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Abstract. A comparative analysis of land use/land cover (LULC) classification results in the
Brazilian Amazon based on four classification algorithms and four remote sensing datasets was
conducted in order to better understand the selection of a classification algorithm suitable for a
specific remote sensing data. It is shown that maximum likelihood classifier (MLC) provided rea-
sonably good classification accuracy when Landsat Thematic Mapper (TM) or the TM and
Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar
(ALOS PALSAR) data-fusion images were used, but nonparametric algorithms such as classifica-
tion tree analysis for TM multispectral bands and K-nearest neighbor for the combination of TM
and PALSAR data provided better classification than MLC. Individual PALSAR dataset is not
suitable for detailed LULC classification and has much poorer classification accuracy (47.6%
to 59.4%) than Landsat TM image (79.7% to 84.9%). However, integration of TM and PALSAR
data through the wavelet-merging technique improved classification accuracy. It is implied that the
importance of selecting a suitable classification algorithm for a specific dataset by considering such
factors as overall classification accuracy and time and labor involved in a classification procedure.
Important information for guiding the selection of remote sensing dataset and associated classi-
fication algorithms for LULC classification in the moist tropical regions is also provided. © 2012
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.061706]
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1 Introduction

Land use/land cover (LULC) classification is one of the most important applications in remote
sensing, but is a complex procedure, because different factors, such as the spatial resolution of
the remotely sensed data, availability of different data sources (e.g., field survey data, digital ele-
vation model data), a suitable LULC classification system, availability of classification software,
and the analyst’s experience may affect the classification results.1 The difficulty in identifying an
optimal classification method for a specific study often requires conducting a comparative study of
different classifiers in order to generate a satisfied classification.2–4 Therefore, which classification
algorithm should be used for a specific dataset in a study area remained to be answered, although
many classification methods, from traditional parametric algorithms such as maximum likelihood
classifier (MLC), to advanced nonparametric algorithms such as artificial neural network (ANN),
decision tree, and support vector machine (SVM) are available.1,5 Another challenge is to select a
proper dataset for LULC classification. However, different kinds of sensor data have various
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characteristics in spatial, spectral, radiometric, and temporal resolutions, as well as different angles
and polarizations for radar data. It is important to effectively incorporate different data features into
a classification procedure for improving LULC classification accuracies.1

For a specific LULC classification, selection of a suitable remote-sensing dataset and selec-
tion of a suitable algorithm for the specific dataset are two critical issues but have not been
fully examined. Lu and Weng1 had summarized the major classification algorithms and dis-
cussed the potential techniques to improve LULC classification. Thanks to support from the
U.S. National Science Foundation for a research project entitled “Advancing Land Use and
Land Cover Analysis by Integrating Optical and Polarimetric Radar Platforms,” we explored
optical sensor data—Landsat Thematic Mapper (TM) images for LULC classification in Alta-
mira by examining the roles of vegetation indices and textural images in improving LULC
classification, and by comparing different classification algorithms: MLC, ANN—multilayer
perceptron (MLP) trained by back propagation (BP) algorithm, classification tree analysis
(CTA), and object-based classification (OBC).6 We then explored the use of ALOS (Advanced
Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture
Radar) and RADARSAT-2 C-band data for LULC classification by examining different tex-
tural images which were developed by using the gray-level co-occurrence matrix method based
on different polarization options (e.g., HH and HV) and different classification algorithms—
MLC, CTA, Fuzzy ARTMAP (a neural-network method), K-nearest neighbor (KNN), OBC,
and SVM.7 Because of different features of Landsat TM and radar data, we explored the inte-
gration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2
C-band) for LULC classification by comparing different data fusion methods—principal com-
ponent analysis (PCA), wavelet-merging technique (Wavelet), High Pass Filter resolution-
merging (HPF), and normalized multiplication (NMM).8

Based on the above research,6–8 this paper conducted a comprehensive comparison of dif-
ferent classification algorithms and different remote sensing datasets for LULC classification.
The new contribution of this paper is to better understand the selection of a classification algo-
rithm suitable for a specific remote sensing data in the moist tropical region of the Brazilian
Amazon. Therefore, we selected four typical datasets—Landsat TM multispectral bands, com-
bination of ALOS PALSAR L-band HH and HV images and derived textural images, combina-
tion of TM multispectral bands and PALSAR-derived textural images as extra bands, and the
multisensor fusion image with wavelet-merging technique, and four typical classification algo-
rithms—MLC, CTA, Fuzzy ARTMAP, and KNN, which include traditional parametric algo-
rithm and nonparametric algorithms for this comparative analysis. The overall goal of this
study is to provide some new insights on selection of datasets and associated classification algo-
rithm for LULC classification in the moist tropical region of the Brazilian Amazon.

