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Abstract. We present an imaging-based method for noncontact spirometry. The method tracks the subtle
respiratory-induced shoulder movement of a subject, builds a calibration curve, and determines the flow-
volume spirometry curve and vital respiratory parameters, including forced expiratory volume in the first second,
forced vital capacity, and peak expiratory flow rate. We validate the accuracy of the method by comparing the
data with those simultaneously recorded with a gold standard reference method and examine the reliability of the
noncontact spirometry with a pilot study including 16 subjects. This work demonstrates that the noncontact
method can provide accurate and reliable spirometry tests with a webcam. Compared to the traditional spiro-
meters, the present noncontact spirometry does not require using a spirometer, breathing into a mouthpiece, or
wearing a nose clip, thus making spirometry test more easily accessible for the growing population of asthma
and chronic obstructive pulmonary diseases. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO

.22.5.057002]
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1 Introduction
Asthma and chronic obstructive pulmonary disease (COPD) are
the most prevalent obstructive airway diseases, affecting tens
of millions of people in the United States alone.1 The most
common way to diagnose the diseases and reassess the progres-
sion of the diseases is spirometry, which measures how much a
patient inhales and how fast he/she exhales. In a spirometry test,
the patient is instructed to exhale rapidly and forcefully into a
mouthpiece connected to a spirometer that measures breath flow
rate and volume. To ensure that all the air is inhaled into the
spirometer for accurate flow measurement, the patient is also
instructed to wear a nose clip, which leads to complaints of dis-
comfort. For good hygiene, a disposal mouthpiece is used for
each spirometry test. The needs of the spirometer, nose clip,
and mouthpiece contribute to factors that prevent widespread
use of spirometry at home. To overcome this barrier, here we
describe an imaging-based noncontact spirometry using a
webcam.

There are increasing efforts in developing noncontact respi-
ratory monitoring methods. Depending on the monitoring
principles, these methods can be divided into three categories:
thermal, photoplethysmography (PPG), and body movement
detections. The first category measures the air temperature
change associated with exhaled breath near the mouth and
nose regions of a subject using an infrared imaging system.2,3

The temperature change can be also detected via the pyroelectric
effect.4

The second category extracts the respiratory signal
embedded in the PPG signals. PPG measures the change of
light absorption or reflection induced by the change of blood
volume with each pulse. The movement of the thoracic cavity
affects the blood flow during breathing, which leads to a modu-
lation in the PPG signal by the respiratory activity.5 Several PPG

signal processing methods, including independent component
analysis,6 principal component analysis,5 digital filtering,7

and variable frequency complex demodulation8 have been pro-
posed to remove noise in PPG and extract respiration-induced
modulation in PPG.9

The third category detects the subtle chest movement
induced by breathing with different technologies, such as fre-
quency-modulated radar wave10,11 and ultrawideband impulse
radio radar.12 Several optical imaging-based methods have
been introduced to monitor respiratory activities. For example,
our group13 developed a differential method to track the
shoulder movement associated with breathing. Reyes et al.14

measured the intensity change of the chest wall. Lin et al.
applied an optical flow algorithm to detect respiratory
activities.15 These methods used low-cost cameras. More
sophisticated three-dimensional imaging with multicamera
and projector-camera setups were used to track chest surface
deformation during breathing.16,17

