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Abstract. Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain
hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of func-
tional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to
superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but
previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow
speed. Here, we develop a DOT systemwith asymmetric source–detector sampling that combines the high-density
spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the
rapid (2 Hz) imaging of a few (<50) structured illumination (SI) patterns. Analysis techniques are developed to
take advantage of the system’s flexibility and optimize trade-offs among spatial sampling, imaging speed, and
signal-to-noise ratio. An effective source–detector separation for the SI patterns was developed and compared
with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was
also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique
by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical
stimulation of the forepaw. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or

reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.4.2.021102]
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1 Introduction
As advances in functional magnetic resonance imaging (fMRI)
have transformed the study of human brain function, they have
also widened the divide between standard research techniques
used in humans and those used in mouse models. Although both
task-based evoked responses1,2 and resting state networks3,4

have recently been observed in mice using fMRI, high signal-
to-noise ratio (SNR) and resolution remain challenging due to
the small volume of the mouse brain, and the logistics of fMRI
hinder widespread application to high-throughput mouse stud-
ies. Therefore, a need exists for a fast benchtop modality for
studying brain networks in mice. Optical imaging techniques,
such as optical intrinsic signal imaging5 (OIS), have been devel-
oped and widely applied to task-based evoked responses.6,7

Most recently, OIS has been applied with wide field-of-view
(FOV) to monitor functional connectivity in cases of disease8,9

and development10 in the mouse brain. However, traditional OIS
methods are limited to planar imaging, providing only a two-
dimensional view of cortical activity. In addition, OIS requires,
at the least, a minimally invasive procedure of scalp reflection,
making longitudinal imaging difficult or even impossible in
some populations, such as infant mice.

In contrast to OIS, diffuse optical tomography (DOT) pro-
vides noninvasive volumetric imaging at depths extending to
multiple centimeters, which in principle solves some of the lim-
itations of OIS. In addition to DOT instrumentation, algorithms

have been developed for handling arbitrary tissue geometries
that can be matched to anatomy using numerical finite element
modeling (FEM) of light transport.11 Although most papers have
focused on humans,12,13 there have been some reports of the
application of DOT to rodents.14,15 However, thus far, most
animal DOT systems have either been fiber based, which are
limited by sparse spatial sampling,14 or charge-coupled device
based, which are limited by slow frame rates (0.1 Hz) that pre-
clude imaging functional brain hemodynamics.15

Here, we present an imaging system that combines structured
illumination (SI) with traditional DOT techniques (SI-DOT) to
image a wide FOV (>1 cm × 1 cm) at high speed (>2 Hz).
Successful implementation of SI-DOT for mouse functional
neuroimaging requires optimizing for SI pattern sequences that
preferentially sample deeper tissue. We introduce an analysis of
the SNR for these patterns that quantifies the average light
intensity as a function of an effective source-detector distance.
This provides a light intensity versus distance measure analo-
gous to methods used in traditional point illumination DOT.
Following optimization, we validate SI-DOT for noninvasive
imaging in mice by observing cortical responses to peripheral
stimulation through the intact scalp.

2 Results

2.1 Structured Illumination-Diffuse Optical
Tomography Imaging System

The goal of the SI-DOT instrument is to provide noninvasive
functional neuroimaging of cortical hemodynamics (through*Address all correspondence to: Joseph P. Culver, E-mail: culverj@wustl.edu
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both the scalp and the skull) at a speed of>2 Hz with an FOVof
>1 cm2 to cover the dorsal convexity of the mouse brain.
The system leverages fast, low noise detection provided by
a single scientific complementary metal-oxide-semiconductor
(sCMOS) camera (Zyla 5.5, Andor Technology Ltd., South
Windsor, Connecticut). For multicolor SI, we used a single
digital micromirror device (DMD) projector (Lightcrafter
4500, Texas Instruments, Dallas, Texas). Within the projector,
multicolored LEDs were reflected off a 912 × 1140 array of
micromirrors to display arbitrarily complex two-dimensional
illumination patterns. The sizes of the DMD chip, the mouse
head, and the sCMOS sensor were all similar, which allowed
for symmetric imaging optics. In particular, 85-mm f∕1.4 lenses
were used to maximize the FOV while allowing sufficient work-
ing distance, so that the projector could illuminate the mouse
head from above [Fig. 1(a)]. To prevent specular reflection off
the scalp from saturating the sensor, a polarizer (BþW 72 mm
XS-Pro Kaesemann, Schneider Optics, Van Nuys, California)
was placed on the projector with its polarization axis 90 deg
relative to a second polarizer in front of the camera lens. A
sequence of predefined illumination patterns were created in
MATLAB (Mathworks, Natick, Massachusetts) and uploaded
onto the projector’s on-board memory. Individual patterns
were triggered one at a time and synchronized with each camera
frame [Fig. 1(b)]. Several illumination sequences were explored,
typically containing 40 different structured patterns. Each pat-
tern ranged in spatial frequency from 0.08 to 0.4 mm−1 with two
phases (180-deg phase shifts) and two orientations included per
frequency. Images were collected at a camera frame rate of
80 Hz, providing a full DOT frame rate of 2 Hz. Each detection
frame spanned a 12 mm × 12 mm FOV using the central 512 ×
512 pixels of the sensor. The data were binned to 32 × 32 pixels
prior to reconstruction to improve SNR, yielding a pixel size of
∼400 μm. The binned data had a dynamic range of 104, with the
typical maximum values of ∼107 counts and background stan-
dard deviations of approximately 103 counts. The illumination
patterns combined with ∼1000 detectors over the scalp provided
∼40;000 total measurements [Fig. 1(c)].

