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Abstract. Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemo-
dynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data
has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that
converts discrete samples to continuous curves. We used fNIRS data collected on forehead during a cold pressor
test (CPT) from 20 healthy subjects. Using functional principal component analysis, oxyhemoglobin (HbO2) and
deoxyhemoglobin (Hb) curves were decomposed into several components based on variability across the subjects.
Each component corresponded to an experimental condition and provided qualitative and quantitative information
of the shape and weight of that component. Furthermore, we applied functional canonical correlation analysis to
investigate the interaction between Hb and HbO2 curves. We showed that the variation of Hb and HbO2 was
positively correlated during the CPT, with a “far” channel on right forehead showing a smaller and faster
HbO2 variation than Hb. This research suggests the fDA platform for the analysis of fNIRS data, which solves prob-
lem of high dimensionality, enables study of response dynamics, enhances characterization of the evoked response,
and may improve design of future fNIRS experiments. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1

.JBO.18.11.117007]

Keywords: functional canonical correlation; cold pressor test; functional data analysis; hemodynamics; multidistance probe; near-infrared
spectroscopy; pain; functional principal component analysis.

Paper 130254RR received Apr. 17, 2013; revised manuscript received Oct. 12, 2013; accepted for publication Oct. 21, 2013; published
online Nov. 18, 2013.

1 Introduction
Functional near infrared spectroscopy (fNIRS)1–3 is a promising
imaging technology for noninvasive, continuous monitoring of
regional blood flow and tissue oxygen consumption. It utilizes
low-intensity light at the near-infrared spectrum (between 600
and 900 nm), within which the optical absorbance of living tis-
sues is small and hence, light can penetrate up to a few centi-
meters into the tissue. The two forms of the oxygen-carrying
molecule of the blood, denoted as oxyhemoglobin (HbO2)
(when oxygen is bound) and deoxyhemoglobin (Hb) (when
oxygen is delivered), have distinct spectroscopic characteristics
within the near infrared (NIR) spectrum. Changes in optical
absorption parameters are measured at two different wave-
lengths within the NIR spectrum and then, are converted to
changes in Hb and HbO2 concentrations using the Beer–
Lambert law.

The depth of NIR light penetration is proportional to the
square root of the distance between the light source and the
photodetector.4 With multiple source-detector separations
(S-D), fNIRS enables concurrent monitoring of oxygenation
changes at superficial and deep tissues across different body
parts, such as hands, feet, and head. In a head fNIRS measure-
ment with a typical S-D of 3 cm, NIR light penetrates suffi-
ciently to reach the uttermost layer of the brain, the cortex.
fNIRS is increasingly being used for detecting task-related oxy-
gen consumption changes in the cortex. Mainly because of the

portability and low cost of the measurements, fNIRS has
become considerably popular for research in neuroscience,
sports medicine, psychology, psychiatry, and rehabilitation.
Over the past two decades, it has been applied to several clinical
conditions too, such as schizophrenia,5–12 Alzheimer’s dis-
ease,13,14 epilepsy,15–18 and neonatal intensive care.19–27

The measured hemodynamic response by fNIRS is a reali-
zation of a naturally continuous physiological phenomenon.
Typical fNIRS data consist of a set of discrete time points
sampled every fraction of a second. In the presence of observa-
tional noise, the measured hemodynamic time series are often
not smooth and fluctuating but one can assume that the true
underlying trajectory is a smooth function. Moreover, due to
the slow nature of the hemodynamic response and given the typ-
ical sampling rate of an fNIRS device, it is likely that the adja-
cent samples are correlated to some extent. It is, therefore,
desirable to view an individual’s repeated measures over a
time interval as a continuous function or curve.

Traditionally, fNIRS studies involve linear regression and
analysis of variance on features extracted from the recovered
hemodynamic response. The time series of the evoked hemo-
dynamic response can be directly estimated by linear deconvo-
lution of the measured hemodynamic changes and the
experimental timing function (a boxcar function that determines
the timing of the experimental paradigm). An accurate estimate
of the evoked response, however, requires a precise choice of the
timing function.28 Another approach for describing the wave-
form of the evoked hemodynamic response, which is adapted
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assumes a temporal shape for the so-called hemodynamic
response function (HRF).29 Given this a priori assumption, it
models the HRF using a set of basis functions (such as
gamma or Gaussian functions).30 This technique has the advan-
tage of reducing the number of unknowns by returning a smooth
function with definite parameters. However, results may be
biased by the choice of the canonical basis functions. The esti-
mated evoked hemodynamic responses are averaged to enhance
signal-to-noise ratio, provided the interstimulus intervals (ISIs)
are sufficiently large to avoid overlap of HRFs.28

