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ABSTRACT. Over the last several decades, large wildfires have become increasingly common
across the United States causing a disproportionate impact on forest health and
function, human well-being, and the economy. Here, we examine the severity of
large wildfires across the Contiguous United States over the past decade (2011
to 2020) using a wide array of meteorological, land cover, and topographical features
in a deep neural network model. A total of 4538 wildfire incidents were used in the
analysis covering 87,305 square miles of burned area. We observed the highest
number of large wildfires in California, Texas, and Idaho, with lightning causing
43% of these incidents. Importantly, results indicate that the severity of wildfire
occurrences is highly correlated with the weather, land cover, and elevation of the
study area as indicated from their SHapley Additive exPlanations values. Overall,
different variants of data-driven models and their results could provide useful guid-
ance in managing landscapes for large wildfires under changing climate and disturb-
ance regimes.
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1 Introduction
In recent times, data-driven models have played a crucial role in advancing sustainability in the
agriculture and forestry sector.1–7 In the realm of forestry, various machine learning (ML) algo-
rithms have been employed to explore aspects of forest ecology, such as species distribution
models, carbon cycles, hazard assessment, and prediction.8,9 Wang et al.10 and Sharma
et al.11 showcased the use of deep learning methods, such as YOLOv4 and YOLOv5m, in forest
resource investigation, vegetation coverage statistics, and plant growth monitoring. Similarly,
Firebanks-Quevedo et al.12 employed ML-based methods to formulate forestry policies and iden-
tify economic incentives for reforestation. However, a limited number of studies have been con-
ducted to predict the spread of wildfires, a crucial aspect given the multifaceted challenges posed
by wildfires, including ecological damage, deteriorating air quality, biodiversity loss, erosion,
and soil degradation.
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Wildfires have increased fourfold over the past 40 years primarily due to fuel accumulation
and fuel aridity resulting from fire suppression and climatic variability.13 In 2022 alone, there
were 68,988 wildfires burning a total of 7.8 million acres in the United States. Approximately,
70,000 wildfires have been occurring every year over the past decade burning 7 million acres
annually. Indeed, wildfires depend on ecoregions and ignition sources and are reported to cause
serious repercussions on climate and ecology.14 They impair wildlife habitat, alter forest structure
and composition, reduce biodiversity,15 change soil structure and watershed processes,16 and
affect human values, property,15 health, and well-being.17 Recently, Burke et al.13 estimated that
nearly 25% of PM2.5 across the United States results from wildfires.13 However, a paradigm shift
in wildfire policy has been apparent in recent years to counteract long-term risks and restore
ecological functionality.15,18 Fires and associated problems are increasingly viewed from
socio-ecological lenses and different management approaches, such as prescribed fire,19 fuel
treatments (mastication, thinning),20 and polycentric all land management.21 Yet, wildfire risk
assessment and modeling are challenging due to dynamic climatic variables and complex fire
behavior. Improved predictive tools and approaches are, therefore, necessary for wildfire pre-
diction and managing unprecedented fires over time and space scales. Much progress has been
made in using artificial neural networks, particularly multilayer perceptron in predicting wild-
fires, but studies focusing on the use of deep neural networks (DNN) in predicting wildfire spread
are generally few. DNN, such as convolutional neural networks and recurrent neural networks (in
particular, long short-term memory networks), are deep learning methods that have multiple non-
linear hidden networks and have been successfully applied in detecting wildfires from satellite
observations22 or predicting wildfire spread using meteorological variables, such as wind, tem-
perature, and humidity.23 However, many such studies are limited to small spatial and temporal
scales. In this short communication paper, we examine the severity of large wildfires across the
Contiguous United States over the past decade (2011 to 2020) using a wide array of meteoro-
logical, land cover, and topographical features in the DNN model. Here, large wildfires are used
to refer to the areas burned being greater than 500 acres in the Eastern and 1000 acres in the
Western United States. The data-driven approaches in this paper will be instrumental in under-
standing different factors influencing the occurrence and severity of wildfires and thereby facili-
tating wildfire management and policies.

2 Materials and Methods
The study area comprises the Contiguous United States (CONUS), which is divided into 11
Level I Ecoregions and 967 Level IV sub-Ecoregions.24 The western regions of the study area
typically experience a higher number of wildfire incidents and encompass larger burned areas
compared with the western United States25 due largely to the heterogeneity in the landscape
caused by human development and fragmentation of forest land cover.14 The GIS data for wild-
fire locations and burned area boundaries were obtained from the Monitoring Trends in Burn
Severity (MBTS) program.26,27 The program assesses the frequency, extent, and magnitudes of
all large wildland fires in the United States. The thresholds for large wildfires are set to greater
than 1,000 acres in the western United States and 500 acres in the Eastern United States. A period
of 10 years between 2011 and 2020 was selected for analysis, and the “prescribed wildfires”were
removed from the dataset. A total of 4,538 wildfire incidents were used in the analysis covering
87,305 square miles of burned area. Additionally, a 1992-2015 spatial wildfire occurrence
dataset28 was used to analyze large wildfires.29 In order to identify potential wildfire hotspots,
the number of wildfire occurrences and burned areas were also evaluated within each Level IV
ecoregion. Figure 1 shows the point locations for the occurrence of large wildfires and potential
wildfire hotspots between 2011 and 2020 in the Contiguous United States.

