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Abstract. Active range imaging (Rl) systems utilize actively controlled light sources emitting laser pulses that
are subsequently recorded by an imaging system and used for depth profile estimation. Classical Rl systems are
limited by their need for a large number of frames required to obtain high resolution depth information. In this
work, we propose an Rl approach motivated by the recently proposed compressed sensing framework to dra-
matically reduce the number of necessary frames. Compressed gated range sensing employs a random gating
mechanism along with state-of-the-art reconstruction algorithms for the estimation of the timing of the reflected
pulses and the inference of distances. In addition to efficiency, the proposed scheme is also able to identify
multiple reflected pulses that can be introduced by semi-transparent elements in the scene such as clouds,
smoke, and foliage. Simulations under highly realistic conditions demonstrate that the proposed architecture
is capable of accurately recovering the depth profile of a scene from as few as 10 frames at 100 depth bins
resolution, even under very challenging conditions. The results further indicate that the proposed architecture
is able to extract multiple reflected pulses with a minimal increase in the number of frames, in situations where

state-of-the-art methods fail to accurately estimate the correct depth signals. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.0E.54.3.031106]
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1 Introduction

Range imaging (RI) refers to a family of technologies that
aim to capture and extract the depth information of a
scene. Formally, assuming that each point in a scene imaged
by the sensor is characterized by a single depth value (the
distance between the object and the camera), one can gen-
erate a depth map of a scene where pixel intensity corre-
sponds to the distance between the camera and the
imaged object. Depth information can be directly used for
the visualization of the scene, as well as for target detection,
robot navigation, and surface modeling. Today, several RI
solutions are available in the market depending on the hard-
ware requirements, the physical constraints, and the
requested depth data quality and resolution. RI has been
employed in numerous applications including remote sens-
ing, gaming, security, search and rescue, and medical
diagnostics.'

RI systems can be broadly classified as active or passive,
depending on the presence or absence of a user-controlled
illumination source. Passive RI systems are designed such
that depth information is extracted from a single or multiple
images using properties of the scene or the imaging setup.
Typical examples of passive RI including stereo, multiview
imaging, and depth-from-focus methods that have been
extensively used for extracting depth information, especially
in indoor scenarios. On the other hand, active RI technolo-
gies adopt a user controlled illumination source for depth
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extracting. Laser-based active RI, also known as Light detec-
tion and ranging (LIDAR), is a well-known active RI tech-
nique that performs depth extraction based on the time-of-
flight (ToF)* principle, i.e., by measuring the time it takes
for a laser pulse to travel the distance from the source to
the object and back to the sensor. Active RI technologies
enjoy a broader range of applications, including night
time and underwater imaging, due to the use of active illu-
mination. Furthermore, active RI systems, especially the
ones based on ToF depth estimation, achieve large measure-
ment ranges and high quality depth estimation.

Currently, there are two categories of ToF camera archi-
tectures, namely, continuous-wavemodulation (CWM)3 and
gated range imaging (GRI).*®* CWM-RI operates by illumi-
nating the scene with an appropriately modulated light
source and recording and extracting the depth by investigat-
ing the phase of the reflected light. In contrast with CWM, in
GRI a series of pulses are emitted from the light source, and
the sensor records the reflected pulses that correspond to a
specific range of distances, by electronically controlling the
on-off state of the gate. For each specific range, a depth pro-
file is reconstructed according to the time interval in which
the sensor registered the reflected pulses. To obtain a full
depth map, multiple frames, whose number is proportional
to the required depth resolution, have to be recorded. This
technique is commonly referred to as the time slicing
(TS) approach.

The range imaging capabilities of a GRI system are pri-
marily dictated by the number of frames that the imaging sen-
sor must capture in order to support the requested depth
resolution. The temporal resolution in GRI architectures is
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therefore directly related to the depth resolution. A higher
temporal resolution leads to a greater depth resolution that
can provide a more detailed mapping of the scene and
strengthen subsequent processing such as target detection.
However, higher depth resolution comes at the cost of a
larger number of frames, which implies slower acquisition
process and restricts the capability of imaging dynamic
scenes, or range imaging from a moving platform.
Compactly, we define the sampling rate as the ratio between
the acquired number of frames and the requested number of
depth bins by r = #frames/#depthbins.

While traditional GRI requires » = 1, which corresponds
to the Nyquist rate sampling; in this work, we propose a
novel architecture that can achieve the same depth resolution,
at a much lower r. More specifically, we propose a novel GRI
technique that is able to significantly reduce r without sac-
rificing the quality of the depth map. This goal is achieved by
exploiting the sparsity of the reflected laser pulses relative to
the full resolution signals. Our proposed design, termed com-
pressed gated range sensing (CGRS), shown in Fig. 1,
employs a random gating mechanism for the temporal
encoding of the reflected laser pulses. More specifically,
the proposed architecture consists of a light source (laser),
an electronic gating mechanism, and an imaging sensor.
By dynamically varying the sampling pattern encoded by
the mask during each frame, CGRS is able to achieve tem-
poral multiplexing of the incoming light. Reconstruction of
depth information from the multiplex signals is achieved by
posing the problem in a compressed sensing (CS) framework
and employing tools from the CS reconstruction theory. With
respect to state-of-the-art approaches, the CGRS method:

* requires a significantly smaller number of frames for a
specific depth resolution, compared with traditional
GRI technologies. A reduced number of frames implies
that higher sampling rates are possible, facilitating the
imaging of dynamically changing scenes.

Transmitted pulse

=

Frame #1

* is one of the few techniques that offers the capability of
capturing multiple reflected pulses at each sensor
element, offering the capability of imaging camou-
flaged or cloaked objects, as well as imaging objects
behind clouds or smoke.

¢ relies on electronic multiplexing of the depth signals
and not on mechanical interaction, e.g., rotating mir-
rors, in order to extract the depth map of the scene,
and hence reducing the size, cost, and failure probabil-
ity of the GRI architecture.

¢ is able to exploit prior knowledge concerning the im-
aging conditions by introducing an appropriately
designed dictionary. This dictionary is utilized for
enhanced recovery of the depth signals, even under
challenging conditions.

The rest of the paper is organized as follows. Section 2
provides an overview of current state-of-the-art in active
RI, with a focus on GRI techniques. Section 3 presents an
analysis on the characteristics of the depth signals, including
their interaction with the various system components.
Section 4 presents the proposed CGRS technology and dis-
cusses the characteristics of the individual components. To
validate the merits of the proposed GRI scheme, Sec. 5
presents extensive experiments and comparisons with stan-
dard techniques that were carried out on data from a simu-
lated system that was carefully designed to account for the
numerous parameters that affect the behavior of a GRI setup.
The paper concluding remarks are found in Sec. 6.