Analysis of fNIRS data has primarily been limited to dis-
crete-time methods. Functional data analysis (fDA)31 is an
alternative technique developed for handling a large number
of data sampled over a continuum which is often time. In a func-
tional domain, we study functional objects rather than sample
points; therefore, the vector observations X1; : : : ; Xn, where n
is the number of observations, are replaced by functions
x1ðtÞ; : : : ; xnðtÞ. The philosophy behind fDA is “to think of
observed data functions as single entities, rather than merely
as a sequence of individual observations.”31 Discrete observations
can be converted to continuous functions using a linear combi-
nation of basis functions. The advantages of using such represen-
tation is twofold: (1) it provides a computational platform that
allows storing and analyzing large amount of data with improved
computational efficiency and flexibility as computational chal-
lenges arise due to huge number of measurements on each of
small number of subjects, known as large p small n problem32

and (2) smooth functions allow study of the dynamics of the
underlying processes through their derivatives.

fDA has been applied to neuroimaging studies.33 Viviani
et al. first proposed an fDA approach for exploratory analysis
of fMRI images for a single subject case.34 They showed that
compared to ordinary principal component analysis (PCA),
the functional version of PCA could better visualize the variabil-
ity of the data introduced by experimental alternations as it takes
advantage of smooth functions. Later, Long et al. followed an
fDA approach for dimension reduction of fMRI data for the esti-
mation of noise covariance kernel.35

Our primary aim in this research was to introduce fDA meth-
odology for “exploratory analysis” of fNIRS data to obtain a
better insight into the physiological response. Given a set of
Hb and HbO2 functions collected from a number of individuals,
we wish to characterize main directions of variability and inves-
tigate shared features by the two functions. We specifically
would like to explore: (1) temporal variability within observa-
tions and (2) linear relationship and temporal association
between Hb and HbO2 time series. We employed two novel
functional techniques: functional principal component analysis
(fPCA) and functional canonical correlation analysis (fCCA).31

fPCA explores the variability between a set of observations.
In a functional sense, it reveals when, in a time series, the maxi-
mum variation between several observations occurs. fPCA
works without a priori knowledge of the experimental setting
or any specific assumptions on the data. In other words,
fPCA provides an initial assessment and helps understand varia-
tion and population structure in high-dimensional data.34 We
hypothesized that fPCA can discriminate events in a set of
fNIRS data during a functional task.

fCCA examines modes of variation that two sets of functions
share. With this method, we would like to investigate the inter-
action between Hb andHbO2 time series and discover how these
two functions covary over time. In other words, we want to

know, during the course of an experiment, how variability in
Hb data is related to the variability in HbO2 data and what
types of and how much variation they share.

In this study, we use Hb and HbO2 parameters measured dur-
ing a painful task, namely cold pressor test (CPT). A CPT is
performed by immersing a limb into a cold water (usually freezing
water) container for a specific period of time. Three trials of a
CPT were used to study the effect of repeated sustained noxious
stimuli on the hemodynamics, and the results are published
elsewhere.36

The rest of the paper is organized as follows: in Sec. 2, we
will briefly describe the protocol and measurements and will
present a description of the fDA framework; in Sec. 3, we
will illustrate the application of fPCA and fCCA on fNIRS
data collected during a CPT; lastly, in Sec. 4, we will review
and discuss the results.

2 Materials and Methods

2.1 Participants

Twenty healthy, right-handed individuals from the Drexel
University community participated in this study after giving
the informed consent form approved by the Institutional
Review Board (IRB). We instructed subjects to avoid smoking
and drinking any caffeinated or alcoholic beverages for at least
3 h prior to the experiment.

2.2 Protocol

Subjects performed three successive trials of a CPT. Only data
from the first CPT were used for the present study. The experi-
ment block consisted of four conditions: (1) a 30-s baseline
when the subject relaxed; (2) a 2-min immersion of the right
hand up to the wrist into a bucket of circulating tepid water
(∼23°C) for adaptation; (3) a 45-s immersion of the same
hand into a bucket of circulating ice water (∼0°C); and (4) a
2-min poststimulus hand immersion in the tepid water for the
hemodynamic recovery.