Light modeling and data analysis were conducted along par-
allel processing pipelines, adapted from our previous methods
for high-density DOT (Fig. 2, see methods).12 Briefly, a finite
element mesh was generated to model the mouse brain volume,

and the fluence distributions for individual point light sources
(Green’s functions) were calculated using NIRFAST.11 The
mouse head was then resampled to a rectilinear grid (voxels).
To generate Green’s functions specific to an SI pattern, the
Green’s functions for all illuminated pixels within each SI pat-
tern were summed (see Appendix A.1). To map measurements
to voxels, a sensitivity matrix was calculated using a Jacobian
approach and a linear Rytov forward model.12 Data were recon-
structed using direct inversion and a regularized pseudoinverse
of the forward sensitivity matrix following methods used com-
monly for human DOT data.11,12,16 Multiplying the inverted
sensitivity matrix by the log-ratio of the light measurements
produced a volumetric image sequence of absorption perturba-
tions over time. Changes in absorption were converted to
changes in chromophore concentration using the extinction
coefficients of each hemoglobin species.17

2.2 Optimizing Measurements Using Effective
Source–Detector Separation

A common technique for assessing measurement quality in
DOT is to examine the measured light-level intensity as a func-
tion of source–detector separation. For SI-DOT, the source–
detector separation is not as conceptually obvious as the
Euclidean distance between the point-like sources and detectors
in fiber-based DOT systems. However, a similar analysis would
still be useful for evaluating measurement noise. Here, we
defined an effective source–detector separation between each
dark detector pixel and the source pattern for every measurement
[Figs. 3(a) and 3(b)]. If one assumes a logarithmic fall-off of
light fluence as a function of distance (e.g., following the
Beer–Lambert law) and an effective attenuation coefficient of
1 mm−1 (a sensible value for the wavelengths in use), then a
reasonable definition for an effective source–detector separation
between a detector (pixel) and an illumination pattern is the
exponentially weighted average of distances to each illuminated
pixel. Briefly, for a dark detector pixel i, source pixel j, and
source pattern k, the effective distance is defined as

EQ-TARGET;temp:intralink-;e001;326;109Effective distanceði; kÞ ¼
P

j∈Ωk
jri − rjje−μeffðjri−rjjÞ

P
j∈Ωk

e−μeff ðjri−rjjÞ
; (1)

Fig. 1 SI-DOT system. (a) System schematic showing the relative positions and orientations of the DMD
source projector and the sCMOS camera. Internal LEDs and optics illuminate the DMD with the desired
wavelength, and illumination patterns are stored in the on-board projector memory and triggered con-
secutively to illuminate the head with the desired spatial frequencies. (b) Six example structured light
patterns illuminating the intact mouse scalp, as collected by the sCMOS. (c) The planar-frame illumina-
tion of a mouse head as measured by the sCMOS camera, showing the positions of ∼1000 detectors
over the intact scalp, after off-camera binning. A hand-drawn brain mask removes measurements that
lie outside the exposed scalp for each mouse.
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where ri and rj are the locations of dark detector pixel i and
source pixel j, respectively, μeff is defined to be 1 mm−1, and
Ωk is the set of bright pixels contained in the source pattern k.
Each pair of vertical bars denotes the two-norm of the enclosed
expression, so jri − rjj is the ordinary Euclidean distance
between ri and rj.