2 Previous Work

Active RI systems such as LIDAR and structured light (SL)
cameras make use of a light source in addition to the camera
sensor to generate a depth map. In SL methods, a light pro-
jection system is responsible for illuminating the scene with
a specific spatial pattern [typically in the near-infrared (NIR)
part of the spectrum], while a camera sensor captures the

Ve

Projection MTX

Frame #m

Frame

Mask state

Per pixel

Gatingmask  Recorded pulses

Fig.1 A graphical overview of the proposed compressed gated range sensing (CGRS) architecture. Ata
specific time instance, a laser source transmits a pulse that propagates through some medium and is
reflected back by objects in the scene, resulting in multiple reflected pulses, each one arriving at a differ-
ent time instance (proportional to the traveled distance). An optical lens focuses the reflected pulses on a
gating device that implements a coding mask for each pixel, corresponding to a random sampling of the
reflected pulses. During each integration period (i.e., a single frame), the gating mask goes through a
sequence of random pattern, temporally multiplexing the incoming light. As a consequence, each frame
is associated with numerous mask states as shown in the projection matrix. Knowledge of the projection
sequences and prior knowledge of signal behavior are exploited by CGRS to recover a high quality depth

signal of the scene.
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reflected light.”? In SL, the extraction of the depth map fol-
lows a similar approach as stereo imaging, albeit with known
(or easily estimated) point correspondences that are identi-
fied by the distortion of the projected light patterns.
Although when compared with stereo, SL avoids issues
with correspondences, limitations of SL arise from specular
reflections, strong dependence on illumination conditions,
object motion, and the need for careful calibration.

ToF LIDAR approaches employ a ToF measurement
process to quantify the scene’s depth profile by analyzing
the time light takes to travel a specific distance. Two classes
of ToF approaches have been developed, namely, GRI and
CW modulation.'” In CW-ToF, a NIR projector, usually
light-emitting diode based, projects a sinusoidal modulated
light, while a complementary metal oxide semiconductor or a
charge coupled device sensor measures the reflected light. To
estimate depth, each sensor element must sample the
reflected light four times at equal intervals for every period.!!
Using these measurements, one can estimate the phase, the
offset, and the amplitude of the reflected light to extract a
depth estimate. On the other hand, in GRI, the shutter of
the camera sensor is carefully controlled in order to precisely
manipulate the amount of reflected light that is captured at
each frame. By limiting the exposure time, only laser pulses
that have been reflected from objects at specific distance
ranges are captured. As a consequence, to produce a detailed,
high resolution depth map, multiple frames have to be
captured.

The performance of a GRI system is determined by
numerous parameters including the reflectivity of the
scene, the atmospheric attenuation, and the effects of the gat-
ing process on the recorded signal. While some of these
parameters can be reliably modeled, the interaction between
the signal and the gating process is more complicated, but
also allows for novel approaches in GRI. High precision sen-
sor gain control is another technique for reducing the number
of frames of classical GRI architectures. For example, one
can employ a constant and a linearly increasing gain modu-
lation by controlling the working voltage of the microchan-
nel plates in order to achieve RI.'> A similar approach'® was
recently proposed where the authors investigated gain modu-
lation for achieving depth map reconstruction from two
frames by combining a narrow laser pulse generator with
an exponentially modulated gain camera. The depth informa-
tion of each pixel is calculated from the recorded value in
two frames, one with constant gain and one with modulated
gain. A significant issue related to this technology is that
both methods require the ability to electronically control
the gain of the sensor with a very high precision. Failure
to accurately set the gain can lead to major depth estimation
errors. Furthermore, the accuracy of the depth map varies
with the target’s distance, which results in a nonuniform
depth resolution. Finally, such technologies cannot handle
multiple reflections due to the ambiguity that is introduced
during the depth coding process.

TS is a benchmark method for depth extraction via GRI.
According to this approach, the resolution of the depth map
(number of depth bins) is directly proportional to the number
of captured frames since each frame encodes depth informa-
tion from a specific range only. For an overall depth range
between Z;, and Z,,, the depth range encoded in each bin
corresponds to Zy, = (Zmax — Zmin)/ K, where K is the
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number of captured frames. An object located at distance
zx will produce a reflected pulse that will require
= %sec to reach the sensor, where c¢ is the speed of
light. Assuming that each measurement m,, n =1,...N,
encodes light from a specific depth range, the depth of a sin-
gle object can be found by solving:

X = max m,,. (1

A significant shortcoming of the TS approach is the ap-
parent waste of resources due to the acquisition of a large
number of “empty frames”, that is, frames that do not capture
any reflected pulse. Gate coding (GC) was recently proposed
to address this issue.

GC is a novel approach in GRI that exploits the interac-
tion between the profile of the pulse and the profile of the
gate.'*"1% Formally, the intensity of a single pixel correspond-
ing to an object at distance z;, or equivalent time 7, is given
by the convolution of the laser pulse profile and the gate pro-
file and is expressed as

Xy = P(ty) * G(1;) = ZP<t - ﬁ) G(t—1;). )

=0 ¢

GC assumes that both the laser and the gate exhibit rec-
tangular intensity profiles, which implies that the resulting
signal will have either a triangular or a trapezoidal depth
intensity profile, depending of the relative duration of the
pulse and the gate. As a consequence, the detector is capable
of recording three distinct values, namely O for no signal, 1
for a plateau, and 0.5 for a rising or falling edge. The three
values produce a constrained ternary code that is able to
encode about 3" — 2"*! 4+ 1 valid combinations in n images,
thus offering super-resolved depth map estimation.

The proposed range imaging architecture can be consid-
ered as an example of flash LIDAR architecture.'” Flash
LIADR technology relies on the transmission and receipt
of a single laser pulse illuminating the scene. Depth estima-
tion is achieved by exploiting the electric properties of ava-
lanche photo diodes (APDs), which, when operating in
Geiger mode, are able to magnify the signals generated
by a small number of photons reaching the detector through
an avalanche effect. A prominent example of this technology
is the range imaging architectures developed by advanced
scientific concepts (ASC) such as the ASC TigerEye.'8
Although flash LIDAR architectures enjoy very intriguing
properties, current designs based on APDs require special-
ized detectors that can increase the size and cost of the detec-
tor and have a negative effect on the spatial resolution.
Furthermore, in-depth studies have shown that APD-based
architectures are very sensitive to operating conditions,
including range, laser power, and target occlusions."

3 Signal Modeling

The majority of systems presented in the GRI literature have
been analyzed under ideal physical and operational condi-
tions. However, a variety of noise sources, including sensor
noise and optical turbulence, as well as the effects of various
physical phenomena such as scattering and divergence of
light beam, could be responsible for the breakdown of
these systems under challenging yet realistic conditions.
In this work, we consider a rigorous modeling of the
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numerous factors that affect the depth signals produced by
GRI systems and incorporate this knowledge into the recov-
ery process.