2.3 Measurements

We used a continuous wave fNIRS system designed and devel-
oped at Drexel University. The principle and instrumentation of
fNIRS are described elsewhere.36 The fNIRS sensors consisted
of one light source with two light-emitting diodes (LEDs) at
730- and 850-nm wavelengths and three photodetectors. Two
detectors were placed at 2.8 cm from the LED making the
“far” channels to investigate the hemodynamic response at intra-
cranial layers and one detector was located at 1 cm from the
LED making the “near” channel to measure the hemodynamic
changes within the superficial extracranial tissues. Two fNIRS
sensors with the same configuration were positioned symmetri-
cally on the left and right sides of a subject’s forehead proximate
to the anterior median line and were secured using a Velcro
strap. The sampling rate of raw optical intensity measurements
was 2 Hz. The optical density parameters for 730- and 850-nm
wavelengths were calculated by taking the logarithm of the ratio
of the detected light intensity during baseline to the detected
light intensity during the task. The optical density time series
were converted to changes in oxyhemoglobin (HbO2) and deox-
yhemoglobin (Hb) concentrations using the modified Beer–
Lambert law.37
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2.4 Functional Data Analysis

2.4.1 Building continuous, smooth curves from discrete
data

Modern signal or image acquisition machines sample data
points from a smooth, continuous process subject to observatio-
nal noise. This can be expressed as

yj ¼ xðtjÞ þ ej; (1)

where y is the observed data, x is the assumed noise-free latent
data at time t, and e is the observational error that explains the
roughness of the observed data.

Prior to any functional analysis, the discrete data need to be
converted to a continuous functional object. Then, a flexible
method that gives control over the level of smoothing can be
applied. Spline smoothing is the most popular and powerful
approach with well-defined properties.38–40 Spline smoothing
or regularization approach controls the degree of smoothness
by a single parameter that penalizes the function’s roughness.
This parameter, denoted as the smoothing parameter (λ), com-
promises between the goodness of fit and the smoothness. To
formulate this method, we first need to define “goodness of
fit” and “roughness” criteria.

The goodness of fit is measured by the least squares criterion

SSE ¼
X
j

jyj − xðtjÞj2; (2)

where x is the fitted data and y is the observed data.
Roughness of a function can be quantified by the total cur-

vature criterion

PEN2 ¼
Z

jD2xðtÞj2dt; (3)

where D2 denotes the second derivative operator. A smaller
PEN2 implies a less variable function, whereas a larger PEN2

indicates a rougher curve. The roughness criterion can be gen-
eralized to any arbitrary order of a function’s derivative.

A penalized residual sum of squares is formed by putting the
two opposing criteria in Eqs. (2) and (3) together

PENSSEλ ¼ SSEþ λ ⋅ PEN2; (4)

where λ is the smoothing parameter that controls the weight of
data fit and smoothness.

As mentioned earlier, the smoothing parameter (λ) controls
the trade-off between the closeness to the observed values and
the smoothness. The amount of imposed smoothness, however,
cannot be arbitrary. If λ is close to zero, we obtain an estimate
close to the data, and if λ is too large, we obtain an estimate
equivalent to the linear regression estimate of the data and con-
sequently, the details of the signal of interest may be diminished.
Therefore, it is important to select a reasonably good smoothing
parameter.

An appropriate smoothing parameter may be chosen subjec-
tively by visual judgment and prior knowledge of the process
generating the data. An objective, data-driven method is also
developed using the generalized cross validation (GCV)
measure41

GCVðλÞ ¼
�

n
n − dfðλÞ

��
SSE

n − dfðλÞ
�
; (5)

where n is the number of observations, SSE is the mean square
error, and dfðλÞ is the trace of the “smoothing matrix.”42 The
optimum λ minimizes GCVðλÞ function plotted against
log10 λ. GCV is the most popular procedure for selecting an opti-
mal value for the smoothing parameter. However, like other
cross-validation methods, GCV tends to under-smooth the data.

2.4.2 Functional PCA

PCA explores main modes of variation in high-dimensional data
on a set of orthogonal, linearly uncorrelated directions. The
functional counterpart of PCA (fPCA) visualizes variability
among a set of functional observations, which theoretically
have infinite number of data values. fPCA returns a set of
orthogonal weight functions or principal components (PCs)
spanning the same range as the functional data. Each PC
accounts for a percentage of the total variability in data.
Depending on how much variability one would like to explain,
the first few PCs are retained to estimate the data.

fPCA algorithm. Like ordinary PCA, functions are first cen-
tered, i.e., the mean across all observations is removed from
each observation, to avoid the first PC to mostly reflect the aver-
age response. Basically, fPCA of n observations xi, i ¼ 1; : : : ; n
finds the PC weight function ξ for which the PC score defined as

