ ¼ 1ffiffiffiffiffi

2π
p

σyðzmÞ
exp

�
−
ðy − ymÞ2
2σ2yðzmÞ

�
; (29)

σxðzÞ

¼ σx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðzþ cÞ2∕d2 þAxðzþ cÞ3∕d3 þBxðzþ cÞ4∕d4

q
;

(30)

σyðzÞ
¼ σy0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz − cÞ2∕d2 þ Ayðz − cÞ3∕d3 þ Byðz − cÞ4∕d4

q

(31)

are the x and y SDs, respectively. σx0 and σy0 are the x and y SDs
at their focal planes, i.e., z ¼ −c and z ¼ c, respectively. �c’s

are offsets of the y and x focal planes from the average focal
plane z ¼ 0. Ax, Bx, Ay, and By are coefficients for the
higher-order distortion of SDs. By adding an extra cylindrical
objective lens, the x and y SDs in Eqs. (28) to (31) change
in accordance with zm. Moreover, the peak value of PSF is
also determined by zm. Hence, both the SDs and peak value
contain the information of location zm. This is due to the fact
that the integral of qmðx; yÞ as a probability density function
is equal to one regardless of emitter location ðxm; ym; zmÞ.

It follows from Eq. (27) that the mean photon count of pixel
ðkx; kyÞ produced by the m’th emitter in Eq. (4) is equal to

qmðkx; kyÞ ¼ qðmÞ
x ðkxÞqðmÞ

y ðkyÞ; (32)

where

qðmÞ
x ðkxÞ ¼

1

Δx

Z
Δxðkxþ1Þ

Δxkx

qðmÞ
x ðxÞdx

¼ 1

Δx

�
Φ
�
Δxðkx þ 1Þ− xm

σxðzmÞ
�
−Φ

�
Δxkx − xm
σxðzmÞ

��
;

(33)

qðmÞ
y ðkyÞ¼

1

Δy

Z
Δyðkyþ1Þ

Δyky

qðmÞ
y ðyÞdy

¼ 1

Δy

�
Φ
�
Δyðkyþ1Þ−ym

σyðzmÞ
�
−Φ

�
Δyky−ym
σyðzmÞ

��
; (34)

and ΦðxÞ ¼ ð2πÞ−1∕2∫ x
−∞ expð−t2∕2Þdt is the accumulative

probability distribution of a standard Gaussian random variable
with zero mean and unit variance. The derivatives of PSF with
respect to emitter locations can be written as

∂qiðkx; kyÞ
∂xi

¼ ∂qðiÞx ðkxÞ
∂xi

qðiÞy ðkyÞ; (35)

∂qiðkx; kyÞ
∂yi

¼ qðiÞx ðkxÞ
∂qðiÞy ðkyÞ

∂yi
; (36)

∂qiðkx; kyÞ
∂zi

¼ ∂qðiÞx ðkxÞ
∂zi

qðiÞy ðkyÞ þ qðiÞx ðkxÞ
∂qðiÞy ðkyÞ

∂zi
;

where

∂qðiÞx ðkxÞ
∂xi

¼ 1

Δx
f−qðiÞx ½Δxðkx þ 1Þ� þ qðiÞx ðΔxkxÞg; (37)

∂qðiÞy ðkyÞ
∂yi

¼ 1

Δy
f−qðiÞy ½Δyðky þ 1Þ� þ qðiÞy ðΔykyÞg; (38)

∂
∂zi

qðiÞx ðkxÞ ¼
∂σ2xðziÞ
∂zi

1

2Δxσ
2
xðziÞ

ffiffiffiffiffi
2π

p
Z ½Δxðkxþ1Þ−xi�∕σxðziÞ

ðΔxkx−xiÞ∕σxðziÞ

× ðx2 − 1Þ exp
�
−
x2

2

�
dx;
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∂
∂zi

qðiÞy ðkyÞ ¼
∂σ2yðziÞ
∂zi

1

2Δyσ
2
yðziÞ

ffiffiffiffiffi
2π

p
Z ½Δyðkyþ1Þ−yi�∕σyðziÞ

ðΔyky−yiÞ∕σyðziÞ

× ðy2 − 1Þ exp
�
−
y2

2

�
dy

with

dσ2xðziÞ∕dzi ¼ σ2x0½2ðzi þ cÞ∕d2 þ 3Axðzi þ cÞ2∕d3
þ 4Bxðzi þ cÞ3∕d4�; (39)

dσ2yðziÞ∕dzi ¼ σ2y0½2ðzi − cÞ∕d2 þ 3Ayðzi − cÞ2∕d3
þ 4Byðzi − cÞ3∕d4�: (40)

In the limit of finest pixelation, the derivatives of PSF with
respect to emitter locations in Eqs. (13) and (24) are equal to

∂qiðx; yÞ
∂xi

¼ x − xi
σ2xðziÞ

qiðx; yÞ;

∂qiðx; yÞ
∂yi

¼ y − yi
σ2yðziÞ

qiðx; yÞ;

∂qiðx; yÞ
∂zi

¼
�

1

2σ2xðziÞ
�ðx − xiÞ2

σ2xðziÞ
− 1

�
dσ2xðziÞ
dzi

þ 1

2σ2yðziÞ
�ðy − yiÞ2

σ2yðziÞ
− 1

�
dσ2yðziÞ
dzi

�
qiðx; yÞ

with the notions of Eqs. (39) and (40).