Formally, depth signals correspond to reflected laser
pulses that reach the imaging sensor after propagating
through the atmosphere. In GRI, the laser pulses are short
in duration and transmitted during predefined periods. We
assume that the reflected pulses are captured during distinct
time intervals that result in a quantization of the depth map.
The presence of multiple semi-transparent objects in the
scene, including foliage and smoke, can lead to multiple
reflected pulses being produced from a single transmitted
pulse. Because of the very short duration of the pulses,
one can model the depth signal, s(z), as a stream of K
weighted Dirac pulses taking place at specific time instances

K
s(t) = > wid(t = 1), 3)
p

where the parameters w; > 0 encode the amplitude of each
reflected pulse. The activation instances ¢, are related to the
distances of specific objects by the expression z; = 21, /c.
However, the ideal signal s(f) undergoes several changes
due to a variety of phenomena that come into play. The
power, and therefore the amplitude, of a reflected laser
pulse, emitted from a light source at distance z; from the
target, can be approximated by the LIDAR** equation

EC
wi ~ Py(z) = Z—zﬂ(Z)T(Z)v “)

where E and C are the laser output energy and laser calibra-
tion, which we assume constant, while 3(z) is the backscatter
coefficient caused the molecules and aerosol within the
pulse’s path. T(z) is the atmospheric transmission term
that can be modeled according to T(z) = e 2/0%)%' The
light acquired by the detector will also be affected by the
properties of the imaging system, as well as the geometry
of the beam. Putting all these parameters together, we can
express the power of the light received by the detector by

~ P(z) = QV(2)(2)T(z) + N(0,0%). Q)

In this equation, four factors are responsible for the power
of the signals reaching the detector. More specifically, Q is a
factor encoding the efficiency of the system, V(z) is the
range-dependent geometry, 3(z) is the backscatter coeffi-
cient, and T'(z) is the atmospheric transmission term while
N encodes added Gaussian noise. The terms V(z), B(z),
and T(z) are all functions of the distance z, while the
Gaussian noise incorporates all other nondistant-related
noises sources. Next, we discuss the characteristics of
each term.

In Eq. (5), the light source is modeled as a diverging
source. The properties of this model are encoded in V(z),
which accounts for the attenuation of the power due to
the geometric profile of the beam. Considering the path for-
ward only, the divergence is given by

Viu(z) = 0(2)/2°=1/2%, (©)

where O(z) is the receiver-field-of-view function. Typically,
we approximate this quantity by the right-hand side of
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Eq. (6) since this quantity is responsible for the large
dynamic range of the signal. In addition, the diffused
reflection of the object also imposes the same attenuation
in the backward path resulting in a roundtrip diver-
gence V(z)~2/7%.

Light propagation through the atmosphere is primarily
affected by three factors, namely absorption, scattering,
and optical turbulence.”’ While absorption and scattering
are frequency-dependent phenomena that are manifested
by a predictable attenuation of the optical waves, turbulence
is a more complicated process that causes irradiance fluctua-
tions. Absorption and scattering are often grouped together
to a common term, the transmittance, described by Beer’s
law as T(z) = exp(—a(4)z), where a(4) is the extinction
coefficient at distance z, combining the effects of both
absorption and scattering. Since the recorded signal has
undergone reflection, we have to take the atmospheric
absorption into account twice. The value a = 1/1000 in
meters is typically used for encoding clear and dry condi-
tions. The atmospheric backscattering 3, can be modeled
as a constant density depending on the atmospheric condi-
tions (weather and temperature). In clean conditions, we con-
sidered a value 1077, while for wet conditions, a value in the
range 107> can be used. Optical turbulence is modeled in our
scheme as additive white Gaussian noise with a specific
noise power. Finally, we assume that objects in the scene
have a specific reflectivity <1 that may vary depending
on the material.

While in theoretical models, the beginning and end of the
laser pulse and the camera gate are modeled as instant oper-
ations requiring no transition time, in real-life conditions, this
is no longer the case. To realistically model the behavior of the
gate, we assume that the gate function can be expressed as the
convolution of an ideal gate function, modeled by a rectangu-
lar function ;g (#) = I1(z + 7;), with a filtering function
f, (1) = e'/'= (1 > 0) encoding the characteristics of the sam-
pling process, that is g(t) = gigeu () * f,(¢). Similarly, the
laser pulse is modeled as the convolution of the ideal pulse
Xigeal (2) = 8(2).A(z)d(z) with a similar filter with parameter
touise iVing X(f) = Xigea () * £,(¢). As a consequence, the
noise-free signal that reaches the sensor corresponds to the
multiplication of the pulse function with the gate function
defined before, that is X(#) = X;gea1(#)g(?). Considering the
different noise sources and physical properties described
above, the compound signal model is given by

x(1) = [s(z)A(2)d(z) * £, ()][T1(z + 1) * £,(1)]. @)

To help visualize the effects on the previously discussed
phenomena on the ideal depth signals, Fig. 2 showcases the
progressive alteration of the ideal depth signal. In this figure,
it is easy to understand that accounting for the different
aspects of the system is critical in order to support the accu-
rate and efficient recovery of the depth signals. Furthermore,
these alterations are taken into account in the proposed
CGRS via the introduction of a dictionary of prototypical
examples, which we discuss in the next section.

4 Compressed Gated Range Sensing

The problem of extracting the true underlying signals from
noisy and limited measurements has been extensively stud-
ied by the signal processing community. Formally, the num-
ber of measurements one is required to acquire is related to
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Fig. 2 Graphical illustration of: (a) an ideal multiple reflection depth signal; (b) the signal with backscatter,
turbulence, attenuation, and divergence; (c) the signal after interaction with the gate function. The hori-
zontal axis encodes time and the vertical signal amplitude. Note that various effects, e.g., backscatter,
are exaggerated compared with typical conditions for exposition.

the bandwidth of the signal which, for a large class of sig-
nals, can be very high. The depth signals considered in GRI
fall under this category, and thus require a large number of
measurements, i.e., frames, for the accurate estimation of dis-
tances. Fortunately, the special structure of these signals can
provide a significant boost in the recovery process.

Compressed sensing (CS) is anovel approach in signal rep-
resentation and sampling that was introduced by Donoho?
and by Candes et al.>> The main concept underpinning CS
is that a signal can be recovered from a small number of ran-
dom measurements that can be far below the Nyquist—
Shannon limit. The key CS assumptions are that (a) the signal
itself is sparse or that it can be sparsely represented in an
appropriate dictionary, and that (b) enough random measure-
ments are taken. Formally, a signal s € R" is called k-sparse if
|Isllo < k, where the zero norm || - ||, counts the nonzero sig-
nal elements. This signal can be reliably recovered from alow-
dimensional representation y = ¥s € R™, where m < n by
solving an [ constrained minimization problem given by
min [|s||, subject to y = Ps. ®)

When the measurements are affected by noise or when an
approximate solution is needed, one can solve the following
approximate minimization problem:
min [|s||, subject to ||y — ¥s||, <e, )
where € is an acceptable approximation error.