2 Methods

In order to conduct synthetic analysis, it is important to select a study area where different remote
sensing and reference datasets are available. Therefore, one of our major study areas—Altamira,
which is located along the Transamazon Highway (BR-230) in the northern Brazilian State of Pará,
is selected. The study area covers approximately 3110 km2. The dominant native types of vegeta-
tion are mature moist forest and liana forest. Deforestation since the early 1970s has led to a com-
plex landscape consisting of different succession stages, pasture, and agricultural lands.8,9 Different
stages of successional forests are distributed along the Transamazon Highway and feeder roads.

The framework of LULC classification for this study is illustrated in Fig. 1. The major
contents include (1) collection of sample plots for use as training samples and test samples,
respectively; (2) remote sensing data collection and preprocessing; (3) image processing
such as development of textural images and data fusion; (4) LULC classification with different
algorithms; and (5) evaluation of the classification results.

2.1 Data Collection and Selection of Datasets for LULC Classification

Different sensor data and field survey data used in this research are summarized in Table 1. The
QuickBird image and field survey data were used to develop sample plots. A total of 432 sample
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plots were collected, of which 220 samples were randomly selected (based on the rule of the
minimum number of 10 plots for each LULC class) for use as training sample plots in the image
classification and the remaining 212 samples for use as test sample plots in accuracy assessment.
A LULC classification system consisting of three forest classes (upland, flooding, and liana
forests), three succession stages (initial, intermediate, and advanced successional stages), agro-
pasture, and three nonvegetated classes (water, wetland, and urban) were designed. Since agri-
cultural lands and pasture have similar features during dry season, they were grouped into one
class called agropasture in this research.

Both Landsat TM and ALOS PALSAR images were registered into Universal Transverse
Mercator coordinate system (zone 22, south). An improved image-based dark object subtraction
model was used to conduct radiometric and atmospheric correction for Landsat TM image.10

Based on our previous research,7 the two best textural images based on the PALSAR
L-band HH image were the textures SM25 (second moment with a window size of
25 × 25 pixels) and CON31 (contrast with a window size of 31 × 31 pixels), and the two
best textural images based on the L-band HV image were the textures CON25 (contrast
with a window size of 25 × 25 pixels) and SM19 (second moment with a window size of
19 × 19 pixels). The selected textural images were used in two datasets as extra bands: one
was in PALSAR L-band HH and HV images, and another was in TM multispectral image.
An alternative to integrate the PALSAR and TM multispectral data is through a fusion techni-
que.11,12 Our research has indicated that the wavelet-based merging technique can better preserve
spectral features in addition to improving spatial resolution.8 Thus, this technique is used to
integrate PALSAR L-band HH band and TM multispectral bands into a new data set with spatial

Fig. 1 Strategy of land use and land cover classification with different algorithms on various
datasets.

Table 1 A summary of datasets used in research.

Datasets Brief description

Landsat 5 TM image Multispectral image (six bands covering visible, near-infrared, and shortwave
infrared wavelengths) with spatial resolution of 30 m, acquired on July 2, 2008.

ALOS PALSAR FBD (Fine Beam Double Polarization) Level 1.5 products with L-band HH and
HV polarization options and 12.5-m pixel spacing, acquired on July 2, 2009.

QuickBird imagery Data fused image consisting of four multispectral bands with spatial resolution
of 0.6 m, acquired on June 20, 2008.

Field survey data Fieldwork was conducted in July to August 2009.
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resolution of 10 m in this research. In order to examine the performance of different datasets in
LULC classification, four datasets, including (1) Landsat TM multispectral bands; (2) PALSAR
L-band data consisting of HH, HVand four textural images; (3) Combination of TM multispec-
tral bands and four PALSAR-derived textural images as extra bands; and (4) Data fusion result
based on TM multispectral and PALSAR L-band HH data, were selected.