μi ¼
Z

ξðtÞxiðtÞdt (6)

maximizes
P

μ2i constrained toZ
ξ2ðtÞdt ¼ kξk2 ¼ 1: (7)

After computing the first PC weight function ξ1 and the first
PC score μ1 according to Eqs. (6) and (7), the second PC weight
function ξ2 and the second PC score μ2 are calculated with an
additional constraint Z

ξ2ðtÞξ1ðtÞdt ¼ 0; (8)

which requires the new PC weight function to be orthogonal to
that computed on the previous step. This constraint requires the
new PCs to reflect new directions of variability. After each step,
the amount of explained variability decreases. A sequence of
descending PC scores and the corresponding weight functions
are computed stepwise. By definition, μj and ξj are referred to as
the “eigenvalues” and “eigenfunctions.”

To compute the functional PCs, one can formulate the fPCA
as the eigenanalysis of the bivariate covariance function:

vðs; tÞ ¼ 1

n

Xn
i

xiðsÞxiðtÞ: (9)

The functional eigenequation is then expressed asZ
vðs; tÞξjðtÞdt ¼ μjξjðsÞ; (10)

where μj is the j’th eigenvalue and ξjðsÞ is the j’th eigenfunc-
tion of the covariance function. Computer software is developed
to solve the eigenequation [Eq. (10)] for pairs of ξ and μ.

Only the first few PCs are considered for further analysis and
the remaining PCs are regarded as either irrelevant or are
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assumed to reflect observational error or noise. In this case, the
problem is to figure out how many components are to be con-
sidered. A solution is to plot the base 10 logarithm of eigenval-
ues according to their size (against their indices j) and to
identify the so-called elbow point at which the slope of the
graph changes from steep to flat. Then, the researcher may
decide to retain only the components before the elbow. This
method is called the scree or elbow test and is yet considered
subjective. A traditional approach includes the components
with eigenvalues greater than average. Another method is to
include as many as components that account for a specific
cumulative percentage of total variability.

2.4.3 Canonical correlation analysis

Functional canonical correlation analysis (fCCA) is an explor-
atory technique that examines modes of variation that “pairs” of
functions share.43 By fCCA, we would like to explore how vari-
ability in Hb and HbO2 data is interrelated. Given n pairs of
observations ½xiðtÞ; yiðtÞ�, i ¼ 1; : : : ; n, fCCA estimates pairs
of functions ½ξjðtÞ; ηjðtÞ� that most explain the interaction
between x and y.

As in fPCA, data are first centered to focus on the analysis of
variation from the mean.43 ξ and η are termed “canonical weight
functions” and are estimated such that the correlation between
the following integrals is maximized

ρξi ¼
Z

ξðtÞxiðtÞdt and ρηi ¼
Z

ηðtÞyiðtÞdt

for i ¼ 1; : : : ; n: (11)

ðρξi; ρηiÞ are called “canonical variates” and are calculated by
maximizing the squared canonical correlation defined as

R2ðξ; ηÞ ¼
hP

i ρξiρηi
i
2

hP
i ρ

2
ξi

ihP
i ρ

2
ηi

i . (12)

Similar to fPCA, one can obtain a nonincreasing series of
squared canonical correlations by imposing the condition that
successive canonical weight functions be orthogonal.42

However, imposing a strong roughness penalty on the com-
puted weight functions ξ and η is a rule to obtain meaningful
results. A cross-validation criterion for objective calculation
of the roughness penalty is described by Leurgans et al.43 as
follows:

The roughness penalty for the smoothed weight functions is
obtained by finding a value for the smoothing parameter (λ)
that maximizes the squared correlation of n pairs of scores
ð∫ ξð−iÞλ ðtÞxiðtÞdt; ∫ ηð−iÞλ ðtÞyiðtÞdtÞ, where ξð−iÞλ and ηð−iÞλ are the
smoothed canonical weight functions with the i’th curve
omitted.

3 Results

3.1 fNIR Data Preprocessing

Raw optical intensity data for 730- and 850-nm wavelengths
were first filtered using a finite impulse response lowpass filter
with a cut-off frequency of 0.14 Hz to remove high-frequency
noise, respiration, and heart pulsation artifacts. The filtered raw
data were converted to changes in Hb and HbO2 concentrations

relative to the mean value of the optical intensity during the first
20 s of the baseline. Hb and HbO2 data were registered in refer-
ence to the time when the hand was immersed in the ice water.