Although CS has been developed fairly recently, it has
already found many applications in imaging systems ranging
from single pixel cameras®* to CS-based magnetic resonance
imaging,” and CS-based radar systems.?® In all these appli-
cations, a dramatic increase in resolution or reduction in im-
aging time has been reported. CS-based imaging has also
been investigated in the context of range imaging. The com-
pressive depth acquisition camera (CoDAC)*” is a prominent
example of an active RI utilizing a single ToF-based sensor
that capitalizes the properties of CS sampling and
reconstruction. More specifically, the CoDAC designers pro-
pose to spatio-temporally modulate a light source and then
sample the returning light by a single photon-counting
photodetector. One of the most important attributes of this
scheme is that the resolution of the depth map is matched
with the resolution of the modulator, and thus providing a
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better spatial analysis than what is possible by the limited
number of detectors.

The CoDAC RI system bears many similarities with the
proposed GCRS architecture, most prominent being the use
of CS for reducing the required sampling rate. While CGRS
aims at increasing the depth resolution from a limited num-
ber of frames (temporal resolution increase), CoDAC aims at
increasing the spatial resolution of the depth image. To
achieve this, it requires a significant number of time samples
that makes it impractical for dynamic scenes. Our proposed
technique targets temporal resolution, which makes it more
appropriate for time evolving scenes or for generating accu-
rate depth maps from moving platform and vehicles. This
work is an extension of an earlier version”®*’ and introduces
numerous novel components, including the principled study
of multiple pulse acquisition and decoding among others.

4.1 Sensing Matrix

A critical component of the CGRS architecture is the random
gating mechanism. Although one could consider determin-
istic sampling schemes, as is the case in TS and GC, the ran-
dom sampling pattern is selected due to its fundamental
properties with respect to recovery. Formally, to guarantee
the stable recovery of the original signal x, the m X n sensing
matrix W should satisfy the so-called restricted isometry
property (RIP). A sensing matrix ¥ € R"™" satisfies the
RIP with isometry constant 0 < ¢ < 1 if for all k-sparse sig-
nals, x, it holds that

(1= 8)[x]3 < [¥xl3 < (1 + S)]IxI. (10)

Designing such a sensing matrix is proven to be a chal-
lenging task. However, it has been shown that matrices
whose elements are randomly drawn from appropriate distri-
butions satisfy the RIP with high probability. Examples of
such distributions include normalized mean bounded vari-
ance Gaussian’> and Rademacher™ distributions.

Although the construction of a sensing matrix via ran-
domized methods has circumvented the need for explicit
construction algorithms, many of the proposed sensing
matrices are difficult to realize hardware-wise. In this
work, the random measurements are generated by employing
binary sparse matrices with a bounded number of nonzero
elements per column.’’ More specifically, the sampling
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matrix is constructed such that each element is drawn
according to

_ 1 with probability 4
$ij = 1/\/3{ 0 otherwise ’ an

The performance characteristics of this type of binary
sampling matrices were recently explored,’” where it was
shown that they satisfy the RIP. Obviously, their important
advantage is that they approximate the performance of their
dense counterparts, but at a significantly reduced computa-
tional and memory cost.

To help understand the benefits of our proposed random
binary sampling scheme, Fig. 3 offers a visual exposition of
applying the classical periodic and the novel random binary
sensing approach when sampling sparse depth signals. In this
figure, the (a) and (b) subfigures correspond to two depth
signals, corresponding to objects at different distances.
The repetition of the signals is a common approach in
GRI aiming at increasing the power of the captured signals.
The top row in each subfigure indicates the returning laser
pulse, after it has been reflected by the object while the sec-
ond and fourth rows present the periodic and random gating
functions, respectively. We observe that periodic sampling
follows a canonical pattern of leaving the gate open,
while the proposed random gating opens and closes the
gate multiple times within the integration time. The third
and firth rows illustrate the captured signals. In the case
of the left subfigure, the target happens to be at a range
where both the periodic and the random gating functions
are able to record energy from the returning laser pulse.
However, in the right subfigure, we observe that the mis-
alignment between the returning pulse and the periodic gat-
ing results in an all-zero captured signal. On the other hand,
the proposed random sampling is still able to record a valu-
able signal. As a result, the recorded energy by the random
gating method can be used to infer the location of the target
and to estimate its distance.

4.2 Dictionary Construction

The formulation of CS presented in Egs. (8) and (9) assumes
that the signals in question are naturally sparse, i.e., they con-
sist of a small number of nonzero elements. This is, indeed,
the case for the ideal depth signals involved in GRL
However, because of the various effects of the imaging proc-
ess, the natural sparsity of these signals can be lost. The

phenomenon can be clearly seen in Fig. 2, where we observe
that the ideal depth signal shown in subfigure (a) contains
only two nonzero components, whereas the actual sensed
signal shown in subfigure (c) is a highly dense and nonsparse
single. To tackle this issue, which is a direct consequence of
our realistic signal modeling process, we consider an exten-
sion of the standard CS theory where a dictionary of elemen-
tary examples is used as a sparsifying transform. In other
words, instead of unrealistically assuming that the captured
signal is sparse, we employ the fact that it can be sparsely
represented in an appropriately designed dictionary. In other
words, the use of prior knowledge regarding the physical
process allows us to utilize the representational power of dic-
tionaries to improve the depth signal recovery.

Formally, we concentrate on the acquisition and recovery
of the sparse representation s of the depth signal x in a dic-
tionary D according to x = Ds. During the early stages of the
CS formulation development, well-known orthogonal trans-
forms including the discrete Fourier transform (DFT), the
discrete cosine transform (DCT), and the wavelets were
employed as sparsification dictionaries. Later, the theory
was extended to overcomplete dictionaries that were no
longer restricted to a basis. Recently, Candes et al.>? showed
that the theory of CS is applicable in cases where the signal is
sparse in coherent and redundant dictionaries including over-
complete DFT, wavelet frames, and concatenations of multi-
ple orthogonal bases. The last case is of particular interest
since the dictionary employed in our scheme falls under
this category.

More specifically, we consider a dictionary D of size n X
(m+ 1) where n is the number of frames, and m is the
required depth resolution. The dictionary matrix is con-
structed by concatenating an identity matrix I and a unit vec-
tor 1 where the identity matrix is responsible for encoding
the ideal depth signal and the unit vector encodes the effects
of backscattering. This initial dictionary is further modified
to account for the effects of divergence and attenuation,
encoded in A(z), generating a dictionary given by

D = 1] x A(z)d(z). (12)

The number of required measurements for the
reconstruction is dictated by the mutual coherence between
the sensing matrix ¥ and the dictionary D, which is defined
as the maximum of the inner product between columns of the
dictionary and the sampling matrix
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1 1
1 1
1 1
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Random ! !
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Fig. 3 An illustrative example demonstrating the advantages of the proposed random gating technique
over traditional periodic gating at two different integration periods (a) and (b).