2.2 Selection of Classification Algorithms and Optimization of Parameters

In order to identify a suitable classification algorithm for each dataset, one parametric algorithm
(i.e., MLC) and three nonparametric algorithms (i.e., CTA, ARTMAP, and KNN) were selected
in this research. This is because MLC is the most common parametric classifier and is available
in any commercial image processing software, and because CTA, Fuzzy ARTMAP, and KNN
may be the most common machine learning algorithms that they have been obtained increasingly
attention in the past decade. The major characteristics of these algorithms are summarized in
Table 2. Much previous literature has detailed the description of these algorithms.13–16

For the nonparametric classification algorithms, one critical step is to identify optimal
parameters. In this research, the optimization of relevant parameters used in each nonparametric
algorithm was examined separately. In the CTA, different splitting rules—ratio, entropy, and
Gini were examined. Another parameter used in this algorithm is to decide whether to use
auto-pruning function or not. Use of the auto-pruning function is to eliminate leaves with
pixel counts that are less than or equal to a specified proportion within the class. We explored
different percentages from 0 to 15% for every 5% interval. For Fuzzy ARTMAP, a small value
for choice parameter (default value of 0.01) and relatively high values of learning rate (default
value of 1.0) and vigilance parameters (default value of 0.98) in ARTa were recommended. In
ARTb, both default learning and vigilance parameters as 1.0 were highly recommended by the
Idrisi software. Therefore, the emphasis is on the identification of a suitable choice parameter,
learning rate and vigilance parameter in ARTa. For the choice parameter, the values from 0.05 to
0.2 for every interval of 0.05 were tested. For the learning rate, values from 0.5 to 1.0 for every
interval of 0.1, and for vigilance parameter, values from 0.94 to 1.0 for every interval of 0.02
were examined. A series of combination of the choice parameter, learning rate and vigilance
parameter were tested. For KNN, different K values from 10 to 50 for every 10 interval and
different maximum numbers of training samples per class from 50 to 300 for every 50 interval
were explored. Table 3 summarized the finally selected parameters for each algorithm.

Table 2 A summary of major characteristics of the classification algorithms.

Algorithms Major characteristics

MLC MLC assumes normal distribution for each feature of interest. It is based on the probability that a
pixel belongs to a particular class and takes the variability of classes into account by using the
covariance matrix.

CTA CTA is a nonparametric statistical machine learning algorithm, having such advantages as
distribution-free and easy interpretation over traditional supervised classifiers. The basic
concept of a classification tree is to split a dataset into homogeneous subgroups based on
measured attributes.

Fuzzy
ARTMAP

Fuzzy ARTMAP is a clustering algorithm operating on vectors by a fuzzy set of features, or a
pattern of fuzzy membership values between 0 and 1 and consists of four layers of neurons:
input, category, mapfield and output. It is controlled by a choice parameter α, learning rate
parameters β1 in ARTa and β2 in ARTb, and vigilance parameters ρ1 in ARTa and ρ2 in ARTb.
The ρ1 and ρ2 control the operation during learning and operational phases of the network and
the mapfield weights and category layer weights are learned adaptively during the process.

KNN KNN is based on the minimum distance from image pixels to the training samples. Euclidean
distance is often used to calculate the distance between two pixels. A suitable k value is crucial
for a successful classification: a large k value reduces the effect of noise on the classification,
but makes boundaries between classes less distinct; a small k value may not result in a good
classification accuracy.
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2.3 Evaluation of the Classification Results

The four classification algorithms were used to classify each dataset into a thematic map con-
sisting of 10 classes using the same training sample plots. In order to identify a best classification
algorithm for each dataset, a comparative analysis of the classified images was conducted
through the comparison of classification accuracy assessment results. An error matrix approach
was used to evaluate the classification results. An error matrix provides detailed assessment of
the agreement between the classified result and reference data and provides the information of
how misclassification happened.17 Overall classification accuracy, producer’s accuracy, user’s
accuracy, and kappa coefficient are then calculated from the error matrix.17 Since both overall
classification accuracy and kappa coefficient cannot provide the reliability of each LULC class,
producer’s accuracy and user’s accuracy are often used to provide the complementary analysis of
the accuracy assessment. In this study, a total of 212 test sample plots (12 to 33 plots for each
LULC class) from the field survey and the 2008 QuickBird image were used for accuracy
assessment.