In principle, the set of possible patterns and pattern sequen-
ces is quite extensive as the problem expands combinatorially.
We chose to evaluate binary square wave patterns that provide
greater dynamic range and can be triggered faster using a DMD
in comparison with sine waves, which are typically used in

modulated light imaging18 or SI microscopy.19 We first evalu-
ated ten spatial frequencies with two phases (180 deg
offsets) and two orientations (vertical and horizontal) each.
For this first pattern set, we found that over 75% of the measure-
ments had an effective source–detector separation of 1 mm or
less [Fig. 3(c), orange/dotted]. In a second pattern set, by sac-
rificing the five highest spatial frequencies, a dense set of mea-
surements with short separation distances is preserved, whereas
the relative sampling at larger distances is increased, improving
the sensitivity to deeper tissue [Fig. 3(C), blue/solid]. With
fewer spatial frequencies, the pattern sequence was expanded

Fig. 2 SI-DOT processing stream. Raw data preprocessing (left, magenta boxes): raw measurement
data collected by the sCMOS camera are subject to a series of quality assessment checks and prepared
for reconstruction. Light modeling (right, orange boxes): a finite element mesh is created in NIRFAST and
used for the forward model and calculation of the sensitivity matrix. Feedback between the model and the
analysis of the raw data informs the optimization of the light model used in calculating the sensitivity
matrix for each mouse. Once a satisfactory sensitivity matrix is generated, the data are reconstructed
and spectroscopically unmixed to observe cortical hemodynamics (bottom, blue boxes).

Fig. 3 Measured light intensity versus effective source–detector separation. (a) Empirically determined
edges of illuminated regions for one example pattern. (b) The effective source–detector separation is
calculated for each detector in the dark region of each source pattern, shown here for one example pat-
tern. (c) Total number of measurements as a function of distance, binned into 0.25 mm groups, for an
illumination sequence consisting of 10 spatial frequencies and one color (orange) and a sequence of
five frequencies and two colors (blue). (d) Signal intensity versus effective source–detector separation
for each individual measurement, with averages at each unique distance emphasized and linearly
fit. Data below the noise threshold (20× background standard deviation) were cropped prior to
reconstruction.
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to include two wavelengths for spectroscopic reconstructions of
multiple chromophores (i.e., oxy-, deoxy-, and total hemoglo-
bin) while keeping the full frame rate at 2 Hz.

The average signal among all measurements at each unique
effective source–detector separation showed an expected log-
linear fall-off. In addition to guiding optimization of the illumi-
nation patterns, this technique helped us quantitatively identify
noisy measurements. For example, the signals from green
(λ ¼ 523 nm) and red (λ ¼ 625 nm) illumination patterns began
to approach the noise floor of the camera at effective source–
detector separations greater than 3 and 4.5 mm, respectively
[Fig. 3(d)]. We empirically determined a threshold for cropping
bad measurements by examining the standard deviation of light
intensity in the background frames. Measurements greater than
20 times this value (e.g., > ∼ 104.5 electrons for a representative
measurement) were used for all reconstructions. This noise
threshold removed ∼50% of all measurements, the majority
of which fell outside the visually identified brain region (see
Appendix A.2).

2.3 In Situ Estimation of Baseline Optical Properties

The sensitivity matrix used for DOT image reconstruction
requires an estimate of the baseline tissue optical properties.
Often, DOT algorithms use assumed attenuation coefficients
from extant literature rather than in situ measurements. The
data acquired in SI-DOT have the potential to permit in situ esti-
mation of baseline optical properties by comparing the raw col-
lected data with a light model. Although the continuous wave
data used here cannot separate absorption and scattering, the
data can be used to fit for the effective attenuation coefficient.
In turn, in situ absorption coefficients can be deduced using
an assumed reduced scattering coefficient of 10 cm−1.
Nonuniformities in illumination and skin pigment, however,
can distort the interpretation of raw SI-DOT measurements.
The spatial inhomogeneities in the reflected light intensity of
each frame were corrected by subtracting a dark frame from
each raw image and normalized by a frame of uniform illumi-
nation. Reflected light intensity in each corrected frame was
then compared with a light model [Fig. 4(a)].

For in situ estimation of optical properties, we compared
the light fluence fall-off as a function of effective distance for
both the SI-DOT measurements and the model predicted data,

given by the source–detector Green’s functions (Gsd, see meth-
ods, Sec. 5.3). The chi-squared error between data and model
was a continuous function of μA, with the best fit values of
μA at 3.33 and 0.34 cm−1 for 523- and 625-nm wavelengths,
respectively [Fig. 4(b)]. Fits using the optimal μA values showed
excellent agreement to the data [Fig. 4(c)].