Meteorological variables were obtained from different sources (Table 1) for wildfire pre-
diction. Briefly, monthly climate attributes including total monthly precipitation, mean monthly
temperature, and maximum and minimum vapor pressure deficit were obtained from the PRISM
dataset. The Palmer Drought Severity Index (PDSI) was obtained from GRIDMET to infer the
relative dryness in the region. The index typically ranges from -10 (dry) to +10 (wet).36 The land
cover data was obtained from the National Land Cover Dataset (NLCD). The 30-meter NLCD
raster for year 2016 was used to obtain land cover percentages around a 4-kilometer buffer at the
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point of wildfire occurrence. The 4-kilometer radius was selected based on the mean burned area
of all wildfires in the dataset to represent the amount of forest and shrubland available near the
fire area that could potentially increase the extent of wildfires. The relationship between land
cover and wildfires was examined using NLCD land cover classes within the 4,538 burned area
boundaries. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) within 1 kilometer resolution, were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite dataset (MOD13A3). Elevation data was obtained from the
United States Geological Survey (USGS) Digital Elevation Model (DEM) dataset at 100-meter
spatial resolution. All these datasets were spatially and temporally linked to each of the 4,538
wildfires that occurred in the contiguous US between 2011 and 2020 using R 4.3.0 and ArcGIS
(Version 10.2).

Different datasets in Table 1 were analyzed using ML models. The best model was selected
using the lowest testing Mean Absolute Error (MAE) criterion. Consequently, as observed in
Table 2, a DNN model was trained to predict wildfires based on climatological and geological
attributes surrounding the point of wildfire origin. The features used in the DNN model to predict
large wildfire burned areas are shown in Table 3. Keras and TensorFlow libraries in Python were
used to design the deep-learning approach. The dataset was divided into training and testing
sets using an 80/20 split. Thus, 80% of the data were used for training and validation and
20% for testing the accuracy of the models. Further, the data was split three times to generate
multiple random samples of training and test data to evaluate the accuracy over multiple test set

Table 1 List of datasets used in the study to model burned areas in large US wildfires.

Category Dataset Variables Source Resolution

Climate PRISM Precipitation, temperature,
vapor pressure deficit (min, max)

Ref. 30 4000 m gridded,
monthly

GRIDMET PDSI, PET Ref. 31 4000 m gridded,
5-day (PDSI),
1-day (PET)

Land cover NLCD, 2016 Open water, developed, barren,
forests, shrub/scrub, hay/pasture,
cultivated crops, wetlands

Ref. 32 30 m gridded

MODIS MOD13A3
Version 6

NDVI, EVI Ref. 33 1000 m gridded,
monthly

Topography USGS DEM Elevation (m) Ref. 34 100 m gridded

Ecoregion
boundaries

US EPA
ecoregions

Level I and level IV
ecoregions

Ref. 35 Shapefile

Fig. 1 Large wildfire incidents in the contiguous United States between 2011 and 2020.
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Table 2 Comparison of the regression models used in predicting spread of large wildfires.

Name of the ML/DL algorithm Specifications of the model MAE

Polynomial regression Degree = 3 0.83

Support vector regression Kernel = radial basis function,
penalty parameter (C) = 0.1 to 100
(using gridsearch to find the best parameter)

0.76

Decision tree regression Maximum depth = 5 0.72

Random forest regression Number of trees = 100, maximum depth = 5 0.63

Gradient boosting regression Number of estimators = 100,
learning rate = 0.25,
maximum depth = 5

0.7

Four-layered DNN Number of neurons used in the model = 512,
256, 64, 16, and 1, respectively,

0.055 to
0.06

Activation function = ReLU,

Learning rate = 0.01,

No. of epochs = 200

Table 3 Features used in the DNN model to predict large wildfire burn area with minimum and
maximum values in the dataset.