Optical Engineering

031106-6

March 2015 « Vol. 54(3)



Tsagkatakis et al.: Multireturn compressed gated range imaging

u(P, D)= max

1<i<m,1<j<N

VN [(.;.d;.)], (13)

where y.; and d;. denote the i‘th column of ¥ and the j‘th
row of D, respectively. For a specific mutual coherence,
recovery is possible from m > Cu* (W, D)K log(N) random
measurements. As a consequence, having low coherence
between the dictionary and the sampling matrix is beneficial
in terms of performance. In CGRS, the sensing matrix ¥ is
composed of binary valued entries, while the dictionary D
contains large nonzero elements in the diagonal. For the spe-
cific scenario, the value of the mutual coherence y will take
the maximum value of xv/N when both the sensing vector
and the dictionary vector contain a nonzero measurement
at the same location, where x is a constant value related
to the magnitude of the signals.

4.3 Efficient Minimization

The proposed CGRS architecture can operate under agnostic
conditions by estimating the depth signals via the /, minimi-
zation problem in Eq. (8), which assumes a naturally sparse
signal. However, prior knowledge regarding the behavior of
the recorded signal could be utilized to increase the effi-
ciency of the system. Such prior knowledge is encoded in
the dictionary presented in the previous section. By incorpo-
rating this term in the optimization problem, the dictionary
based [, minimization is formulated according to
min ||s||, subject to y = ¥Ds. (14)

Even though solving the [, minimization will produce the
correct solution, this is an NP-hard problem, and therefore
impractical for moderate sized scenarios. To address this
issue, greedy methods such as the orthogonal matching pur-
suit (OMP)* have also been proposed for solving Eq. (14).
OMP greedily tries to identify the elements of the dictionary
that contain most of the signal energy by iteratively selecting
the element of the dictionary exhibiting the highest correla-
tion with the residual and updating the current residual
estimate.

One of the main breakthroughs of the CS theory is that
under the sparsity constraint and the incoherence of the
sensing matrix, the solution, i.e., reconstructing the original

signal, x, and the coefficient vector, s, from y, can be found
by solving the tractable /; optimization problem, called basis
pursuit, given by

min |s||; subject to y = ¥Ds. (15)

For compressible signals, the goal is not the exact
reconstruction of the signal, but the reconstruction of a
close approximation of the original signal. In this case,
the problem is called basis pursuit denoising and Eq. (15)
becomes
min [|s||; subject to |ly — ¥Ds||, <e, (16)
where € is a bound on the residual error of the approximation
that is related to the amount of noise in the data. The opti-
mization in Eq. (16) can be efficiently solved by the lasso™
algorithm for sparsity regularized least squares. In our rang-
ing application, a non-negativity constrain must also be
introduced in order to account for the fact that the signals
in question have a direct physical interpretation as the
acquired energy, therefore they cannot be negative. Hence,
we end up with the following optimization problem:
min [|s||; subject to |ly —¥Ds|l, <e and s>0. (17)

To select the optimal minimization framework, we inves-
tigated the theoretical recovery capabilities of OMP and
lasso with non-negativity constraints. While comparative
studies between these algorithms have been conducted in
the past, the physical constraints of the sensing matrix uti-
lized in CGRS present a unique scenario.

Figure 4 demonstrates the recovery capabilities of each
approach, measured by the probability of correctly identify-
ing the support of the signal, i.e., estimating the depth cor-
responding to a particular returning pulse, for various
sampling rates. For exposition purposes, we consider natu-
rally sparse signals with one and two nonzero elements.
Furthermore, we examine the performance when the ele-
ments of the sampling matrix are drawn from a normal dis-
tribution, which for the general case provides strict
performance guarantees, and the scenario where the elements
are randomly selected from the physically realizable {0,1}
binary set as it is the case in CGRS. Figures 4(a) and

1 1
0.9 0.9
- Binary CS - 1 pulse
Binary CS - 1 pulse .
0.8 ; H 0.8 — Gaussian CS - 1 pulse |
Gaussian CS - 1 pulse N
N —— Binary CS - 2 pulses
——Binary CS - 2 pulses .
8 07 . I 8 07 —— Gaussian CS - 2 pulses
3 —*— Gaussian CS - 2 pulses 3
o o
2 0.6 S 0.6
2 05 205
S 04 S 04
Qo Qo
< <
a 03 a 03
0.2 0.2
0.1 0.1
0 L L 0 >3 L L L L
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Sampling rate Sampling rate
(a) (b)

Fig. 4 Probability of correct support recovery of 1 and 2 sparse signals with (a) orthogonal matching
pursuit (OMP) and (b) lasso with non-negativity constraints, as a function of sampling rate.
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4(b) present the recovery performance for the OMP and the
non-negative lasso methods, respectively.

Concerning the performance of the Gaussian and the
binary sensing matrix, we observe that for the greedy algo-
rithm, there is no significant difference between the two
approaches, while for lasso, the use of a Gaussian sensing
matrix results in a performance gain over the use of a binary
matrix. Furthermore, we validate that increasing the sparsity
of the signal also has a positive impact on the performance.
However, we observe that this impact is smaller for the lasso
compared with OMP. Hence, in CGRS, we employ (a) a
binary sensing matrix, and (b) lasso with non-negativity con-
straints as the recovery algorithm. In this particular scenario,
we expect to be able to “perfectly” recover the ideal depth
signal from sampling rates as low as r = 10%. The results
presented in the next section confirm the theoretical
prediction.

5 Simulation Results

To validate the merits of the CGRS architecture, comparison
with two state-of-the-art approaches, namely TS and gate
coding, was considered. To acquire an informed understand-
ing of the behavior of each system, the highly detailed sim-
ulator discussed in Sec. 3 was utilized. The system was set
such that depth information in the range from 500 m to
2.5 Km was captured with a depth resolution of
20 m/bin, while the camera gating and the pulse duration
were set to 100 ns. Furthermore, the backscatter coefficient
was set to 107>, and the attenuation factor was set to 10*. In
our experiments, we considered two cases concerning the
signal-to-noise ratio (SNR), namely a high SNR (30 dB)
regime and a medium SNR (20 dB) regime. LIDAR data
from St. Helens mountain provided by U.S. Geological
Survey were used in the analysis.