The works summarized above demonstrated noncontact
monitoring of respiratory activities, but to date a noncontact spi-
rometry has not been reported. To achieve this capability, one
must be able to accurately and quickly measure respiratory
cycles over an extremely wide flow rate range and validate
the results with real subjects. In this paper, we describe an im-
aging-based method to perform spirometry, which can track the
flow-volume (spirometry) curve and extract important parame-
ters, including forced expiratory volume in the first second
(FEV1), forced vital capacity (FVC), and peak expiratory
flow rate (PEF). These parameters are critical for the diagnosis
and management of asthma and COPD. We compare and cali-
brate the imaging-based noncontact spirometry with the simul-
taneously performed traditional spirometry and validate the
results with a pilot study including 16 subjects.
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2 Method
The imaging-based spirometry first captures the image of a sub-
ject’s upper body, including face and shoulders, during inhala-
tion and exhalation with a webcam (Fig. 1). Then, it analyzes the
shoulder movement and determines the spirometry exhalation
rate versus exhalation volume curve, FEV1, FVC, and PEF.
To validate and calibrate the method, this work includes a simul-
taneous spirometry test of each subject with a traditional spiro-
meter (gold standard reference) [Fig. 1(a)]. The data from the
imaging-based and traditional spirometry tests are compared
and used to construct a calibration curve for the subject.
From the calibration curve, the exhalation volume is determined
from the shoulder movement, and the corresponding exhalation
rate is obtained from the time derivative of the exhalation
volume.

2.1 Data Acquisition

Aweb camera (Logitech C905) was used to capture the video of
a subject’s upper body under a typical indoor ambient light con-
dition. The subject was instructed to sit on a backrest chair at
the distance of 90 cm from the camera and to perform a forced
spirometry test using a gold standard commercial spirometer
(MicroLoop, Carefusion), during which both the video and
spirometry data were recorded synchronously with a laptop
computer [Fig. 1(a)]. The frame rate of the camera was set at
30 frames per second (fps), and the spatial resolution of
frame was 960 × 720 pixels. The commercial spirometer com-
plies with ATS/ERS 2005 standards, and its sampling rate
is >100 Hz.

Sixteen subjects were enrolled in an Institutional Review
Board (IRB) study approved by Arizona State University
(No. STUDY00004548). The subjects included different gen-
ders (nine males, seven females), ages (28.1� 3.2 years old,
mean� SD), body mass index (22.5� 3.6, mean� SD), and
heights (1.71� 0.09 m, mean� SD).

Following the standard forced spirometry test procedure, the
subject was asked to wear a nose clip, inhale as deeply as they
can, and then exhale into the mouthpiece attached to the spiro-
meter as hard as possible and for as long as possible. In each test,
the subject performed six forced breathing cycles continuously,
in which three forced cycles were used to build calibration
curves while the others were used for validation.

2.2 Video Processing

Two shoulder regions consisting of 50 × 50 pixels each were
selected for detecting respiratory related movement. The regions
included the middle portions of the shoulders with clear boun-
daries that separated the body and background. The upper body
movement of the subject was tracked with the Kanade–Lucas–
Tomasi (KLT) tracker in the defined region of interest (ROI)18–20

during spirometry test. A Harris corner detector was used to
detect feature points within the ROI of the shoulders.19 The
detector computes the spatial variation (E) of image intensity
in all directions, with

EQ-TARGET;temp:intralink-;e001;326;535Eðu; vÞ ¼ ½ u v �
� hI2xi hIxIyi
hIxIyi hI2yi

��
u
v

�
; (1)

where Ix, Iy are the gradients of the image intensity of the fea-
ture point in the x- and y-directions, u, v are the numbers of
pixels shifted from each point in the image in the x- and y-direc-
tions, and the angle brackets hi denote averaging (over u, v). The
matrix in Eq. (1) is the Harris matrix. The points, which have
large eigenvalues for both x- and y-directions in the Harris
matrix, were defined as feature points.

To track the feature points frame by frame, affine transfor-
mation was used in the adjacent frames for ROI registration.
In general, an affine transformation is composed of rotation,
translation, scaling, and skewing. Considering two patches of
an image in adjacent frames, an affine map f acting on patch
x is represented as

Fig. 1 Principle of noncontact spirometry. (a) Experiment setup. (b) Video recording. (c) and (d) Video
analysis. (e) Signal analysis. (f) Flow-volume (spirometry) curve.
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EQ-TARGET;temp:intralink-;e002;63;752fðxÞ ¼ Axþ b; (2)

whereA is the deformation matrix and b is the translation vector.
The transformation parameters can be determined in a closed
form when minimizing the dissimilarity measure ε. An example
of the dissimilarity measure is the sum of squared difference,
given by

EQ-TARGET;temp:intralink-;e003;63;675ε ¼
ZZ

w
½JðAxþ bÞ − IðxÞ�2wðxÞdx; (3)

where w is a weighting function.