Feature Description Min Max

LATITUDE Latitude coordinates of wildfire occurrence (decimal degrees) 25.2 49

LONGITUDE Longitude coordinates of wildfire occurrence (decimal degrees) −124.1 −72.8

DOY Wildfire ignition day of year 1 365

ppt Total monthly precipitation for month of wildfire ignition 0 1063.2

tmean Average monthly temperature for month of wildfire ignition −5.3 36.8

vpdmax Maximum vapor pressure deficit for month of wildfire ignition 2.7 81.8

vpdmin Minimum vapor pressure deficit for month of wildfire ignition 0 35.3

PDSI Palmer drought severity index during ignition date −8.1 7.6

Developed % NLCD developed around 4-km buffer of wildfire ignition 0 64.2

Forests % NLCD forests around 4-km buffer of wildfire ignition 0 99.8

Shrub % NLCD shrub/scrub around 4-km buffer of wildfire ignition 0 100

grass % NLCD grasslands/herbaceous around 4-km buffer of wildfire ignition 0 100

Pasture % NLCD hay/pasture around 4-km buffer of wildfire ignition 0 74

Wetlands % NLCD wetlands around 4-km buffer of wildfire ignition 0 100

NDVI Normalized difference vegetation index for month of wildfire occurrence 0.1 0.9

EVI Enhance vegetation index for month of wildfire occurrence 0 0.7

Elevation Elevation of wildfire occurrence -2 3507
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combinations. Wildfires with missing attributes were removed from the study resulting in a total
of 4536 observations for model development. Prior to being used in the DNN model, the wildfire
acres were log-transformed to account for any skewness in the observed data and to normalize
the target distribution.

Different features in Table 3 were transformed using a standard scalar and were fed as inputs
to a DNN model with five layers. The DNN layers had 512, 256, 64, 16, and 1 neuron, respec-
tively. ReLU was used as the activation function for each of the five DNN layers. The DNN
model was trained using root mean square optimizer and 0.01 learning rate. Callbacks were used
to monitor validation loss. Mean squared error was utilized as the loss function and MAE was
used as a performance metric. The model was trained for 200 epochs with a batch size of 32 and a
validation split of 0.2. For each of the three values of random seed that was used for generating
train and test sets, plots for training loss and validation loss were convex in nature as shown in
Fig. 2. A schematic depicting the proposed deep learning framework is given in Table 4. The
error rate for the test data was determined using the equation below:

EQ-TARGET;temp:intralink-;sec2;117;568Error rateðMAEÞ ¼
PN

1 jyobs − ypredjP
N
1 jyobsj

:

SHapley Additive exPlanations (SHAP) values were used to determine the impact (positive
or negative) of each model feature on the burned area. SHAP is a surrogate explanation method
for ML models, which computes values that quantify the contribution of each feature to a pre-
diction based on cooperative game theory.37 Thus, SHAP values could be used in interpreting
the DNN model and determining the potential drivers of wildfire. For each data point, the
model predicted value equals the sum of all feature SHAP values and the average prediction.

Fig. 2 Training and validation losses for the proposed deep learning framework.

Table 4 Schematic of the proposed deep learning framework.

Layer type Number of neurons Number of parameters

Dense layer 1 128 1920

Dense layer 2 64 8256

Dense layer 3 16 1040

Dense layer 4 1 17

Total number of parameters: 11,233

Trainable parameters: 11,233

Non-trainable parameters: 0
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A positive SHAP value indicates an increase in the predicted value due to the feature, whereas
negative SHAP values indicate a decrease in the predicted value.

3 Results and Discussion
Wildfires are natural or human-induced events occurring in forests, grasslands, and prairies
driven by ignition, fuel, droughts, and conductive weather conditions.38 The distribution of total
large wildfires by states and potential causes is shown in Fig. 3. The highest number of large
wildfires between 2011 and 2020 occurred in California (448 incidents), followed by Texas (434
incidents), and Idaho (426 incidents). About 43% of large wildfires were caused by lightning,
followed by “miscellaneous” (18%), unidentified (10%), arson (9%), equipment use (8%), and
debris burning (6%). Importantly, our data exclude small wildfires (500 acres) that are more
frequent and are caused largely by human activities.39 The percentage of burned area per level
IV ecoregion illustrates the severity of wildfires in various ecosystems (Fig. 4). The area con-
sumed by wildfires was higher in Mediterranean California, the Marine West Coast Forest, and
North American Desserts, and smaller in Northern and Eastern Temperate Forests (Fig. 4). Most
of these burned areas were grassland, forest, and shrub/scrub land covers (Fig. 5). The mean
absolute SHAP values for grassland, forest, and shrub cover were 0.6, 0.43, and 0.35, respec-
tively (Fig. 6), indicating their predominant positive role in wildfire spread. It was also observed

Fig. 3 (a) Average annual large wildfire incidents by states and (b) cause of large wildfires
(> 500 acres) in the contiguous United States between 2011 and 2015.