3 Results and Discussion

The classification results in Table 4 indicate that no one algorithm is best for each LULC class
and no one algorithm is always best for different datasets. Considering overall accuracies and
kappa coefficients based on Landsat TM multispectral image, CTA provided the highest accu-
racy, followed by KNN and MLC, but ARTMAP provided the lowest accuracy. Examining pro-
ducer’s and user’s accuracies for individual classes, if the results from MLC were used as basis,
the CTA mainly improved classification accuracies of upland forest, initial succession, and agro-
pasture classes; and KNN improved upland forest and initial succession classification accuracies.
Although Fuzzy ARTMAP has poorest overall accuracy and reduced the classification accura-
cies of vegetation succession stages, this algorithm indeed improved nonvegetation land covers.
Comparing the results based on Landsat TM multispectral image by using the traditional
parametric algorithm—MLC, the nonparametric algorithm—CTA improved overall accuracy
by 3.8%.

Comparing with the classification accuracy assessment results from Landsat TM (i.e.,
overall accuracy values of 79.7% to 84.9%), the PALSAR data have much low overall accu-
racy values (i.e., overall accuracy of only 47.6% to 59.4%) irrespective of the classification

Table 3 Optimization of parameters used in the nonparametric algorithms for different datasets.

Selected parameters for each datase

Classifiers Parameters TM PALSAR TM_Ltext Fusion

CTA
Splitting rule ratio Gini ratio ratio
Auto-pruning 0% 0% 10% 5%

ARTMAP ARTa Choice 0.01 0.01 0.01 0.01

Learning rate 0.9 0.8 0.9 0.7

Vigilance 0.98 0.98 0.98 0.98

ARTb Learning rate (1.0) and vigilance (1.0) recommended by software

KNN K value 20 30 20 20

Maximum number of
training samples/class

50 200 250 200

Note: Four datasets TM, PALSAR, TM_Ltext and Fusion represent (1) Landsat TM multispectral image,
(2) ALOS PALSAR L-band HH, HV and selected textural images, (3) combination of Landsat TM multispectral
images and PALSAR-derived textural images as extra bands, and (4) fusion results with the wavelet-merging
technique based on Landsat TM multispectral bands and PALSAR L-band HH image.
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Table 4 Comparison of classification results from different classification algorithms for each
dataset.

MLC CTA ARTMAP KNN

PA UA PA UA PA UA PA UA

Landsat TM multispectral data

Upland forest 69.7 88.5 90.9 85.7 90.9 65.2 72.7 92.3

Flooding forest 93.3 73.7 86.7 72.2 73.3 64.7 80.0 70.6

Liana forest 83.3 71.4 75.0 81.8 58.3 100.0 83.3 58.8

Initial succession 57.9 57.9 68.4 59.1 52.6 71.4 63.2 57.1

Intermediate succession 87.5 75.0 75.0 78.3 79.2 70.4 83.3 83.3

Advanced succession 85.7 85.7 81.0 94.4 33.3 63.6 95.2 74.1

Agropasture 73.1 82.6 76.9 87.0 88.5 82.1 69.2 81.8

Water 87.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Wetland 80.0 92.3 86.7 86.7 100.0 100.0 73.3 100.0