In order to validate the merits of the proposed range im-
aging architectures, we measured the reconstruction error of
each approach at various sampling rates. The sampling rate
corresponds to the number of acquired frames over the total
number of frames required for sampling the depth signals at
the Nyquist rate. In other words, for 100 depth bins resolu-
tion, as it is the case in the experimental results, 1% sampling
rate corresponds to 10 frames. The reconstruction perfor-
mance is measured by averaging the Hamming error, a

0.12 T —|—CéRS
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Gate coding
0.1 |
§ 0.08 |
5
jo)
£ 0.06 |
£
£
©
I 0.04 |
0.02
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling rate
(@)

Hamming error

well-known metric that counts the number of locations
where two binary vectors differ. In our scenario, each
pixel is associated with a vector of length equal to the num-
ber of depth bins. This vector contains nonzero elements
only when the power of the signal is above a threshold
(10% of the maximum signal power), otherwise it is consid-
ered noise and is set to zero. For the single pulse case, each
such vector contains a single nonzero value at the element
that corresponds to the estimated distance between the cam-
era and the object. In the perfect reconstruction case, the esti-
mated and the true vectors have nonzero elements at exactly
the same locations for all the pixels, leading to a Hamming
error equal to zero, while in the other extreme, when all the
elements are different, the Hamming error is one.

5.1 Single Reflection Reconstruction

First, we consider the performance of the proposed and the
two state-of-the-art GRI architectures for the reconstruction
of single pulse depth signals under various conditions.
Figure 5 presents the depth signal reconstruction quality
as a function of the sampling rate for two SNR cases.
Overall, the results suggest that CGRS is able to achieve
high quality reconstruction, closely followed by GC,
while TS comes last in terms of performance under the
same conditions. More specifically, in these results one
can see that CGRS achieves a lower error compared with
GC from the low to very high sampling rates while on
the other hand, GC exhibits a very stable performance.
This behavior can be explained by considering the
reconstruction process of each approach.

CGRS relies on a CS-based recovery approach for the
estimation of the depth signals. The recovery capabilities
of CS exhibit a phenomenon known as “phase transition,”*
where recovery is impossible without sufficient many mea-
surements, while as soon as the number of measurements
become adequate, error-free recovery can be achieved almost
instantly in the noise-free case. We can visually verify this
theoretical prediction by observing that at the high SNR case,
the reconstruction error is very low, even at low sampling
rates, while in the noisy case, increasing the number of mea-
surements has a positive effect on performance. On the other
hand, GC requires a very small number of frames for decod-
ing the depth signals, but reconstruction is not improved by
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Fig.5 Reconstruction error as a function of sampling rate for the single pulse case for signal to noise ratio

(SNR) equal to (a) 30 dB and (b) 20 dB.
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Fig. 6 Three dimensional (3-D) depth reconstruction for the original data (a), via time slicing (TS) (b),
gate coding (GC), (c) and the proposed CGRS (d), with r = 0.2% at 30 dB SNR. The reconstruction error
for the three methods, measured in Hamming error, is 0.06, 0.01, and 0.007 for TS, GC, and CGRS,
respectively.

increasing the sampling rate. With respect to the behavior of
the systems under noisy conditions, we observe that CGRS
and GC show a robust behavior, in contrast to the classical
TS approach. Again, we can attribute this behavior to the
decoding process of each approach, where CS is known
to be very robust in noisy conditions. Similarly, the noise
does not seem to affect GC since the maximum likelihood
type decoding is also robust under noisy conditions.
Figure 6 showcases the original rendering of the depth
profile, as well as visualizations of the three reconstructed
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range images at r = 0.2 in the higher SNR (30 dB) case.
Regarding the reconstruction achieved by TS, one can
easily notice the “band” effect where points that belong
to a range of distances are grouped together. This phe-
nomenon is attributed to the coarse quantization that is
required for the extraction of the scene’s depth character-
istics from a very low sampling rate. On the other hand,
GC and CGRS achieve superior reconstruction quality,
very close to the fully sampled signal, even at this very
low sampling rate.
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Fig. 7 Reconstruction error as a function of sampling rate for SNR equal to (a) 30 dB and (b) 20 dB, for

two pulse reconstruction.
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Fig. 8 Recovery of multireturn depth signal, shown in (a), at 30 dB SNR and r = 0.2 by (b) TS, (c) GC,
and (d) CGRS. The Hamming erroris 0.103, 0.018, and 0.005 for TS, GC, and GCRS, respectively. In this
case, each pixel is associated with two reflected pulses.

5.2 Multiple Reflection Reconstruction

In addition to the estimation of a single reflected pulse dis-
cussed in the previous section, CGRS is also capable of
recovering multiple reflected pulses at each imaging detec-
tor. Figure 7 presents the reconstruction quality for the multi-
ple reflected pulses situation (two pulses received for each
pulse transmitted), as a function of the sampling rate for
two SNR cases. In this situation, we assume that 40% of
the signal’s energy is absorbed by the intermediate surface,
and the rest propagates and reflects from the objects in the
scene. Our particular model assumes that a semi-transparent
layer is located at 60 m distance, which absorbs 40% of the
laser pulses energy, and the rest propagates and reflects from
the objects in the scene.

Table 1 Number of frames required for recovery of the depth profile
as a function of depth resolution.

The robustness and increased recovery capabilities are
easily observed in Fig. 7 for both 30 and 20 dB cases.
More specially, we observe that in both cases, the typical
TS approach leads to substantially worse performance
than GC and CGRS. Comparing the performance with the
single pulse case, we observe that TS is heavily affected
by the scene’s characteristics and the image acquisition qual-
ity. Regarding CG and CGRS, we observe that with the
exception of extremely low sampling rates and low SNR,
CGRS outperforms GC in terms of recovery performance.
Similarly to the single pulse case, CGRS is able to achieve
a very low reconstruction error, even from sampling rates as
low as 20%, while GC’s performance remains stable, despite
increasing the number of acquired frames.

Figure 8 presents a visual illustration of the multiple
reflection depth profile of the scene and the renderings of
the reconstructions achieved by the three competing meth-
ods, namely TS, GC, and CGRS at r = 0.2 sampling rate.
With respect to the performance of TS, we observe that

Depth resolution (bins) TS 6e  ceRst) CORSE the system is able to correctly identify the two surfaces in
20 20 4 3 3 the scene, although the particular sampling mechanism

leads to a low depth resolution due to the “band” effect,
50 50 4 4 4 which was also observed in the single pulse case. On the
100 100 5 5 4 other hand, the architecture of GC prevents the method

from correctly identifying the multiple reflected pulses, espe-
200 200 6 6 5 cially in situations where the two pulses are close. As a con-
500 500 6 2 6 sequence of the mixing of the two signals, the GC in some

cases reconstructs an artificial surface that is a composition
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Fig. 9 Reconstruction error for varying depth resolution for a fixed frame budget (20 frames) in the (a) sin-

gle and (b) two sparse signal recovery cases.

of the two underlying sources. We observe that CGRS is able
to correctly estimate the multiple reflected pulses and pro-
duce a high resolution depth description of the scene.