Fig. 4 Percent of level IV ecoregion land burned in large wildfires between 2011 and 2020.
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that the highest number of wildfires occurred in July and August, which are typically the hottest
and driest months. Temperatures in these months were ∼21°C and 24°C, respectively (Fig. 7).
Indeed, warmer temperatures and extended droughts may exacerbate the vulnerability of forests
and the occurrence of wildfire events. The climatic dependency of wildfire behavior and spread
further highlights the importance of managing fuel and restoring ecology in combating fire
hazards and associated impacts.40

Here, several MLmodels, such as polynomial regression,41 support vector regression,42 deci-
sion tree regression,43 random forest regression,44 gradient boosting regression,45 and a DNN
model, were utilized to predict wildfires occurrence based on climatological and geological fea-
tures. Only a few studies have attempted to utilize ML models in wildfire studies. For example,
Zhang et al.46 compared four multilayer perceptron and CNN architectures in wildfire modeling
and reported the highest accuracy in predicting seasonal peaks in fire activity and vulnerable
areas with CNN-2D, a DNN model. Langford et al.47 used DNN to detect wildfire events in
Alaska for the wildfire year 2004 and highlighted the utility of the validation-loss weight selec-
tion approach for accurately mapping wildfire on an imbalanced dataset. In another study, deep
neural computing optimized by using adaptive moment estimation algorithms showed the highest
accuracy in forest fire prediction compared with stochastic gradient descent, root mean square

Fig. 6 Feature importance in the DNN model obtained from SHAP values.

Fig. 5 (a) Burned area by NLCD land cover in large wildfires between 2011 and 2020 and (b) an
example of NLCD land cover within the burned area in the September 2011 Riley Road wildfire
northwest of Houston burning 19,000 acres of land.
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propagation, and Adadelta optimizers.48 In our model, for test sets generated in each of the three
values of random seed, the MAE was found to be between 0.055 and 0.06. This lower value of
MAE indicates a higher accuracy of wildfire prediction.

The land cover classes around a 4-km buffer at the point of occurrence including the per-
centage of grasslands/herbaceous, percentage of forests, and percentage of shrublands were
found to be the most influential in predicting wildfire burned area within a 4 km radius of the
point of wildfire occurrence. Fire activities in such locations are largely associated with fuel loads
and flammability. Fuels in grasslands are generally dry, which could easily and rapidly spread
fires.49 The location of wildfires, as represented by latitude, was also important in predicting
burned areas. Indeed, precipitation regimes vary with latitude-longitudes, with lower latitudes
exhibiting reduced rainfall and moisture, and drier conditions.

A non-linear relationship existed between features and their impact on the predicted burned
area (Fig. 8), consistent with many other global studies.50 Also, the predicted burned areas

Fig. 8 Partial dependence plots showing the interactions between features and burn area using
SHAP values.

Fig. 7 Plot showing the relationship between average monthly large wildfires (primary y -axis) in
the contiguous US and the mean monthly temperature (line).
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exhibited a trend closely resembling that of the actual burned areas (Fig. 9). Large forest cover
within a 4-km buffer zone surrounding the point of wildfire occurrence had a large positive
impact on the burned area. A forest cover of 30% or more increased the predicted burned area
above the mean. More western longitudes presented a significant increase in the burned area.
However, higher elevations had positive SHAP values indicating larger burned areas in regions
with higher elevations. In general, fire activities are higher in steeper areas.49 In the western
United States, Westerling et al.40 observed the greatest wildfires in the mid-elevation range,
occurring mostly as episodic events. These events were further associated with spring snowmelt
timing. Topographic features may, however, develop decisively in fire spread when burning con-
ditions are rather less extreme.51 Finally, we observed that values of NDVI greater than 0.5,
indicating vigorous green vegetation, had a positive impact on the burned area, but NDVI values
less than 0.5, indicating sparse vegetation, had no net effect on the burned area.

4 Conclusion
This study analyzed and predicted the large wildfires across the contiguous United States from
2011 to 2020. Results showed that the highest number of large wildfires and areas consumed by
wildfires occurred in California. Also, wildfires occurred mostly during July and August months.
A comparison of different models showed that a four-layered DNN model outperformed other
ML models. Further, land cover and the location (latitude and longitude) of wildfire occurrence
were most likely to determine the severity and extent of wildfires in the United States as inferred
from their SHAP values. Indeed, predictive models utilizing ML and remote sensing tools, cli-
mate, and geospatial data are useful in understanding wildfire complexity and predicting and
mitigating fire hazards. However, additional features, such as soil characteristics and 100-h fuel
moisture, could be integrated into the DNN model to improve model accuracy and prediction.

Code and Data Availability
All data gathered or analyzed in this study are included in the article. Raw data may be available
upon appropriate request to the corresponding author.
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The authors are responsible for the views expressed in this paper and do not necessarily represent
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work reported in this paper.

Fig. 9 Plot showing the actual burned area and the predicted burned area over the contiguous
United States (2011 to 2020).
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