These fit lines also provided a means for refining our initial
data quality assessment. Specifically, measurements with 40%
or greater disagreement with the optimal predicted light
fall-off were cropped from the data set prior to reconstruction.
This model-deviation threshold typically removed <10% of
the total measurements (see Appendix A.2). Finally, superficial
measurements (defined to be those with an effective source–
detector separation of <0.5 mm) were averaged and regressed
from all remaining measurements prior to reconstruction.
This is analogous to superficial signal regression performed
in human brain DOT and reduces the contribution of hemo-
dynamics outside the brain (e.g., in the scalp) to the measured
cortical signals.12,13,16

2.4 Noninvasive Evoked Responses In Vivo

To validate SI-DOT for noninvasive functional mouse neuroi-
maging, we imaged anesthetized mice during peripheral
stimulation of the left forepaw in a block design. Each block
contained 10 s of 300 μs, 0.5 mA pulses delivered at 3 Hz
followed by 50 s of rest. A two-wavelength SI sequence
allowed reconstruction of voxelwise changes in oxy-, deoxy-,
and total hemoglobin (HbO2, HbR, and HbT, respectively).
The reconstruction geometry (12 mm × 12 mm × 2 mm, with
voxel dimensions of 32 × 32 × 20, width × length × depth)
covered an FOV consisting of scalp, skull, and upper cortical
layers [Fig. 5(a)]. Five mice were imaged for 35 min each.
Of this data set, 120 min of data passed measurement quality
thresholds and were used for block averaging. Total hemoglobin
block averaged images show focal activity in the contralateral
(right) forepaw region [Fig. 5(b)]. Specifically, evoked hemo-
dynamic responses demonstrate an increase in HbO2 and
HbT and a decrease in HbR [Fig. 5(c)] and were repeatable
across mice (see Appendix A.3). Group averaged peak concen-
tration changes of 4 μM inHbO2, −2.5 μM in HbR, and 1.5 μM
in HbT were observed at a depth of 1.7 mm beneath the scalp
surface [Fig. 5(b)].

Fig. 4 Correction scheme and light model quality assessment. (a) Raw data, corrected data, and pre-
dicted data for both green and red illumination. (b) The signal versus effective source–detector separation
is calculated for the raw data, corrected data, and predicted data for a range of different absorption
coefficients. Optimal μA values are shown as minima in the chi-squared plots between the corrected
data and the predicted data and were empirically determined to be 3.33 cm−1 (top) and 0.34 cm−1

(bottom) for 523 and 625 nm wavelengths, respectively. (c) The signal versus effective source–detector
separation for the corrected data fit with optimal μA values for red and green wavelengths.
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3 Discussion
In this work, we developed a SI approach to DOT for noninva-
sive imaging of brain function in mice. The SI-DOT system
combined the dense spatial sampling of camera-based DOT sys-
tems, finite element light modeling (common with fiber-based
DOT), and the rapid scanning afforded by SI. To manage data
quality, we developed several quality assessments to optimize
the system and capitalize on its flexibility while also improving
model accuracy by empirically calculating estimates of baseline
optical properties. Feasibility was established by observing
functional activations in vivo noninvasively and by reconstruct-
ing their depth as well as their lateral position. Although there
are extensive reports of optical imaging of functional activations
in mice with removal of either the scalp or both the scalp and the
skull, noninvasive optical mapping of functional responses in
mice has not yet been widely reported or explored.

A primary strength of the SI-DOT system is its great
flexibility with regard to the source and detector grid density.
However, the potential complexity of SI-DOT data sets presents
challenges in evaluating data quality. SNR is of central impor-
tance in DOT system design and data quality optimization prior
to image reconstruction.12,16 More specifically, the relationship
between light level and source–detector distance guides many
decisions throughout the construction of the instrument, includ-
ing optics, sensor locations and sizes, and exposure times or
frame rates. As a result, the ability to assess measurement
quality before image reconstruction is important to instrument
development and optimization. Thus, we developed a method

for evaluating SI-DOT measurements using an effective distance
between a detector pixel and an arbitrarily complex SI pattern.
We have found that this metric enables the optimization of
SI patterns and aids in identification and removal of bad or
noisy measurements. Together, these techniques allow for effi-
cient optimization and balancing of imaging speed, resolution,
and FOV. In this paper, we optimized for a single view of the
dorsal surface of the mouse head, consistent with our previous
planar imaging systems,5 and imaged an FOVof 12×12×2mm
using two wavelengths and 40 illumination patterns.