Urban 100.0 82.1 100.0 100.0 100.0 100.0 100.0 100.0

Overall accuracy 81.1 84.9 79.7 82.1

Kappa coefficient 0.79 0.83 0.77 0.80

PALSAR L-band HH and HV images and the selected textural images

Upland forest 51.5 39.5 81.8 50.0 75.8 39.7 21.2 33.3

Flooding forest 73.3 61.1 80.0 60.0 80.0 70.6 73.3 52.4

Liana forest 25.0 15.8 16.7 25.0 16.7 100.0 25.0 14.3

Initial succession 42.1 50.0 31.6 66.7 26.3 55.6 36.8 46.7

Intermediate succession 66.7 64.0 58.3 77.8 45.8 64.7 54.2 32.5

Advanced succession 23.8 38.5 14.3 25.0 23.8 38.5 19.1 26.7

Agropasture 76.9 62.5 73.1 65.5 88.5 63.9 76.9 60.6

Water 83.3 95.2 95.8 92.0 100.0 92.3 95.8 100.0

Wetland 33.3 55.6 20.0 33.3 33.3 62.5 33.3 41.7

Urban 60.9 87.5 73.9 60.7 60.9 66.7 34.8 72.7

Overall accuracy 56.1 59.4 59.4 47.6

Kappa coefficient 0.51 0.54 0.54 0.42

Combination of Landsat TM and PALSAR-derived textural images as extra
bands

Upland forest 81.8 62.8 78.8 72.2 54.6 38.3 72.7 92.3

Flooding forest 86.7 68.4 80.0 70.6 60.0 36.0 86.7 72.2

Liana forest 66.7 88.9 83.3 83.3 0.0 0.0 83.3 71.4

Initial succession 42.1 72.7 42.1 72.7 26.3 83.3 68.4 65.0

Intermediate succession 87.5 80.8 70.8 81.0 41.7 52.6 79.2 86.4
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algorithms (see Table 4). For the PALSAR data, CTA and Fuzzy ARTMAP provided rela-
tively better performance, followed by MLC and KNN. The PALSAR data can provide rela-
tively good classification performance for upland forest, flooding forest, agropasture, and
water, but very poor performance for liana forest, initial and advanced succession stages,
and wetland, implying the potential role of PALSAR data in improving classification per-
formance for certain LULC types if this dataset is properly incorporated into Landsat multi-
spectral image.

For the combination of TM and PALSAR-derived textural images, KNN provided the best
performance, followed by CTA, but Fuzzy ARTMAP provided the poorest overall accuracy.
Comparing with the accuracy assessment results from both Landsat TM multispectral imagery
and the incorporation of TM and PALSAR-derived textural images indicated that KNN
improved overall accuracy by 3.3%, which mainly improved flooding forest, liana forest,
initial succession, advanced succession and agropasture classes. In contrast, the rest classifi-
cation algorithms reduced overall classification accuracies. Because PALSAR data have poor
classification performance for upland forest, liana forest, initial and advanced succession and
wetland, direct combination of PALSAR data as extra bands into Landsat multispectral bands

Table 4 (Continued).

MLC CTA ARTMAP KNN

PA UA PA UA PA UA PA UA

Advanced succession 38.1 80.0 61.9 68.4 19.1 33.3 100.0 75.0

Agropasture 96.2 75.8 92.3 72.7 76.9 62.5 76.9 87.0

Water 87.5 100.0 100.0 100.0 95.8 88.5 100.0 100.0

Wetland 80.0 85.7 100.0 93.8 33.3 50.0 93.3 100.0

Urban 100.0 88.5 100.0 100.0 56.5 37.1 100.0 100.0

Overall accuracy 78.3 81.1 50.5 85.4

Kappa coefficient 0.76 0.79 0.44 0.84

Fusion image from TM and PALSAR L-band HH data

Upland forest 75.8 89.3 78.8 86.7 90.9 88.2 78.8 92.9

Flooding forest 93.3 70.0 93.3 63.6 93.3 73.7 86.7 72.2

Liana forest 91.7 84.6 66.7 100.0 66.7 100.0 83.3 83.3

Initial succession 79.0 71.4 73.7 70.0 63.2 63.2 68.4 59.1

Intermediate succession 87.5 91.3 91.7 88.0 91.7 88.0 87.5 91.3

Advanced succession 90.5 86.4 90.5 90.5 95.2 90.9 95.2 74.1

Agropasture 80.8 91.3 76.9 87.0 73.1 82.6 69.2 85.7

Water 87.5 100.0 91.7 100.0 100.0 96.0 95.8 100.0

Wetland 80.0 100.0 86.7 86.7 93.3 100.0 93.3 93.3

Urban 100.0 79.3 100.0 88.5 100.0 100.0 100.0 100.0

Overall accuracy 85.9 85.4 87.7 85.4

Kappa coefficient 0.84 0.84 0.86 0.84

Note: (1) PA and UA represent producer’s accuracy and user’s accuracy. (2) Classification algorithms—MLC,
CTA, ARTMAP, and KNN represent maximum likelihood classification, classification tree analysis, Fuzzy ART-
MAP, and K-nearest neighbor.
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cannot increase much complementary information in helping improve the separability of vege-
tation types. As image dimension increased, Fuzzy ARTMAP became especially difficult in
optimizing the parameters as the training process became prohibitively long. Because the
assumption of normal distribution is not satisfied in the combination of TM multispectral
and PALSAR-derived textural images, the MLC has reduced its overall performance by
2.8%, as shown in Table 4.

