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Abstract. We propose a design for silicon-on-chip integrated eight-channel wavelength division multiplexing
(WDM) demultiplexer, which consists of parallel-arrayed one-dimensional (1-D) photonic crystal nanobeam
cavities (PCNCs) with high-Q over 105 and large free spectral range of ∼200 nm. To the best of our knowledge,
this is for the first time that a 1-D PCNC-based demultiplexer is presented. The performance of the device is
investigated theoretically by using three-dimensional finite-difference time-domain method. To enable eight-
channel parallel arrayed 1-D PCNCs to be coupled to on-chip optical networks for higher integration and multi-
plex application, an 1 × 8 taper-type equal optical power splitter is used to connect all channels simultaneously.
The total device footprint is as small as 12 μm × 15 μm (width × length), which is decreased by five times com-
pared to that per channel in the recent two-dimensional (2-D) PC-based demultiplexer. Moreover, the average
channel spacing smaller than 115 GHz is achieved, which is more than two times smaller than that of 2-D PC
nanocavity devices, demonstrating that the arrayed nanocavities have the potential for developing ultracompact
100-GHz spaced filters in a dense WDM system. Thus, we believe that the results demonstrated in this work is
promising for the future on-chip photonics integrated circuits and optical communication systems. © The Authors.
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1 Introduction
Over the past decades, with the increasing demand for
bandwidth, it has become a significant trend to develop
optics communication systems for large-capacity and
high-efficiency data transmission. Wavelength division mul-
tiplexing (WDM) technology plays a very important role in
longhaul optics communication systems because it supports
large-capacity data transmission with high reliability.1–6 So
far, a variety of optical WDM demultiplexers used in silicon
(Si) photonics have been proposed and demonstrated, such
as Si microring demultiplexers,7 Si arrayed waveguide gra-
ting (AWG) demultiplexers,8–10 Si multimode interference
(MMI) demultiplexers,11,12 and Si Mach–Zehnder switches
demultiplexers.13–15 However, the footprint of these WDM
demultiplexers is too large, and therefore difficult to integrate
with other nanoscale optical components. Thus, recently
attention has turned to developing on-chip compact WDM
demultiplexers with an ultrasmall footprint.16

Silicon photonic crystals (PC), artificial periodic structures
with high refractive index contrast in dielectric media, and a
periodicity in the wavelength scale of light have attracted great
interest because of their potential to control light propagation
effectively in a short distance, which can lead to very compact
devices. Consequently, silicon PC is a promising candidate for
achieving ultracompact WDM demultiplexers. To realize
smaller WDM demultiplexers, those based on Si PC are
being developed.17–24 For example, Song et al.18 demonstrated
two-dimensional (2-D) PC cavities-based 16-channel WDM
demultiplexer with 628-GHz channel spacing, and the

footprint of per channel is 12 μm2. Takahashi et al.21 demon-
strated 2-D PC cavities-based 32-channel out-of-plane WDM
demultiplexer with 100-GHz channel spacing, and the foot-
print of per channel is ∼130 μm2. Ooka et al.24 demonstrated
2-D PC cavities-based eight-channel in-plane WDM demulti-
plexer with 267-GHz channel spacing, and the footprint of per
channel is 110 μm2. Among these Si PC-based WDM demul-
tiplexers mentioned above, all of them are based on 2-D PC
cavity platforms.

Compared with 2-D PC cavities, one-dimensional (1-D)
PC nanobeam cavities (PCNCs) have been recently demon-
strated as a competitive platform for large-scale on-chip
photonic integration, owing to their attractive properties of
ultracompact footprint, ultrahigh Q∕V (Q and V are cavity
quality factor and mode volume, respectively), and high inte-
grability with optical bus-waveguides and circuits.25–36 Thus,
to achieve an ultracompact WDM demultiplexer with much
smaller footprint, a method for the dense integration of
ultracompact 1-D PCNCs-based WDM demultiplexer is
proposed on a monolithic silicon chip. The proposed demul-
tiplexer device consists of multiple channels of parallel-
arrayed 1-D PCNCs units. The adjacent channels are sepa-
rated with small air-gap separations. Each channel consists
of a high-Q 1-D PCNC with different cavity length to extract
transmitted light with a specific resonant wavelength. To en-
able all parallel-arrayed 1-D PCNCs units to be interrogated
simultaneously, a 1 × N equal power splitter is used in the
input port of the device. The performance of the device is
investigated theoretically by using three-dimensional finite-
difference time-domain (3-D FDTD) simulation (a commer-
cial software package, Lumerical FDTD Solutions). The
results show that the presented eight-channel WDM*Address all correspondence to: Daquan Yang, E-mail: yangdq5896@163.com
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demultiplexer with dense channel spacing smaller than
115 GHz is achieved. Moreover, the footprints per channel
are 22.5 μm2, which is decreased by more than five times
compared to the per channel in the recent 2-D PC-based
WDM demultiplexers.21,24 In addition, it is worth mentioning
that, by changing the cavity length on the subnanometer
scale, the peak wavelengths at 100-GHz spacing in the wave-
length range between 1330 and 1420 nm can be successfully
designed, which is potentially a promising platform for
developing ultracompact 100-GHz spaced dense WDM sys-
tem with more than 100 channels.