3.1 In Vivo Noninvasive Activations

Our DOT imaging techniques allow us to reconstruct hemo-
dynamic activity up to 2 mm beneath the scalp surface. In
response to electrical stimulation of the forepaw, we observe
peak activity between 1.3 and 1.7 mm beneath the surface of
the scalp, a finding consistent with the expected depth of activity
given structural mouse studies examining the thickness of the
scalp, skull, and cortical layers.22–24 The reconstructed images
of HbO2, HbR, and HbT have magnitude, temporal response,
and axial location that are consistent with previous functional
imaging studies.25,26 As a function of depth, the SI-DOT images
show an increase in HbO2 and decrease in HbR corresponding
to somatosensory layers 2 to 4. This depth-dependent hemo-
dynamic activity is reasonably consistent with observations
from invasive thinned-skull preparations in rats using multispec-
tral imaging,27 laminar optical tomography,28 and noninvasive
functional MRI studies in mice.29,30

Fig. 5 Noninvasive imaging of evoked cortical responses in the mouse. (a) Dotted lines show the FOVs
for axial and coronal slices. The curvature of the cortex, as evident in the coronal FOV, was approximated
by a slab geometry. (b) Following electrical stimulation of the left forepaw, we observe an increase in total
hemoglobin concentration in the right hemisphere. An average axial slice through themaximum layer and
its two neighboring axial slices is masked by a manually determined brain mask and overlaid on a gray-
scale image of the mouse head. Coronal slices through the peak voxel in the axial slice show the evoked
response up to 2 mm beneath the surface of the scalp. (c) The average temporal response of voxels
>50% of the peak response were used to calculate time courses for HbO2, HbR, and HbT. Magnetic
resonance image of the mouse brain is courtesy of the Duke Center for In Vivo Microscopy,20 accessed
via the International Neuroinformatics Coordinating Facility Scalable Brain Atlas.21
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The penetration depth and resolution of SI-DOT can be esti-
mated from the system’s sensitivity matrix. Using the sensitivity
matrix, we generated simulated measurements for a point acti-
vation. These data were then reconstructed using an inverted
sensitivity matrix with regularization that reflects the operational
SNR found in our experimental data. Taking the FWHM to
be the point-spread function, this yields an axial resolution of
1.13 mm and a lateral resolution of 1.11 mm at a depth of
1.3 mm. Similarly, we quantified the depth sensitivity using a
flat field imaging test by reconstructing a uniform perturbation
throughout the volume.31 The sensitivity drops to 50% at a depth
of 2.5 mm, setting a practical limit on the penetration depth of
SI-DOT as constructed.

3.2 Context to Literature

SI addresses a critical issue that has limited either the speed or
the spatial sampling of previous DOT techniques. A similar
strategy has been applied in microscopy, where the use of SI
has improved the speed and resolution of fluorescence micros-
copy beyond what was previously possible.19,32,33 In related
mesoscopic imaging work, spatial frequency domain imaging
(SFDI) utilizes SI patterns of varying spatial frequencies to
probe different depths and provide three-dimensional (3-D)
information.18,34–36 However, thus far, the SI literature has
been limited to either applications outside brain imaging or
brain imaging that is invasive and/or without tomographic
reconstructions. Further, the relationship between source–detec-
tor distance and measurement SNR, which is central to assessing
image quality in traditional point illumination DOT, has not
been addressed using SFDI.

The primary application of wide-field SI has been for clinical
noninvasive and depth-resolved assessment of skin and breast
tissue in humans.37 Although the technique can provide 3-D
tomographic reconstructions of absorption heterogeneities,35,36

thus far the implementations in rodent neuroimaging, for exam-
ple to monitor stroke,38 cortical spreading depressions,39 or
Alzheimer’s disease,40,41 have required invasive surgeries
prior to imaging or have not been used in applications with
fast dynamics (∼1 s). Additionally, although SFDI is commonly
used to assess baseline optical properties,42–44 our technique
compares the light fall-offs as a function of effective distance
in the optical measurements versus a finite element forward
model, which will be easily translatable to calculating optical
properties in complex geometries.

3.3 Limitations and Potential Improvements

In this work, there are three assumptions in the forward
model that potentially limit the accuracy of reconstructions:
homogeneous optical properties, geometrical boundaries of
the mouse head, and the use of the diffusion approximation.
Even though the absorption and scattering properties of different
types of biological tissues are in fact relatively homogeneous,45

the accuracy of the forward model could be increased by
modeling the scalp, skull, and brain separately. Additionally,
although the scattering coefficient in tissue is relatively con-
stant,46 implementing a wavelength-dependent power law47 to
uncouple absorption and scattering would further improve the
accuracy of the forward model. Further, an iterative procedure
using determined optical properties to calculate new fits of
signal versus effective source–detector separation, instead of

assuming a μeff of 1 mm−1, might allow for better empirical
optimization of both optical properties.

The localization accuracy of the functional response depth
could be increased using a cylindrical head model, instead of
the currently used slab geometry, or still further improved
using an anatomical head model derived from MRI with
coregistration and boundary identification, as is done in
human fiber-based DOT imaging.12 The SI-DOT system could
achieve boundary identification in an automated and data-driven
way by including a pattern sequence with point illuminations for
surface profiling. Accurate anatomical head modeling could
enable transformations of the DOT data to a common atlas
space for group comparisons of functional networks, as has
been done previously for DOT studies in humans,12,48,49 while
also accurately modeling both the boundary and the different
layers of the mouse head.