Comparing with the Landsat TM image classification results, the wavelet-based fusion ima-
gery improved overall classification performance irrespective of the classification algorithms,
that is, the selected algorithms based on data fusion images provided overall accuracies of
85.4% to 87.7% comparing with 79.7% to 84.9% based on TM imagery. This situation implies
the importance of improved spatial resolution and the integration of different data features in the
fusion image for LULC classification. Because PALSAR data have different features in reflect-
ing land surfaces, especially in vegetation structure and moist contents, integration of PALSAR
data with Landsat multispectral image with the wavelet-merging technique proved valuable in
improving classification performance of vegetation types.

A comparison of kappa coefficients from different classification algorithms and from differ-
ent datasets (Fig. 2) indicates that the TM multispectral image and the multisensor fusion image
provided reliable and stable classification results irrespective of classification algorithms. Over-
all, the multisensor fusion image had better classification performance than the TMmultispectral
image. The combination of TM and PALSAR-derived textural images as extra bands provided
better classification performance than the TM multispectral image only when KNN was used. In
contrast, the Fuzzy ARTMAP provided poorest classification results for this dataset. The major
reason is that the addition of PALSAR-based textural images did not improve separability of

Fig. 2 A comparison of kappa coefficients among different classification methods and among dif-
ferent datasets in the Brazilian Amazon. Note: Four datasets TM, PALSAR, TM_Ltext and Fusion
represent (1) Landsat TM multispectral image, (2) ALOS PALSAR L-band HH, HV and selected
textural images, (3) combination of Landsat TM multispectral images and PALSAR-derived tex-
tural images as extra bands, and (4) fusion results with the wavelet-merging technique based on
Landsat TMmultispectral bands and PALSAR L-band HH image. Classification algorithms—MLC,
CTA, ARTMAP, and KNN represent maximum likelihood classification, classification tree analysis,
Fuzzy ARTMAP, and K-nearest neighbor.

Li et al.: Comparative analysis of classification algorithms and multiple sensor data . . .

Journal of Applied Remote Sensing 061706-8 Vol. 6, 2012



different vegetation types and more image bands make much more difficult in determining opti-
mal parameters due to the prohibitive time required during the training process. Overall, ALOS
PALSAR data had much poorer classification results than TM multispectral image, implying its
incapability in classifying the detailed LULC classification system. This research indicates that
TM spectral feature is still the most important data source for LULC classification, but properly
integrating PALSAR data into TM multispectral image is valuable for improving vegetation
classification performance. In addition to the selection of datasets, selection of a suitable clas-
sification algorithm corresponding to the specific dataset is also valuable. When the remote sen-
sing data meet the normal distribution requirement, MLC can provide reliable classification
results, although some nonparametric algorithms such as CTA for Landsat TM and Fuzzy ART-
MAP for the fusion image can improve classification performance. For the remote sensing data-
sets such as PALSAR data and the combination of TM multispectral and PALSAR-derived
textural images, the assumption of normal distribution is often violated, thus nonparametric algo-
rithms such as CTA for PALSAR data and KNN for the combination of TM and PALSAR data
provide better performance than MLC.

The nonparametric algorithms often require much longer time during the classification
procedure than MLC because of the requirement in optimizing parameters used in nonpara-
metric algorithms. For example, ARTMAP requires lengthy trials for identifying optimized
parameters as learning rate and vigilance parameter, and this is especially true when many
bands are used for detailed LULC classification. CTA and KNN require much less time
for image classification compared with ARTMAP because of less number of parameters
used in these algorithms. On the other hand, lack of clear and standardized guidelines for
the determination of the parameters requires much experimentation by the analyst. This
research also indicates that no single classification algorithm is perfect for each LULC
type, but that each has its own merits. Therefore, it is important to develop new methods
to combine the merits of different algorithms to produce a new classification result with
high classification accuracy for each LULC type.18,19

4 Conclusions

This study showed that LULC classification accuracies varied considerably depending on the
dataset used in the classification procedure and the selected classification algorithm. Overall,
MLC provided reasonably good classification accuracy for the TMmultispectral image and mul-
tisensor fusion image and required much less time during the classification procedure than the
nonparametric classification algorithms. Some nonparametric classification algorithms can pro-
vide better classification than MLC, but required much longer times for the classification pro-
cedure. In particular, Fuzzy ARTMAP required the longest time periods during the training
process and for optimization of parameters. When the number of LULC classes and the number
of image bands are large, the Fuzzy ARTMAP takes a prohibitive time period during training
process. Both CTA and KNN require much less time for the optimization of parameters than
Fuzzy ARTMAP. Considering the selection of datasets, integration of Landsat multispectral and
ALOS PALSAR data with the wavelet-merging technique is valuable in improving vegetation
classification in the moist tropical region. This research provides valuable information for guid-
ing the selection of remote sensing dataset and classification algorithms for LULC classification,
especially in moist tropical regions.