All functional data analyses were conducted in MATLAB
(R2011a, MathWorks, Natwick, Massachusetts) using the fDA
package for MATLAB.42 Hb and HbO2 were smoothed by
imposing a penalty on the roughness of the second derivative
of the data with a λ of 104. The smoothing parameter λ was
chosen empirically since the GCV plot resembled a sigmoid
function which was not informative. Figures 1 and 2 show
the nonsmooth and smooth Hb and HbO2 data for two far chan-
nels located on the right and left sides of forehead, respectively.

3.2 Results of fPCA

The overall mean function of Hb and HbO2 across all subjects
was first subtracted from each observation before performing
the fPCA. Results of fPCA of Hb and HbO2 data were obtained
separately for the six channels. No significant variation between
channels was observed in the calculated PCs. Thus, in favor of
saving space, we show and discuss the figures for two left and
right far channels shown in Figs. 1 and 2. However, overall
results for other channels will be discussed in Sec. 4.

We estimated the number of components based on the total
explained variance. We desired to account for 95% of total vari-
ability; therefore, the first four PCs were considered.

The four considered PC weight functions of HbO2 are pre-
sented in Figs. 3(a) and 3(b) for the right and left far channels,
respectively. The first PC always has the highest PC score and
accounts for the highest variability; the remaining PCs are asso-
ciated to descending PC scores and account for less amount of
total variability.

A visualization technique that may simplify interpretation of
fPCA results is to plot the PCs as perturbations of the mean
function.31 In doing so, a multiple of each PC is added and sub-
tracted to the mean function. By definition, this factor is 0.2
times the root mean square of the difference between the PC
and its overall average.31 Results for PC perturbations of
HbO2 are shown in Figs. 3(c) and 3(d) for the right and left
far channels, respectively.

PC1 is mostly associated with amplitude variation, particu-
larly during the stimulus and poststimulus conditions. PC2
accounts for a considerably smaller percentage of total variabil-
ity and corresponds to amplitude variation mostly during pres-
timulus condition. PC3 and PC4 account for a very small
percent of total variability and reflect some small variations
during the prestimulus and the last minute of poststimulus
conditions.

Figure 4 shows the same information as Fig. 3 for Hb data.
One may identify some similarities between the PCs calculated
for Hb and HbO2 data. For both right and left channels, PC1 is
associated with an overall amplitude variation after the baseline.
PC2 and PC3 explain amplitude variation during the prestimulus
and poststimulus and a phase shift in early poststimulus condi-
tion. PC4 corresponds to some already identified variations
mostly during prestimulus condition.

3.2.1 Rotating PCs

As we saw in the previous section, each considered PCs did not
give substantive “localized” information of the variability; that
is, several PCs may explain variation during an experimental
condition or a single PC may correspond to variation during
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several conditions. Thus, the interpretation of PCs is not
straightforward.

Although the original PC weight functions are computed to
be optimal, it does not mean that there are no other alternatives
that can do just as well. One solution is to rotate the original PC
weight functions by a rotation matrix. Varimax is the most popu-
lar rotation method for both multivariate and functional analy-
ses.31 The rotated PC weight functions by varimax remain
orthogonal as the original PCs but they are not necessarily
uncorrelated. Moreover, the rotated PC weight functions are
not associated to descending PC scores, unlike the original
PCs. However, the cumulative variability explained by the
rotated PCs is the same as before the rotation.

A varimax approach finds an orthogonal rotation matrix (T)
to transform the PC weight functions:

A ¼ T · B; (13)

where B is a matrix containing the considered PC weight func-
tions. A varimax solution is obtained by maximizing the vari-
ance of the vector of a2mj; where amj are the elements of A.
This is only achievable when the amj are relatively large or rel-
atively small. As such, the rotated weight functions have maxi-
mized variance due to few large elements and many minuscule
elements. Consequently, each PC is associated with one or a

small number of modes of variation, which considerably enhan-
ces interpretability.

Results of the varimax rotation of HbO2 and Hb data are
shown in Figs. 5 and 6, respectively. The weight functions
rotated by the VARIMAX rotation still account for the same
cumulative percentage of total variability but in different
proportions.

Each rotated PC weight function [Figs. 5(a), 5(b), 6(a), and
6(b)] shows variation during a brief time window compared with
unrotated PC weight functions [Figs. 3(a), 3(b), 4(a), and 4(b)]
that described variation over a long time span. This effect of
rotation is more evident in the mean function perturbations
[Figs. 5(c), 5(d), 6(c), and 6(d)].