Additionally, there is a slight model mismatch due to using
a slab geometry to model the mouse head, which is curved.
Because we constrained imaging to the top central portion of
the skull, we estimate that there is approximately a <1 mm dis-
placement across the 10 mm FOV. Given the curvature of the
mouse head [Fig. 5(a)], our calculations of illuminated pixel
locations and distances near the edge of the FOV may be inac-
curate up to ∼8% due to our use of a slab instead of a cylindrical
geometry, according to simple trigonometry. Due to the expo-
nential weighting of large distances in the effective source–
detector separation calculation, the subsequent maximum error
in effective distance is ∼7%. While small, if this error were used
in baseline measurements,50 it would introduce significant
image errors. However, our application is the imaging of differ-
ential brain activity, and these model errors are largely divided
out through the use of the Rytov approximation.51,52 Anatomical
head modeling will allow for more precise calculations of
both effective source–detector separation and point illumination
locations in the forward model.

In this study, we have used the diffusion approximation,
whereas the radiative transport equation, as solved with Monte
Carlo methods for example, would in principle be more accurate.
Indeed a number of groups have shown similar reconstruction
methods using Monte Carlo-generated Green’s functions.53,54

Although model errors are generally minimized using ratiometric
data (in this study, the log-ratio data for temporal responses),
the incorporation of Monte Carlo-derived forward models may
provide better fits to the light intensity fall-off curves and better
image quality.

Further exploration of parameter space might reveal ways to
take further advantage of the system flexibility and optimize
the trade-offs among imaging speed, resolution, and FOV.
For example, shrinking the FOV would increase the camera
speed and therefore increase the overall DOT frame rate or
accommodate the addition of more source patterns while
maintaining the same frame rate. Additionally, expanding the
measurement set to consist of more spatially overlapping
measurements and to include near infrared (NIR) wavelengths
for deeper penetration has been shown to improve resolution
and overall system performance in previous DOT systems.55

This could be done in SI-DOT by utilizing multiple views,
which would allow for an FOV covering the entire mouse brain.
This combined with NIR wavelengths would take advantage of
greater source–detector separation to probe deeper into the
brain, possibly with a resolution of ∼1∕3 � depth56 or slightly
better at shallower depths.28
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4 Summary/Conclusion
SI for DOT, with asymmetry between sources (few) and detec-
tors (many), addresses a data rate limitation of previous DOT
systems for rodents. SI-DOT improves upon current planar
methods, which lack depth profiling and require surgical
removal of the scalp, to provide noninvasive 3-D information
of the brain. The SI-DOT system reported is built on an infra-
structure with great flexibility. The techniques developed for
assessing the quality of SI-DOT data sets before image
reconstruction enable efficient optimization of the system to bal-
ance imaging speed, resolution, FOV, and computation time.
Further, these techniques permit data quality analysis and an
assessment of light model accuracy. The noninvasive 3-D imag-
ing of the mouse cortex provided by SI-DOT has the potential to
yield new insights into the functional architecture of the mouse
brain and provide new avenues for studying healthy brain devel-
opment, aging, disease, and therapies.

5 Methods

5.1 Animal Preparation and Imaging

All animal studies were approved by the Washington University
School of Medicine Animal Studies Committee (protocol
#20160217) under guidelines and regulations consistent with
the guide for the Care and Use of Laboratory Animals,
Public Health Service Policy on Humane Care and Use of
Laboratory Animals, the Animal Welfare Act and Animal
Welfare Regulations, and ARRIVE guidelines. Male C57/
BL6 mice (n ¼ 5, 5 to 7 weeks, 26 to 32 g, Jackson
Laboratories, Bar Harbor, Maine) were used for imaging. At
least 1 day before imaging, mice were anesthetized with 2%
isoflurane for hair removal using Veet. For imaging, mice were
anesthetized with a ketamine–xylazine mixture (86.9 mg∕kg
ketamine, 13.4 mg∕kg xylazine) at 5 μL∕g with body temper-
ature maintained at 37°C using an electric heating pad (mTCII,
Cell Microcontrols, Norfolk, Virginia). Mice were secured using
a Dazai imaging sled (Dazai Research Instruments, Toronto,
Canada), with Velcro straps behind the ears and over the
nose to prevent motion artifacts due to breathing. Each mouse
was imaged for 35 min. Forepaw electrical stimulation was
performed using A-M Systems Model 2100 Isolated Pulse
Stimulator (A-M Systems, Sequim, Washington), with trigger
sequences syncing stimulation, camera frames, and DMD pat-
terns created in MATLAB (Mathworks, Natick, Massachusetts)
and generated using a National Instruments Analog Output
DAQ (National Instruments, Austin, Texas).