2.3 Signal Analysis

To calibrate the shoulder movement, we counted the number of
pixels of a certain feature in the image frame and related it to the
actual physical length of the feature. The conversion factor α is
defined as

EQ-TARGET;temp:intralink-;e004;63;547α ¼ feature lengthðmmÞ
feature pixel numberðpixelÞ : (4)

In the i’th frame, the vertical component of the feature points,
representing the shoulder position pos, due to respiration, is
given by

EQ-TARGET;temp:intralink-;e005;326;752posðiÞ ¼ α
1

n

Xn
j¼1

yjðiÞ; (5)

where yjðiÞ is the vertical component of the j’th point in the i’th
frame, n is the total frame number of the video.

To correlate the shoulder displacement (change in position)
with the spirometer reading, a calibration curve was built for
each subject, which converted the shoulder displacement to
breathing volume in forced spirometry (Fig. 2). The exhaled
volume data from three randomly selected forced breathing
cycles of each subject were fitted with a fifth-order polynomial.
Note that the sampling rate of spirometer (>100 Hz) was higher
than the web camera (30 Hz). To match the spirometer reading
and camera output, we down sampled volume data from the
spirometer for close comparison with the measurement of
our optical system. The flow rate was determined from time
derivative of the breathing volume.

3 Results

3.1 Calibration Curves

In each test, the subject performed six forced breathing cycles
continuously. We randomly selected three forced cycles to build
a calibration curve, and the other three cycles were used for

Fig. 2 Calibration curves (a) to (p) for different subjects. The dotted lines are obtained from three forced
breathing cycles, and the blue lines are fifth-order polynomial fitting curves. The sum of squares due to
error (SSE) indicators are of the fitting quality (see text for more details).
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validation for each subject. Figure 2 shows these calibration
curves for different subjects. Despite the variability in the cal-
ibration curves for different subjects, each could be fitted with a
fifth-order polynomial using summed square of residuals (SSres)
and R-square (R2) to evaluate the goodness of fit. SSres is
defined as

EQ-TARGET;temp:intralink-;e006;63;686SSres ¼
Xn
i¼1

ðyi − fiÞ2; (6)

where yi is the exhaled volume from the images, fi is the fitting
function (fifth-order polynomial), and R-squared is

EQ-TARGET;temp:intralink-;e007;63;616R2 ¼ 1 −
Xn
i¼1

ðyi − fiÞ2∕
Xn
i¼1

ðyi − ȳÞ2; (7)

where ȳ is the average volume and
P

n
i¼1 ðyi − ȳÞ2 is the total

variance of the data. SSres measures the variance of the fitting
model, and R2 describes how close the data are to the fitted
curve. The SSres ranges from 0.11 to 7.30, with the median
value of 1.10, indicating small errors between the exhaled vol-
ume using our proposed method and the fitting model in most
cases. R2 ranges from 0.90 to 0.99, indicating good fitting
quality.

3.2 Flow-Volume Curves and Vital Respiratory
Parameters

Using the calibration curves obtained above, we converted the
remaining three breathing cycles into flow-volume curves (blue
lines) for each subject. This flow-volume is one of the most
important spirometry test results that is provided by most com-
mercial spirometers (Fig. 3). For comparison, the simultane-
ously recorded curves from the commercial spirometer are
also shown in Fig. 3 (red lines). Frechet distance (FD) and
Pearson product-moment correlation coefficient (Pearson’s r)
were used to measure the similarity between the imaging-
based spirometry curves and the gold standard spirometry
curves. Given two curves f∶½a; b� → V and g∶½a; b� → V, FD
is defined as

EQ-TARGET;temp:intralink-;e008;326;591Fðf; gÞ ¼ inf max
α;βt∈½0;1�

fdðf½αðtÞ�; g½βðtÞ�Þg; (8)

where α (resp. β) is an arbitrary continuous nondecreasing
function from [0,1] onto ½a; b� (resp. ½a 0; b 0�).