5.3 Sampling Requirements

A real-life test that GRI must pass is related to the minimum
number of frames that are required to achieve a specific depth
resolution. The depth resolution is measured by the number
of depth bins that are used in order to cover the distance
between Z,;, and Z,,,,. Ideally, one seeks the highest num-
ber of depth bins to be encoded by the smallest possible num-
ber of frames. In traditional TS, the number of required
frames matches the requested depth resolution. As a conse-
quence, increasing the quality of the depth signals always
comes at the cost of increased sensing time.

The situation is more involved for the coding architec-
tures, namely GC and CGRS. In GC, the depth resolution
is controlled by the number of valid ternary codes that can
be encoded in a specific number of frames. The validity of
the codes implies that codewords that encode a direct tran-
sition from the “zero” to the “one” state without a rising or
a falling edge have to be excluded. For the CGRS, we
consider an approximation of the sampling bound, where
recovery of a k sparse signal of length n is possible from
Mupin ~ k log(n/k). Using this equation, Table 1 presents
the number of frames required for achieving a specific
depth resolution, for a “one-sparse” signal using TS, GC,
and CGRS(1) and for a “two-sparse” signal using CGRS(2).

The values in Table 1 clearly indicate the superiority of
coding schemes compared with traditional approaches.
More specifically, we observe that for the one-sparse signal,
the requirements of GC and CGRS are very similar, an obser-
vation which is consistent with the results presented in the
previous subsections. However, it is important to note that
CGRS is not only able to recover more complex signals
such as the two-sparse case, but that this capability may
come with no additional acquisition cost. This benefit is fur-
ther demonstrated in the next subsection.

5.4 Resolution Dependence

As a last important study, we analyze the resolution that each
method can provide given a predefined number of frames.

Optical Engineering
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Figure 9 presents the reconstruction error as a function of
depth resolution for a fixed set of 20 frames, for the estima-
tion of (a) a single pulse per pixel and (b) two pulses per pixel
in a high SNR (30 dB) scenario. Note that depth resolution,
which is the number of individual depth bins that can be
extracted for a specific distance range, is one of the most
important characteristics of a GRI system, due to its relation-
ship with the quality of the depth profile and the capabilities
for further processing.

The results shown in Fig. 9 are very interesting since they
highlight the behavior of each architecture. In general, for a
fixed frame budget, we expect that increasing the resolution
will result in lower reconstruction quality and higher estima-
tion error. This is, indeed, the case for the TS approach where
increasing the requested resolution leads to more coarse
groups of depth ranges, and thus lower depth quality. On
the other hand, GC is designed to achieve excellent
reconstruction, provided a sufficient number of frames are
available for decoding the acquired signal and under the
assumption of a single reflected pulse.

In contrast with TS and GC, CGRS exhibits a very inter-
esting property concerning the reconstruction capabilities of
the method for an increasing depth resolution. Following the
theoretical justification of CS, increasing the depth resolu-
tion while keeping the number of nonzero elements constant
(number of reflected pulses) leads to an increase in the signal
sparsity. As a consequence of the increased sparsity, the
recovery mechanism is able to improve its performance
and reduces the estimation error.

6 Conclusions

In this paper, we proposed a novel application of CS for the
acquisition of range images by GRI cameras. The proposed
CGRS architecture is based on the ToF depth measurement
principle and is able to reconstruct the depth profile of a
scene with minimum reduction in quality from significantly
fewer measurements, compared with traditional ToF imaging
approaches. Furthermore, CGRS is capable of recovering
multiple reflected pulses, which can be caused by semi-trans-
parent elements, and thus offering a true three-dimensional
profile of the scene. To achieve this goal, CGRS employs a
random gating mechanism, in combination with state-of-the-
art reconstruction algorithms based on the /; minimization
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framework for recovering multiple reflected pulses at any
given location. Furthermore, unlike previous work, a highly
detailed analysis of the various effects that are inflicted on
the ideal depth signal, is considered and utilized by the
CGRS. To validate the merits of the proposed system, highly
detailed simulation scenarios were considered where numer-
ous system parameters are taken into account. Results sug-
gest that CGRS is a viable choice when a single reflected
pulse per pixel is assumed, while it achieves superior perfor-
mance when multiple reflections are considered without
introducing extra acquisition costs.

This work was funded by the IAPP CS-ORION (PIAP-
GA-2009-251605) grant within seventh framework program
of the European Community and by the PEFYKA project
within the KRIPIS action of the General Secretary of
Research and Technology, Greece.

References

1. G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and appli-
cations of 3D imaging sensors in industry, cultural heritage, medicine,
and criminal investigation,” Sensors 9(1), 568-601 (2009).

2. C. Weitkamp, LIDAR: Range-Resolved Optical Remote Sensing of the

Atmosphere, Vol. 102, Springer, Switzerland (2005).

. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE

J. Quantum Electron. 37(3), 390-397 (2001).

. J. Busck and H. Heiselberg, “High accuracy 3D laser radar,”Proc.

SPIE 5412, 257 (2004).

. O. Steinvall et al., “Overview of range gated imaging at FOL” Proc.

SPIE 6542, 654216 (2007).

6. M. Laurenzis and A. Woiselle, “Laser gated-viewing advanced range
imaging methods using compressed sensing and coding of range-
gates,” Opt. Eng. 53(5), 053106 (2014).

7. D. Fofi, T. Sliwa, and Y. Voisin, “A comparative survey on invisible
structured light,” Proc. SPIE 5303, 90-98 (2004).

8. M. Ribo and M. Brandner, “State of the art on vision-based structured
light systems for 3D measurements,” in Int. Workshop on Robotic
Sensors: Robotic and Sensor Environments, 2005, pp. 2—6, IEEE,
Ottawa, Canada (2005).

9. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt.
Photon. 3(2), 128-160 (2011).

10. S. Foix, G. Alenya, and C. Torras, ‘“Lock-in time-of-flight (ToF) cam-
eras: a survey,” IEEE Sensors J. 11(9), 1917-1926 (2011).

11. S. Hussmann, T. Ringbeck, and B. Hagebeuker, “A performance
review of 3D tof vision systems in comparison to stereo vision sys-
tems,” in Stereo Vision, A. Bhatti, Ed., pp. 103-120, I-Tech,
Vienna, Austria (2008).

12. Z. Xiuda, Y. Huimin, and J. Yanbing, “Pulse-shape-free method for
long-range three-dimensional active imaging with high linear accu-
racy,” Opt. Lett. 33(11), 1219-1221 (2008).

13. C. Jin et al., “Gain-modulated three-dimensional active imaging with
depth-independent depth accuracy,” Opt. Lett. 34(22), 3550-3552
(2009).

14. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-
dimensional active imaging with superresolution depth mapping,”
Opt. Lett. 32(21), 3146-3148 (2007).

15. M. Laurenzis and E. Bacher, “Image coding for three-dimensional
range-gated imaging,” Appl. Opt. 50(21), 3824-3828 (2011).