The paper is organized as follows. Section 2 describes the
design of the proposed eight-channel WDM demultiplexers
based on parallel-arrayed 1-D PCNCs units. Section 3 shows
the performance discussion and analysis of the proposed
WDM demultiplexers based on the results obtained by
using 3-D FDTD. Section 4 draws a brief conclusion of
the paper.

2 Design
Figure 1(a) shows the proposed eight-channel WDM demul-
tiplexer in the upper 220-nm-thick silicon layer of a silicon-
on-insulator (SOI) substrate. The refractive index of the sil-
icon layer and silica substrate is nSi ¼ 3.46 and nSiO2

¼ 1.45,
respectively. A 1 × 8 optical power splitter (OPS) divides the
input signal power into eight channels, respectively. The
width of OPS (win) is 12 μm and the length of tapered wave-
guide (ltaper) is 10 μm. And the input port width of the eight
tapered silicon waveguides are 4.60, 1.15, 0.89, 0.86, 0.86,
0.89, 1.15, and 4.60 μm from top to bottom. By using
3-D FDTD method, Fig. 2 shows the composed transmission
spectra of each output port in the proposed 1 × 8 OPS.
It is worth mentioning that the insertion loss includes the
coupling losses, the excess losses, and the propagation
losses.37,38 All the insertion losses for each output port of
the proposed 1 × 8 OPS at wavelength of ∼1550 nm are

9.61, 9.64, 9.86, 9.83, 9.83, 9.86, 9.64, and 9.61 dB, respec-
tively, which are the best values obtained from the optimized
simulation. The excess loss is 0.69 dB. We have also cap-
tured the output profiles of the 1 × 8 OPS. The inset in
Fig. 2 is the cross-section of electric field profile for the
fundamental TE-like mode propagating through the output
ports of the splitter in y − z plane. It can be seen that
the field intensity of each output is nearly uniform. And the
calculated output uniformity of the splitter at a wavelength of
∼1550 nm is better than 0.25 dB.

The 1-D PCNC arrays consists of eight parallel-arrayed
1-D PCNC units separated by air-gap. A single 1-D
PCNC unit is shown in Fig. 1(b), which consists of a single
row of air (nair ¼ 1.0) hole gratings embedded in a nano-
beam silicon waveguide. For all of the eight 1-D PCNC
units, the width and thickness of the silicon nanobeam wave-
guide are the same as wb ¼ 500 nm and h ¼ 220 nm,
respectively. Next, we introduce a defect region into the
cavity by gradually increasing the periodicity (hole-to-hole
distance) and hole diameter for each segment starting from
a pair of outer holes and symmetrically moving toward the
center. When the feature size of a segment is enlarged, the
band-gap is redshifted, resulting in a graded photonic band,
as shown in Fig. 3. This allows confining a resonant mode
(ωres) in the defect region: the resonant mode is coupled to
the evanescent Bloch modes within the photonic band-gaps
(PBG) in the cavity center, effectively trapping it between
a pair of Bragg mirrors. Here, the number of the air-hole
gratings (Nm) in the mirror region and the number of the
air-hole gratings (Nt) in the tapered region of each unit
are the same as Nm ¼ 5 and Nt ¼ 4, respectively. And the
air-hole gratings radii (r) and the periodicity (a) in the mirror
region are the same as r ¼ 85 nm and a ¼ 350 nm, respec-
tively. All the air-hole gratings radii in the tapered region that
are the same linearly decreased from inside to outside as 95,
80, 65, and 50 nm, respectively; all the periodicities in the
tapered region that are the same linearly decreased from
inside to outside as 310, 290, 270, and 250 nm, respectively.
The only difference among these eight parallel-arrayed 1-D
PCNC units is that each unit has a different cavity length (lc1,
lc2, lc3, lc4, lc5, lc6, lc7, and lc8 referring to the cavity length
of cavity unit 1, 2, 3, 4, 5, 6, 7, and 8, respectively, being 1
the unit at the top channel and 8 the unit at the bottom