Pearson’s r measures the linear dependence between the
imaging-based results and the gold standard spirometry results.
As shown in Fig. 3, the Pearson’s r values ranged from 0.89 to
0.99, and FD was found to range from 0.76 to 3.32, indicating

Fig. 3 Flow-volume curves (a) to (p) for different subjects. The red curves are from the gold standard
spirometer, and blue curves are from the imaging-based method. r is a Pearson product-moment cor-
relation coefficient, and “FD” measures the distance between the calibrated curve and spirometer result.
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good agreements between the imaging-based and traditional
spirometer curves for most subjects.

Vital parameters, FEV1, FVC, and PEF, were calculated
from the imaging-based spirometry curves (see Table 1 and
Fig. 4.). Figure 4 shows that the results measured using the im-
aging-based method are in excellent agreement with those by
the gold standard spirometer. To quantify the agreement, the
Pearson r, root-mean-square-error (RMSE), relative error, and
paired sample t-test were analyzed. The Pearson r values for
FEV1, FVC, and PEF are 0.95, 0.98, and 0.97, respectively,
indicating good linear correlation between the imaging-based
and traditional spirometers. The RMSE values of FEV1,
FVC, and PEF are 0.27, 0.18, and 0.56 respectively, indicating
small differences between the two methods. The average errors
of FEV1, FVC, and PEF are 8.5%, 6.9%, and 7.7%, respec-
tively. In the paired t-test, FEV1 and FVC show the pairwise
difference between the imaging-based spirometry and the
gold standard spirometry with a mean of zero at the 5% signifi-
cance level, which is consistent with the RMSE values.

4 Discussion
Respiration induces craniocaudal, anteroposterior displace-
ments, and cross-sectional area changes of rib cage and
abdomen,21 which has been studied by analyzing the three-
dimensional movements of the body.22 In this work, we have
shown that accurate spirometry can be obtained from the
shoulder displacement alone without complex three-dimen-
sional chest movement measurement. This finding is consistent

with a previous study that shows good correlation between ver-
tical body movement measured by magnetic resonance imaging
and spirometry.23 To convert the displacement into volume, if we
could simply model the lung as a cube or sphere, a third-degree
polynomial fitting would suffice. However, the human lung is a
complicated system, in which bronchi and alveoli have different
shapes. Empirically, we found that a fifth-degree polynomial
could fit the breathing volume well. Although a higher degree
could be even more accurate, it brings up the over-fitting issue.
In a future study, we could explore a general calibration to make
the system easier for home use.

In the imaging-based spirometry, accurate tracking of the
shoulder displacement is critical. In this work, we used the KLT
tracking algorithm, which requires good contrast of the shoulder
image. This means that the subject’s clothes must have a sub-
stantially different color from the background color. We found
that this requirement was not difficult to meet for all the sixteen
subjects who wore different clothes with different colors and
patterns (Fig. 5). In addition to KLT, other algorithms24–26

may also be used to track motions.
Subjects with different genders, ages, body mass indices, and

heights were included in this small pilot test. We found that
height is moderately correlated with FVC. The Pearson corre-
lation between height and FVC is 0.69. The correlation between
body mass index and FVC is 0.50, which showed weak corre-
lation. For the two gender groups, we found a significant differ-
ence (p < 0.004) between male (4.63� 0.69 L, mean� SD)
and female subjects (3.39� 0.72 L, mean� SD) in FVC.

Table 1 FEV1, FVC, and PEF values for three forced breathing cycles ðmean� σÞ.