16. M. Laurenzis et al., “Coding of range-gates with ambiguous sequences
for extended three-dimensional imaging,” Proc. SPIE 8542, 854204
(2012).

17. M. A. Albota et al., “Three-dimensional imaging laser radars with gei-
ger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351—
370 (2002).

18. R. Stettner, H. Bailey, and S. Silverman, “Three dimensional flash Ladar
focal planes and time dependent imaging,” http://www.advanced
scientificconcepts.com/technology/documents/ThreeDimensionalFlash
LadarFocalPlanes-ISSSRPaper.pdf (December 2014).

19. G. M. Williams, Jr, “Limitations of Geiger-mode arrays for flash ladar
applications,” Proc. SPIE 7684, 798414 (2010).

20. J. Mao, “Noise reduction for lidar returns using local threshold wavelet
analysis,” Opt. Quantum Electron. 43(1-5), 59-68 (2012).

21. L. Andrews and R. Phillips, Laser Beam Propagation through
Random Media, 2nd ed., Vol. PM152, SPIE Press, Bellingham,
Washington (2005).

22. D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory
52(4), 1289-1306 (2006).

23. E. Candes et al., “Compressed sensing with coherent and redundant
dictionaries,” Appl. Comput. Harmonic Anal. 31(1), 59-73
(2011).

[ NN

Optical Engineering

031106-12

24. M. Duarte et al., “Single-pixel imaging via compressive sampling,”
IEEE Signal Process. Mag. 25(2), 83-91 (2008).

25. M. Lustig et al., “Compressed sensing MRI,” IEEE Signal Process.
Mag. IEEE 25(2), 72-82 (2008).

26. M. Herman and T. Strohmer, “High-resolution radar via compressed
sensing,” IEEE Trans. Signal Process. 57(6), 2275-2284 (2009).

27. A. Kirmani et al., “Codac: a compressive depth acquisition camera
framework,” in 2012 IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5425-5428, IEEE, Kyoto, Japan
(2012).

28. G. Tsagkatakis et al., “Active range imaging via random gating,” Proc.
SPIE 8542, 85420P (2012).

29. G. Tsagkatakis et al., “Compressed gated range sensing,” Proc. SPIE
8858, 88581B (2013).

30. R. Baraniuk et al., “A simple proof of the restricted isometry property
for random matrices,” Constr. Approximation 28(3), 253-263 (2008).

31. A.Gilbertand P. Indyk, “Sparse recovery using sparse matrices,” Proc.
IEEE 98(6), 937-947 (2010).

32. W. Lu et al., “Near-optimal binary compressed sensing matrix,” arXiv
preprint arXiv:1304.4071 (2013).

33. J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Inform. Theory 53(12),
4655-4666 (2007).

34. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Series B 267-288 (1996).

35. D. L. Donoho, A. Maleki, and A. Montanari, “The noise-sensitivity
phase transition in compressed sensing,” IEEE Trans Inform.
Theory 57(10), 69206941 (2011).

Grigorios Tsagkatakis received his BS and MS degrees in electron-
ics and computer engineering from the Technical University of Crete,
Greece, in 2005 and 2007, respectively. He was awarded his PhD in
imaging science from the Center for Imaging Science at RIT, New
York, in 2011. Currently, he is a postdoctoral fellow at the Institute
of Computer Science, FORTH, Greece. His research interests include
signal and image processing with applications in sensor networks and
imaging systems.

Arnaud Woiselle graduated from the Ecole Centrale de Marseille,
France, and received his MSc degree in image processing from
the University of Aix-Marseille in 2007. He received his PhD degree
from Universit Paris Diderot, France, in 2010. Since 2010, he has
been a research engineer at Sagem, Safran group. His research inter-
ests include sparsity and inverse problems, applied to image and
video restoration, and super-resolution. He has a particular interest
in compressed sensing.

George Tzagkarakis received his PhD and MSc (first in class)
degrees in computer science from the University of Crete, Greece
(UoC), and his BSc degree in mathematics from UoC (first in
class). He has extended expertise in the fields of compressive sens-
ing and sparse representations, and statistical signal and image
processing. His appointment at CEA, France, as a Marie Curie post-
doctoral researcher advanced his competence on the design of video
compressive sensing algorithms for remote imaging in areal and ter-
restrial surveillance systems.

Marc Bousquet is a senior manager of Sagem, Safran group working
on research and development of signal and image processing
algorithms.

Jean-Luc Starck is a senior scientist at the Institute of Research into
the Fundamental Laws of the Universe, CEA-Saclay, France. His
research interests include cosmology, especially cosmic microwave
background and weak lensing data, and statistical methods such
as wavelets and other sparse representations of data. He has pub-
lished more than 200 papers in different areas in scientific journals,
and he is also author of three books.

Panagiotis Tsakalides received his PhD degree in electrical engi-
neering from the University of Southern California, Los Angeles, in
1995. He is a professor of computer science at the University of
Crete, and the head of the signal processing lab at the Institute of
Computer Science, Foundation for Research and Technology-
Hellas, Greece. His research interests include statistical signal
processing with emphasis in non-Gaussian estimation and detection
theory, and applications in sensor networks, imaging, and multimedia
systems.

March 2015 « Vol. 54(3)


http://dx.doi.org/10.3390/s90100568
http://dx.doi.org/10.1109/3.910448
http://dx.doi.org/10.1109/3.910448
http://dx.doi.org/10.1117/12.545397 
http://dx.doi.org/10.1117/12.545397 
http://dx.doi.org/10.1117/12.719191
http://dx.doi.org/10.1117/12.719191
http://dx.doi.org/10.1117/1.OE.53.5.053106
http://dx.doi.org/10.1117/12.525369
http://dx.doi.org/10.1364/AOP.3.000128
http://dx.doi.org/10.1364/AOP.3.000128
http://dx.doi.org/10.1109/JSEN.2010.2101060
http://dx.doi.org/10.1364/OL.33.001219
http://dx.doi.org/10.1364/OL.34.003550
http://dx.doi.org/10.1364/OL.32.003146
http://dx.doi.org/10.1364/AO.50.003824
http://dx.doi.org/10.1117/12.974471
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://www.advancedscientificconcepts.com/technology/documents/ThreeDimensionalFlashLadarFocalPlanes-ISSSRPaper.pdf
http://dx.doi.org/10.1117/12.853382
http://dx.doi.org/10.1007/s11082-011-9503-6
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1016/j.acha.2010.10.002
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/TSP.2009.2014277
http://dx.doi.org/10.1117/12.974606
http://dx.doi.org/10.1117/12.974606
http://dx.doi.org/10.1117/12.2023901
http://dx.doi.org/10.1007/s00365-007-9003-x
http://dx.doi.org/10.1109/JPROC.2010.2045092
http://dx.doi.org/10.1109/JPROC.2010.2045092
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TIT.2011.2165823
http://dx.doi.org/10.1109/TIT.2011.2165823