A.2 2-D Airy PSF
Denote numerical aperture by na and fluorescence emission
wavelength by λ. The 2-D Airy PSF at the focal plane of circular
aperture can be expressed as46

qmðx; yÞ ¼
J21

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xmÞ2 þ ðy − ymÞ2

p �

π½ðx − xmÞ2 þ ðy − ymÞ2�
; (41)

where α ¼ 2πna∕λ and J1 is the first-order Bessel function of
the first kind. The Airy PSF cannot be decomposed into a
product of x and y PSFs. In this case, it follows from Eq. (4)
that

∂qiðkx; kyÞ
∂xi

¼ −
1

ΔxΔy

Z
Δyðkyþ1Þ

Δyky

fqi½Δxðkx þ 1Þ; y�

− qiðΔxkx; yÞgdy;

∂qiðkx; kyÞ
∂yi

¼ −
1

ΔxΔy

Z
Δxðkxþ1Þ

Δxkx

fqi½x;Δyðky þ 1Þ�

− qiðx;ΔykyÞgdx:

In the limit of finest pixelation,25

∂qiðx; yÞ
∂xi

¼
2αðx − xiÞJ1

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2

p �
J2

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2

p �

π½ðx − xiÞ2 þ ðy − yiÞ2�3∕2
;

∂qiðx; yÞ
∂yi

¼
2αðy − yiÞJ1

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2

p �
J2

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2

p �

π½ðx − xiÞ2 þ ðy − yiÞ2�3∕2
:

A.3 2-D Gaussian PSF
The 2-D PSF of a wide-field fluorescence microscope can be
well approximated by a 2-D Gaussian probability density func-
tion.47 It can be decomposed into the product of two one-dimen-
sional Gaussian probability density functions

qmðx; yÞ ¼ qðmÞ
x ðxÞqðmÞ

y ðyÞ; (42)

where

qðmÞ
x ðxÞ ¼ 1ffiffiffiffiffi

2π
p

σ
exp

�
−
ðx − xmÞ2

2σ2

�
; (43)

qðmÞ
y ðyÞ ¼ 1ffiffiffiffiffi

2π
p

σ
exp

�
−
ðy − ymÞ2

2σ2

�
(44)

with the assumption that the x and y SDs are identical to σ. Then
Eq. (32) can be applied with

qðmÞ
x ðkxÞ ¼

1

Δx

�
Φ
�
Δxðkx þ 1Þ − xm

σ

�
−Φ

�
Δxkx − xm

σ

��
;

(45)

qðmÞ
y ðkyÞ ¼

1

Δy

�
Φ
�
Δyðky þ 1Þ − ym

σ

�
−Φ

�
Δyky − ym

σ

��
:

(46)

Note that Eqs. (35) to (38) are applicable with the expres-
sions of Eqs. (43) to (46).
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In the limit of finest pixelation,25

∂qiðx; yÞ
∂xi

¼ x − xi
σ2

qiðx; yÞ; (47)

∂qiðx; yÞ
∂yi

¼ y − yi
σ2

qiðx; yÞ: (48)

Appendix B:
Standard Deviation of an Airy PSF
To fairly compare the performances of the Airy and Gaussian
PSFs, the SD of an Airy PSF is computed and then used in
the Gaussian PSF. Suppose an emitter is located at the origin.
Accordingly, the Airy PSF is

qaðx; yÞ ¼
J21

�
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �

πðx2 þ y2Þ ;

and the Gaussian PSF is

qgðx; yÞ ¼
1

2πσ2
exp

�
−
x2 þ y2

2σ2

�
:

Since σ ¼ 2
ffiffiffiffiffi
2π

p
∫ ∞
0 x

2qgðx; 0Þdx, the equivalent SD of the
Airy PSF would be obtained by replacing qgðx; 0Þ with
qaðx; 0Þ in the integral. However, the SD of an Airy PSF
does not exist since qaðx; 0Þ diminishes in the way46 similar
to ½sinðαxÞ∕ðαxÞ�2 as x increases. To obviate the divergence,
the SD is estimated by integral up to the second zero point
of qaðx; 0Þ, i.e., αx ¼ 7.016.46 Hence, the equivalent SD is
calculated as

σ ¼ 2
ffiffiffi
2

p
ffiffiffi
π

p
α

Z
7.016

0

J21ðxÞdx: (49)
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