Acknowledgments

The authors thank National Science Foundation (Grant #BCS 0850615) for funding this
research. Sidnei J.S. Sant’Anna thanks JAXA (AO 108) Science Program for providing the
ALOS PALSAR data used in this research. We also thank Anthony Cak for his assistance
in the fieldwork and Scott Hetrick for his assistance in organizing the field data. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

Li et al.: Comparative analysis of classification algorithms and multiple sensor data . . .

Journal of Applied Remote Sensing 061706-9 Vol. 6, 2012



References

1. D. Lu and Q. Weng, “A survey of image classification methods and techniques for improv-
ing classification performance,” Int. J. Remte Sens. 28(5), 823–870 (2007), http://dx.doi
.org/10.1080/01431160600746456.

2. J. Rogan et al., “Mapping land-cover modifications over large areas: a comparison of
machine learning algorithms,” Remote Sens. Environ. 112(5), 2272–2283 (2008), http://
dx.doi.org/10.1016/j.rse.2007.10.004.

3. Y. Shao and R. S. Lunetta, “Comparison of support vector machine, neural network,
and CART algorithms for the land-cover classification using limited training data points,”
ISPRS J. Photogram. Remte Sens. 70, 78–87 (2012), http://dx.doi.org/10.1016/j.isprsjprs
.2012.04.001.

4. P. K. Srivastava et al., “Selection of classification techniques for land use/land cover change
investigation,” Adv. Space Res. 50(9), 1250–1265 (2012), http://dx.doi.org/10.1016/j.asr
.2012.06.032.

5. B. Tso and P. M. Mather, Classification Methods for Remotely Sensed Data, p. 356, Taylor
& Francis, London (2009).

6. G. Li et al., “Land-cover classification in a moist tropical region of Brazil with Landsat TM
imagery,” Int. J. Remote Sens. 32(23), 8207–8230 (2011), http://dx.doi.org/10.1080/
01431161.2010.532831.

7. G. Li et al., “A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band
data for land-cover classification in a tropical moist region,” ISPRS J. Photogramm. Remote
Sens. 70, 26–38 (2012), http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010.

8. D. Lu et al., “A comparison of multisensor integration methods for land-cover classification
in the Brazilian Amazon,” GISci. Remote Sens. 48(3), 345–370 (2011), http://dx.doi.org/10
.2747/1548-1603.48.3.345.

9. E. F. Moran and E. S. Brondízio, “Land-use change after deforestation in Amazônia,” in
People and Pixels: Linking Remote Sensing and Social Science, D. Liverman, E. F. Moran,
R. R. Rindfuss, and P. C. Stern, Eds., pp. 94–120, National Academy Press, Washington,
D.C. (1998).

10. G. Chander, B. L. Markham, and D. L. Helder, “Summary of current radiometric calibration
coefficients for Landsat MSS, TM, ETMþ, and EO-1 ALI sensors,” Remote Sens. Environ.
113(5), 893–903 (2009), http://dx.doi.org/10.1016/j.rse.2009.01.007.

11. M. Ehlers et al., “Multisensor image fusion for pansharpening in remote sensing,” Int. J.
Image Data Fusion 1(1), 25–45 (2010), http://dx.doi.org/10.1080/19479830903561985.

12. J. Zhang, “Multisource remote sensing data fusion: status and trends,” Int. J. Image Data
Fusion 1, 5–24 (2010), http://dx.doi.org/10.1080/19479830903561035.

13. M. Zambon et al., “Effect of alternative splitting rules on image processing using classifica-
tion tree analysis,” Photogram. Eng. Remote Sens. 72(1), 25–30 (2006).

14. R. R. McRoberts and E. O. Tomppo, “Remote sensing support for national forest inven-
tories.” Remote Sens. Environ. 110(4), 412–419 (2007), http://dx.doi.org/10.1016/j.rse
.2006.09.034.