5.2 Light Modeling/Diffuse Optical Tomography
Forward and Inverse Problem

A finite element mesh of an optically homogeneous tissue
slab (right rectangular prism geometry) is generated using
NIRFAST.11 For a set of chosen optical properties, we solve
for the point light propagation from each mesh surface normal
using a linearized Rytov forward model. The FEM mesh is then
resampled to the desired voxelated space. The source patterns
are estimated in situ to infer which locations on the tissue
surface were illuminated by each pattern and to account for the
curvature of the mouse head. Illuminated points are defined to
be those >50% of the maximum value detected in each frame
for each illumination pattern. The corresponding point Green’s
functions are summed to create the fluence distribution for each

SI pattern. This is valid as only first-order interactions between
the electromagnetic field and the tissue need to be considered;
any nonlinear interactions, such as two-photon absorption, are
negligible. This assumption is commonly invoked in DOT to
model realistic point illumination shapes (i.e., exponential decay
as a function of depth and finite beam areas).57 Additionally,
linear approximations to the diffusion equation are used exten-
sively in the DOT literature,58 namely the Rytov,59 Born,60 and
normalized Born approximations.61 These linear assumptions
are particularly well suited for detecting brain activity where
the perturbations in absorption are small relative to baseline.
To confirm that these linear assumptions are valid for SI-DOT
measurements, we collected data with both extended illumina-
tion structures and as a series of separate images with point
illuminations. Both approaches agree within experimental SNR
(see Appendix A.1).

The predicted fluence at the tissue surface for each source–
detector pair (Gsd, the unperturbed fluence) is converted into
predicted detector counts for the corresponding measurement
and compared with the raw data. Inaccuracies are addressed
by iterating through the forward model’s generation of Green’s
functions using different optical properties until the fit between
raw data and modeled data is optimized. The products of the
source and detector Green’s function values at each voxel are
normalized by Gsd for the corresponding source–detector pair
and scaled by the voxel volume. This quantity for each source–
detector pair forms a row of the sensitivity matrix, whose
columns correspond to voxels. A regularized pseudoinverse of
the sensitivity matrix is then calculated using spatially variant
Tikhonov regularization (with λ ¼ 0.01 and β ¼ 1, following
the notation of Dehghani et al.31), and this regularized pseudoin-
verse is applied to the experimental measurements to reconstruct
images (i.e., solve the inverse problem). These regularization
and reconstruction procedures have been described in our pre-
vious work.12 This entire process is repeated to construct a sep-
arate sensitivity matrix and independently reconstruct images
for each illumination wavelength.

5.3 Baseline Optical Property Estimation

Optimal optical properties are estimated by first averaging the
raw data across all time points for each illumination pattern.
Each frame has the background frame subtracted and is normal-
ized by the planar frame. The average signal versus effective
source–detector separation (see Sec. 2.2) is calculated for
each wavelength at each unique distance. Gsd is calculated
for a range of values of μa (see Sec. 5.2), which provides a pre-
dicted fit. The optimal μa is chosen to be the value that mini-
mizes the chi-squared error between fit lines of corrected data
and predicted data [Fig. 4(b)].

5.4 Data Analysis

Differential raw data are collected at 512 × 512 pixels covering
a 12 mm × 12 mm FOVand binned down to 32 × 32 pixels off
camera for increased SNR and a more computationally efficient
inverse problem. To account for systematic drift over the course
of an imaging session, binned data are temporally detrended by
subtracting the fit of a fifth-order polynomial to each pixel’s
time trace. The shape of each individual structured light pattern
is then empirically determined to generate the source Green’s
functions. The signal versus effective source–detector separation
is calculated for each measurement, and noisy measurements are
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identified and removed by setting a threshold at 20× the typical
background standard deviation [see Fig. 3(d)]. The denoised
data are transformed by normalizing each measurement’s
time trace by its mean and taking the logarithm to permit
reconstruction of images. The average time trace of superficial
measurements (those with effective source–detector separation

<0.5 mm, which mostly probe shallow, noncortical depths) is
then regressed from the data set to remove systemic scalp
signals. Analogous superficial regression procedures have been
employed for similar purposes in previous DOT work.12,13,16

After reconstruction, data are temporally band-pass filtered
between 0.009 and 0.25 Hz and spatially smoothed by

Fig. 6 Linearity of SI-DOT measurements. (a) An 8 × 15 grid of small square “points” is scanned on a
phantom. One example point illumination frame is shown, before binning or background subtraction, with
the grid indicating the locations of the remaining points. (b) The sum of the full grid of illumination points,
after binning and background subtraction, averaged over 19 cycles. (c) An equivalent single-SI pattern,
after binning, background subtraction, and averaging over the 19 cycles. (d) The % error between the SI
frame and the summed point frame, showing uniform agreement between the two, within the expected
variance due to greater noise (due to multiple readouts) in the point-summed frame.