For HbO2 data (Fig. 5), the two most important PCs that
account for the largest percentage of total variability identify
the evoked response during the stimulus condition and the
recovery during poststimulus condition. The PC weight function
associated to the stimulus condition identifies slope and ampli-
tude variation of the evoked response and a temporal shift in the
peak of response across the 20 subjects. The PC weight function
associated to the poststimulus condition corresponds to ampli-
tude and timing variation of the hemodynamic recovery curve.
The two least important PCs are associated to variations in the
prestimulus and end of the poststimulus conditions.

For Hb data (Fig. 6), the largest variability is observed during
the poststimulus condition by PC2 and PC3 for both channels;
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Fig. 1 Nonsmooth and smooth Hb and HbO2 data for 20 subjects for a “far” channel located on right forehead: (a) nonsmooth HbO2; (b) smooth
HbO2; (c) nonsmooth Hb; (d) smooth Hb. The smoothing parameter was 104. The black dashed line represents the mean response across 20 subjects.
The three vertical black lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and tepid water
(poststimulus).
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one associated to variation in the hemodynamic settlement at the
end of the poststimulus and the other one associated to variation
of peak of the evoked response occurred with a delay after
removal of the stimulus. The two least important PCs identified
variation during the stimulus and prestimulus conditions.

3.3 Results of fCCA

fCCAwas applied to Hb and HbO2 curves to explore their inter-
action and shared variation. We used the cross-validation cri-
terion proposed by Leurgans et al. to find the optimum value
of the smoothing parameter (λ) for the canonical weight func-
tions.43 Based on the cross-validation results and visual inspec-
tion of plotted canonical weight functions, a λ of 107 for far
channels and a λ of 108 for near channels were selected.

We present and discuss the first canonical weight functions,
a.k.a. the leading weight functions, for two far channels and two
near channels on the right and left sides of forehead (Fig. 7).
Results for the other far channels were similar to the presented
far channels.

Figure 7 shows that the variation from the norm for Hb and
HbO2 is positively correlated throughout the experiment for all
channels. For the right far channel, however, the dominant mode
of covariation exists in the peak and timing of Hb and HbO2

changes, with HbO2 variation being smaller and much faster
than Hb response.

4 Discussion
fDA characterizes the main features shared by a set of observa-
tions from a number of individuals. In this research, we pro-
posed the fDA as a novel tool for the analysis of fNIRS data
and showed that the fPCA is capable of decomposing the Hb
and HbO2 time series during a CPT task into the experimental
conditions.

Multivariate PCA has been previously used to identify the
systemic interference and remove it from fNIRS measurements.
Zhang et al.44 used spatial eigenvector-based analysis of base-
line activity in diffuse optical imaging. They used dozens of
optodes over a large area of the cortex and showed that baseline
information can be used to estimate global physiological inter-
ference during a finger tapping task and a tactile stimulus.
Virtanen et al. compared PCA and independent component
analysis (ICA) performance in removing superficial physiologi-
cal interference during hypocapnia and hypercapnia maneu-
vers.45 Instead of using a fine grid of source–detector pairs,
they used two channels with short (1 cm) and far (3 cm)
source-detector distances and showed that both PCA and
ICA are capable of effectively removing the physiological activ-
ity from the fNIRS measurements.

fNIRS data are naturally continuous time series that are
observed in discrete time. The frequency response of the hemo-
dynamics is relatively low compared to typical fNIRS devices
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Fig. 2 Nonsmooth and smooth Hb and HbO2 data for 20 subjects for a “far” channel located on left forehead: (a) nonsmooth HbO2; (b) smooth HbO2;
(c) nonsmooth Hb; (d) smooth Hb. The smoothing parameter was 104. The black dashed line represents the mean response across 20 subjects. The
three vertical black lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and tepid water
(poststimulus).
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sampling rate and the recorded sample points are likely to be
correlated. Therefore, a more accurate and effective way to
look at fNIRS data is to incorporate the information that is inher-
ent in the time order and smoothness of fNIRS data.

In traditional or standard PCA, the data are treated as vectors
of discrete samples and permutation of components will not
affect the analysis and thus, the time order of the physiological
phenomena is irrelevant. Moreover, it is well-known that large
number of measurements on each of a comparatively small num-
ber of subjects or experimental units, the so-called “large p,
small n problem,” might lead to ill-posed problems32 and
also, the estimation of maximum eigenvalue might be asymp-
totically biased.46 The fDA approach exploits smoothed curves

and estimates a smoothed fixed covariance function to avoid the
“curse of dimensionality.” The fixed covariance function solves
the problem of large covariance matrices whose dimensions
exceedingly increase with the sample size. Hence, fDA alterna-
tive solution for handling high-dimensional data is becoming
very popular. Also, because the fDA methodology considers
the entire curve as a single entity, there remains no issue regard-
ing high correlation between repeated measurements.