15. T. Islam et al., “Artificial intelligence techniques for clutter identification with polarimetric
radar signatures,” Atmos. Res. 109–110, 95–113 (2012), http://dx.doi.org/10.1016/j
.atmosres.2012.02.007.

16. Y. Zhong and L. Zhang, “An adaptive artificial immune network for supervised classifica-
tion of multi-/hyperspectral remote sensing imagery,” IEEE Trans. Geosci. Remote Sens.
50(3), 894–909 (2012), http://dx.doi.org/10.1109/TGRS.2011.2162589.

17. R. G. Congalton and K. Green, Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices, 2nd ed., p. 183, CRC Press, Taylor & Francis Group, Boca
Raton, Florida (2008).

18. S. Chitroub, “Classifier combination and score level fusion: concepts and practical
aspects,” Int. J. Image Data Fusion 1(2), 113–135 (2010), http://dx.doi.org/10.1080/
19479830903561944.

19. D. Zhu, “A hybrid approach for efficient ensembles,” Decis. Support Syst. 48(3), 480–487
(2010), http://dx.doi.org/10.1016/j.dss.2009.06.007.

Li et al.: Comparative analysis of classification algorithms and multiple sensor data . . .

Journal of Applied Remote Sensing 061706-10 Vol. 6, 2012

http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.rse.2007.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1016/j.asr.2012.06.032
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1080/01431161.2010.532831
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.010
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.2747/1548-1603.48.3.345
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1080/19479830903561985
http://dx.doi.org/10.1080/19479830903561985
http://dx.doi.org/10.1080/19479830903561985
http://dx.doi.org/10.1080/19479830903561985
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.rse.2006.09.034
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1016/j.atmosres.2012.02.007
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1109/TGRS.2011.2162589
http://dx.doi.org/10.1080/19479830903561944
http://dx.doi.org/10.1080/19479830903561944
http://dx.doi.org/10.1080/19479830903561944
http://dx.doi.org/10.1080/19479830903561944
http://dx.doi.org/10.1080/19479830903561944
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007
http://dx.doi.org/10.1016/j.dss.2009.06.007


Guiying Li is currently a postdoctoral fellow at Indiana University. She received her PhD in
physical geography from Indiana State University in 2008. Her research interests include remote
sensing, LULC change, urban environment, and forestry.

Dengsheng Lu is currently a professor at the Center for Global Change and Earth Observations,
Michigan State University. He received his PhD in physical geography from Indiana State Uni-
versity in 2001. He worked at Indiana University as a postdoctoral fellow and assistant research
scientist in 2001 to 2006 and as associate scientist and then senior scientist in 2008 to 2012, and
worked at Auburn University as research fellow in 2007 to 2008. He is the author of over 60
peer-reviewed journal articles and book chapters. His research interests include LULC change,
biomass/carbon estimation, and urban-environmental interactions.

Emilio Moran is a distinguished professor at Indiana University, and has been a leader for nearly
two decades in the integration of remote sensing with social science questions, in developing
approaches to classifying secondary succession in the Amazon, and in LUCC (land use and land
cover change). He was cochair of the Global Land Project Transition Team that prepared the
Science Plan, and was leader of Focus 1 of LUCC before that for over five years. He was PI on a
Center-level grant from NSF from 1996 to 2006 from SBE in support of CIPEC, a center of
excellence on the human dimensions of global environmental change. He has also been PI
on NASA, NIH and NOAA grants. He is the author of nine books, 14 edited volumes and
over 140 journal articles and book chapters. He was elected to the National Academy of Sciences
in 2010.

Sidnei João Siqueira Sant’Anna received a BS degree in electrical and electronic engineering
from the Universidade Federal do Rio de Janeiro in 1993, the MSc degree in remote sensing from
the Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil in 1995 and
a PhD degree in electronic engineering and computing from the Instituto Tecnológico de Aero-
náutica (ITA), São José dos Campos, Brazil, in 2009. He is currently a technologist at INPE,
and his interests are image analysis and processing techniques for remote sensing (SAR image
filtering, statistical methods, robustness, etc.).

Li et al.: Comparative analysis of classification algorithms and multiple sensor data . . .

Journal of Applied Remote Sensing 061706-11 Vol. 6, 2012