Fig. 7 Measurement removal. Table 1 shows the percentage of measurements from an entire data set
within each threshold. (a) Raw corrected data for four different green illumination patterns, a high and low
spatial frequency for each orientation. (b) The brain mask removes measurements from pixels that do not
approximately align over the scalp and brain. This mask is identical for all illumination patterns for a given
mouse. (c) The noise mask shows which measurements were below the noise threshold for the example
pattern. (d) The model mask shows which measurements differed by more than 50% from the model’s
prediction. (e) Only measurements surviving all three mask procedures are kept. This procedure is
repeated for all illumination patterns and wavelengths to determine the full SI-DOT measurement set
used for reconstruction.
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convolution with a 3-D Gaussian kernel. Data from both wave-
lengths are reconstructed, with spectroscopic inversion using
the LED spectra and known extinction coefficients from Prahl,
adapted from our previous methods.5,17

Each individual 5-min run is block averaged. To include a
run in group averages, data are required to have a visually iden-
tifiable evoked response, peaking temporally during or very near
the stimulus period and with a magnitude at least twice as large
as peak fluctuations outside the activation region. All runs that
fit these criteria are averaged to generate temporal and spatial
maps of HbO2, HbR, and HbT hemodynamics for each
mouse. Time traces are plotted by determining the time and
depth of the peak activation, taking the mean of that layer
and the layers immediately above and below, and then averaging
the time traces from all pixels that reach magnitude>50% of the
peak activation in the maximum frame. Group averaged maps
are generated by 2-D translating the maps of each individual
mouse in parallel axial planes such that the peak activations
all align with their collective center of mass.

Appendix

A.1 Linearity of Diffuse Optical Tomography
Measurements

We verified the use of summed “point” source Green’s functions
to approximate patterned illumination experimentally. First
[Fig. 6(a)], we generated a grid of equal-sized small square illu-
minations that cover the same area as a single broad illumination
pattern [Fig. 6(b)]. We compared the sum of the small square
illumination frames with the full structured pattern frame
[Fig. 6(c)]. Within the illuminated region, the percent error is

<10% [Fig. 6(d)]. In the dark regions, experimental noise
dominates the errors. Thus, our forward model, which treats
the structured light Green’s functions as sums of point Green’s
functions, is appropriate.

A.2 Measurement Removal
A series of masks are applied to reduce the measurement set to
only include those of sufficient quality in the reconstruction.
Upon data collection, 40 source patterns and the 32 × 32 grid
of binned detectors combine to provide 40,960 measurements.
A visually identified and manually constructed brain mask
excludes measurements in the FOV that do not lie over the
scalp [Fig. 7(b)]. This mask typically identifies 40% to 45% of
the total measurements. The noise mask discussed in Sec. 2.2
typically identifies 50% of the measurements, those that fall
within 20× the value of the standard deviation of the background.
Nearly all of these measurements overlap those removed by the
brain mask [Fig. 7(c)]. A model mask determines which mea-
surements deviate from expectation, based on the optimized
model (as discussed in Sec. 2.3). This mask typically removes
<10% of the measurements with green illumination and <5% of
the measurements with red illumination [Fig. 7(d)]. Finally, the
overlap of these three masks is the complete set of measure-
ments to be used in reconstructions [Fig. 7(e)].

A.3 Repeatability
The data shown in Fig. 5 are averages of runs across five mice.
Averaging data only across each individual mouse instead of
across the entire group shows good repeatability. Maps of the
peak frame show an ability to resolve the expected increase
in HbO2 and HbT, along with the decrease in HbT, at the indi-
vidual mouse level (Fig. 8). Evoked responses also follow the

Fig. 8 Maps of evoked responses in individual mice. Runs with visually identified evoked responses are
block averaged (a–e) and then (f) averaged across all mice. For the five mice in this study, 15, 25, 30, 35,
and 15 min of data were included for each mouse, respectively, out of 35 min total. The group average is
calculated after a two-dimensional translation of each mouse’s data to spatially align the maximum value
of each activation across mice. Reconstructions of HbO2, HbR, and HbT show the expected peak
responses with good repeatability across mice, including the depths of the activations in coronal slices.
DOT reconstruction artifacts, seen here mostly as vertical stripes, show where reconstruction algorithms
could be further optimized to increase data quality.
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expected temporal behavior at the individual mouse level
(Fig. 9).
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