fPCA is an exploratory tool to capture the principal direc-
tions of variation in the population and dimension reduction.
Our study provides a good understanding of the variation in
the population structure of Hb and HbO2 at different conditions
of a CPT. Our observations are summarized as follows:

Fig. 3 The first four principal components (PCs) of HbO2 (a and b) and the corresponding mean function perturbations (c and d) for a right (a–c) and a
left (b–d) “far” channel. In (a) and (b), blue, green, red, and cyan curves correspond to PC1, PC2, PC3, and PC4, respectively. In (c) and (d), the blue
curve represents the mean function and the red and green curves are the effects of subtracting and adding a multiple of the mean function (see Sec. 2 in
Results). The three vertical black lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and
tepid water (poststimulus).
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• The initial 30 s baseline condition was not identified by
fPCA. Generally, intersubject variability in fNIRS mea-
surements is explained by individuals’ differences in ana-
tomical factors such as skull and cerebrospinal fluid (CSF)
structure, the distribution of vessels, and the ratio of
arteries and veins. These factors did not cause a variable
baseline hemodynamics in our small sample and hence,
it could not be identified by fPCA. However, individuals’
responses to a noxious stimulus and the following
recovery are highly subjective and variable. We observed
that the hemodynamic response at the stimulus and post-
stimulus conditions was highly variable between subjects
and the highest variability was seen in the HbO2 data.

• The variation in the prestimulus condition accounted for a
small percentage of total variability (less than 16% for
HbO2 and 16% on average across all channels for Hb).
It yet suggests that a hand immersion in the tepid
water evokes a variable response that is detectable
by fPCA.

• The variability in the stimulus condition for HbO2 was
revealed in the slope, amplitude, and timing of the
peak of response. The temporal shift was observed in
the far channels only.

• For the poststimulus condition, an early component cor-
responding to variation in the hemodynamic recovery and

Fig. 4 The first four principal components (PCs) of Hb (a-b) and the corresponding mean function perturbations (c-d) for a right (a-c) and a left (b-d) “far”
channel. In (a)and (b), blue, green, red,andcyancurvescorrespondtoPC1,PC2,PC3,andPC4, respectively. In (c) and (d), thebluecurverepresents themean
function and the red and green curves are the effects of subtracting andadding amultiple of themean function (see Sec. 2 inResults). The three vertical black
lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and tepid water (poststimulus).
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a late component corresponding to the hemodynamic
settlement were identified:

• The early component was the most important com-
ponent for HbO2 data and showed variation in the
amplitude and timing of the peak of response. No
slope variation was found during the poststimulus
condition. This component was more important in
the right channels than left channels. For Hb, this

component was associated to variation in the ampli-
tude of response which peaked a few seconds after
the removal of the stimulus. This component was
more important in the left far channels than the
right far channels and the near channels for Hb data.

• The late poststimulus component was more impor-
tant in the Hb data than HbO2 data. It accounted
for most of the variation in the near channels and
a large portion of variation in far channels for Hb.

Fig. 5 The first four rotated PCs of HbO2 (a and b) and the corresponding mean function perturbations (c and d) for a right (a–c) and a left (b–d) “far”
channel. In (a) and (b), blue, green, red, and cyan curves correspond to PC1, PC2, PC3, and PC4, respectively. In (c) and (d), the blue curve represents
the mean function and the red and green curves are the effects of subtracting and adding a multiple of the mean function (see Sec. 2 in Results). The
three vertical black lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and tepid water
(poststimulus).
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In a secondary exploration, we investigated the association
between Hb and HbO2 variability using fCCA. We were inter-
ested in the dominant modes of correlation between Hb and
HbO2. Results demonstrated an overall positive correlation
between Hb and HbO2 variation through the CPT experiment.
However, for a right far channel, there was an evident time shift
in the Hb response relative to HbO2. In general, fCCA gives a
broad view of the interaction between two variables. The iden-
tified patterns of covariation give important directions for further
investigation of interaction between Hb andHbO2 in a particular
experimental setting.