Subject

FEV1 (L) FVC (L) PEF (L/s)

Estimated Gold Estimated Gold Estimated Gold

1 3.69� 0.06 3.43� 0.04 4.34� 0.21 4.63� 0.06 9.07� 0.32 8.42� 0.31

2 2.46� 0.12 2.50� 0.01 2.55� 0.12 2.59� 0.04 5.03� 0.65 4.86� 0.07

3 3.11� 0.12 3.09� 0.04 3.25� 0.08 3.12� 0.06 6.55� 0.57 6.86� 0.11

4 2.14� 0.33 2.38� 0.03 2.42� 0.07 2.69� 0.04 5.10� 0.57 4.80� 0.03

5 3.67� 0.14 3.84� 0.14 3.98� 0.07 4.03� 0.03 8.16� 0.40 7.80� 0.12

6 2.59� 0.19 2.83� 0.06 3.14� 0.22 3.14� 0.03 3.01� 0.20 3.07� 0.16

7 2.62� 0.28 3.04� 0.01 3.32� 0.12 3.31� 0.03 5.01� 0.13 5.14� 0.13

8 3.37� 0.09 3.73� 0.02 3.80� 0.09 3.95� 0.15 9.71� 0.36 9.40� 0.30

9 4.46� 0.10 4.47� 0.16 4.86� 0.22 4.85� 0.04 10.46� 0.34 10.16� 0.95

10 3.73� 0.12 3.30� 0.02 4.12� 0.16 4.11� 0.07 7.30� 1.07 7.02� 0.21

11 2.74� 0.05 2.75� 0.07 3.01� 0.09 2.85� 0.02 5.90� 0.55 5.81� 0.11

12 2.76� 0.09 2.86� 0.06 3.80� 0.26 3.71� 0.04 5.67� 0.49 6.00� 0.44

13 3.78� 0.08 3.81� 0.02 4.21� 0.18 4.14� 0.02 8.67� 0.32 8.40� 0.17

14 4.88� 0.12 4.46� 0.05 5.07� 0.10 5.24� 0.01 7.55� 0.49 7.60� 0.37

15 3.07� 0.13 3.28� 0.10 3.23� 0.10 3.57� 0.01 8.06� 0.18 7.49� 0.38

16 4.54� 0.24 4.52� 0.05 4.90� 0.07 5.10� 0.01 8.92� 0.08 8.93� 0.45
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Fig. 5 Snapshots of the videos in the dataset. The subjects wore clothes with various colors and
patterns.

Fig. 4 Comparison of (a) FEV1, (b) FVC, and (c) PEF obtained with the imaging-based and gold stan-
dard spirometry for different subjects. The values are averaged over three breathing cycles, and the error
bars are standard deviations of the measurements.
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More subjects with diverse profiles will be needed to validate
these observations.

The spirometry curves and extracted respiratory parameters
provide key information about asthma, COPD, and other respi-
ratory conditions. For example, a concave upward pattern is
often observed in asthma or COPD patients.27 Certain distinct
patterns are linked to the obstructing lesions in the upper airway
and variable intrathoracic obstructions. However, all the subjects
enrolled in our current study are healthy adults. In future study,
we will include subjects with respiratory diseases. Another
direction of further improvement of the current work is to use
a faster camera. The current work used a camera with a frame
rate of 30 fps, and the faster camera will improve the temporal
resolution and is expected to lead to more accurate measurement
of the exhalation rate.

5 Conclusion
We have demonstrated an imaging-based spirometer for accu-
rate forced spirometry tests with a webcam. We validated the
technology with a pilot study including sixteen subjects and
compared the data with simultaneously performed spirometry
tests with a gold standard commercial spirometer. The spirom-
etry curves and key respiratory parameters, including FEV1,
FVC, and PEF, from the imaging-based approach are in excel-
lent agreement with those by the gold standard technology.
The imaging-based spirometer does not require acquiring a
spirometer, using a mouthpiece, or wearing a nose clip, which
will lower the cost and improve the user experience, thus con-
tributing to the diagnosis and management of the large and
growing asthma and COPD populations.
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