Feature selection for the preliminary study of CPT data pub-
lished elsewhere was done empirically.36 By visual inspection of
the Hb andHbO2 data, we observed that the amplitude and slope

of the evoked hemodynamic response were quite variable
between subjects, and we chose two features based on these
characteristics for statistical analyses.36 However, empirical
search did not give any information regarding the power of
these features for explaining variability without running com-
prehensive statistical analyses. However, fPCA aids a straight
feature selection by characterizing the geometry of curves as
a set of principal directions of variation. Exploratory functional
analysis of CPT data gave us new insight into our dataset by:
(1) explicit estimation of PCs explaining the highest variability
in the dataset, (2) calculation of the percentage of total variabil-
ity explained by each component, and (3) study the covariation
of Hb and HbO2 throughout a CPT experiment. We showed that
fPCA could successfully discriminate different phases of the

Fig. 6. The first four rotated PCs of Hb (a-b) and the corresponding mean function perturbations (c-d) for a right (a-c) and a left (b-d) “far” channel. In (a)
and (b), blue, green, red, and cyan curves correspond to PC1, PC2, PC3, and PC4, respectively. In (c) and (d), the blue curve represents the mean
function and the red and green curves are the effects of subtracting and adding a multiple of the mean function (see Sec. 2 in Results). The three vertical
black lines from left to right indicate the hand immersion incidents in tepid water (prestimulus), cold water (stimulus), and tepid water (poststimulus).
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hemodynamic response during a CPT experiment and interest-
ingly, it identified two components for the poststimulus condi-
tion: an early component associated to variation in the
hemodynamic recovery and a late component associated to
the hemodynamic settlement. More importantly, it described
inter-subject variations in the dynamic of the response, such
as slope of the evoked response and slope of the recovery
curve. In addition to this qualitative information, fPCA provided
quantitative measures of the importance and weight of each of
these features based on the percentage of total variability
explained by that feature; for instance, experimental manipula-
tions that created the largest variation among the dataset were
identified to be the stimulus and early poststimulus conditions.
Extracting such detailed information from the raw data (Figs. 1
and 2) was impractical, if not impossible. For future studies, we
will exploit these findings for further statistical analysis of CPT
data as well as designing new protocols according to the
extracted features (e.g., how much time would be necessary
for the hemodynamic recovery/settlement after a cold stimulus).

In the context of brain imaging studies, as Tian33 pointed out
in her review article, fPCA can play a critical role in research
involving a stimulus-response paradigm when the onset, dura-
tion, amplitude, and/or speed of the evoked brain activity is
unknown or uncertain, such as in a decision-making process
or an emotional reaction. As an exploratory technique, fPCA
does not make any a priori assumption on the form and

timing of the waves of neural activity and this key property
makes fPCA application particularly relevant in neuroscience
studies employing fNIRS as well as other neuroimaging
tools such as electro-encephalography, fMRI, and magneto-
encephalography.33

After exploratory steps, one can extract more pertinent infor-
mation. For instance, fPCA is a good tool for computing prox-
imities between curves in a reduced dimensional space. Using
such a distance measure, one can investigate whether the curves
are similar or can be split into several classes.

Due to inherent interaction between the autonomic nervous
system and central pain processing system, researchers try to
assess the individuals’ perception of pain through physiological
signs. Hemodynamic changes at the skin and major arteries have
been investigated to study the sympathetic response to a noxious
stimulus.47–49 In this exploratory study, we attempted to learn
what feature of response to a cold noxious stimulus is most var-
iable among control subjects. We showed that the PCs explain-
ing the variability in the CPT data and their weight varied
between Hb and HbO2 parameters and channels. This informa-
tion may be helpful to decide which parameter and/or channels
are most associated with the hypothesized effect, for example, in
brain mapping studies. With the CPT experiment, we previously
showed that the amplitude and timing of the evoked response of
HbO2 was correlated with subjects’ report of the pain intensity.

36

Through the results of this research, we also learned about
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Fig. 7 Canonical correlation analysis of Hb (blue dashed) and HbO2 (red solid) data for two “far” channels (a: right, b: left) and two “near” channels (c:
right, d: left).
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importance of the dynamics of the evoked response to a CPT as
revealed by fPCA. In another study, we used this information
and considered the derivatives of HbO2 curves during a pain
tolerance test using CPT. Results confirmed that the amplitude
and timing of the peak of the first and second derivative of the
HbO2 response right after hand immersion in cold water is a
very robust feature. In future, we will use this knowledge to bet-
ter understand the physiology of pain through explaining some
of the observed variations by known factors such as age, gender,
or information about whether the subjects are high/low tolerance
to that specific stimulus.

The observed modes of variation and covariation patterns can
help improve design of fNIRS studies for pain research in par-
ticular and for other experiments in general. This study was pre-
liminary but opens an interesting avenue for future research.
Without a good understanding of population structure, it
would not be feasible to formulate and study physiological phe-
nomena and identifying variability is the first step in this
direction.
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