Fig. 1 (a) Schematic illustration of an eight-channel WDM demulti-
plexer based on parallel-arrayed 1-D PCNC units. For each channel,
only a single 1-D PCNC unit with different cavity length is consisted. In
the input port, a 1 × 8 taper-type OPS is used to connect all channels
simultaneously. The footprint of the whole eight-channel WDM demul-
tiplexer, including the OPS, is as small as ∼12 μm × 15 μm (width by
length). (b) Zoom-in illustration of a single 1-D PCNC unit. (c) Electric
field distribution of single channel at resonant wavelength.

Fig. 2 3-D FDTD simulation composed transmission spectra of each
channel in the proposed 1 × 8 OPS. The inset is the cross-section of
electric field profile for the fundamental TE-like mode propagating
through the output ports of the splitter in y − z plane.
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channel) to extract transmitted light with a different wave-
length (λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8). Here, the cavity
length (lc) is defined as the distance between the two adja-
cent air holes in the cavity center [Fig. 1(b)]. As seen in
Fig. 1(c), the optical field is well-localized in the dielectric
zone between the two center holes.

The Q-factors optimization of a single 1-D PCNC unit by
using 3-D FDTD is shown in Fig. 4. The number of the air-
hole gratings in the mirror section and the number of the air-
hole gratings in the tapered section are investigated in detail.
The optimized Q-factor of a 1-D PCNC unit over 105 can be
achieved. The Q value is higher than that obtained with
an Ln nanocavity (∼103)21 and width-modulated nanocavity
(∼104)24 in 2-D PC slabs. In this work, in order to save the
simulation time of the transmission calculation, we used a
high transmission but low Q geometry: the number of gra-
tings was chosen to be Nm ¼ 5, and Nt ¼ 4 in the mirror
region and taper region, respectively. Figure 5 summarizes
the calculated cavity resonant wavelength and free spectral
range (FSR) as a function of the cavity length changed from
lc ¼ 300 nm to lc ¼ 500 nm. As expected, with the cavity
length increased, the cavity resonant wavelength moves
toward longer wavelength, due to the increase in high-
dielectric material in the cavity center region.39 As seen,
with proper engineering of the cavity length of 1-D
PCNC unit, an arbitrary resonant wavelength ranging from
1240 to 1430 nm can be obtained, indicating that WDM
demultiplexer can be operated with flexible design. In addi-
tion, the cavity FSR increases with the increasing cavity
length. When the cavity length lc ¼ 500 nm, the cavity
FSR as large as 197 nm can be achieved, which is signifi-
cantly increased compared to previous design,40 indicating
that a wide enough bandwidth is provided to design
a WDM demultiplexer with as many channels as possible.
This indicates that a dense WDM demultiplexer can be
achieved. Here, it is worth mentioning that the footprint

Fig. 3 Diagram of tapered PBG for a typical 1-D PCNC unit with cavity length l c ¼ 350 nm.

Fig. 4 3-D FDTD calculatedQ-factors as a function of (a) the number
of the air-hole gratings (Nm) in the mirror section changed from Nm ¼
2 to Nm ¼ 22, while the number of the air-hole gratings (Nt ) in the
tapered section is kept fixed as Nt ¼ 3; and (b) the number of the
air-hole gratings (Nt ) in the tapered section changed from Nt ¼ 2
to Nt ¼ 10, while the number of the air-hole gratings (Nm) in the mirror
section is kept fixed as Nm ¼ 21.
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of a single 1-D PCNC unit is ultracompact as small as
∼3 μm2 [with lc ¼ 500 nm, Nm ¼ 5, and Nt ¼ 4 shown
in Fig. 1(b)], which is decreased more than one order of
magnitude compared with previous designs based on 2-D PC
nanocavities (∼100 μm2).21,24 Thus, the proposed parallel-
arrayed 1-D PCNC units with high Q, large FSR, and ultra-
small footprint is potentially a promising platform for
high-density integrated dense WDM design and on-chip
integrated WDM optical communication systems.

3 Discussion
3-D FDTD simulations are performed to numerically study
the performances of the proposed eight-channel WDM
demultiplexer based on parallel-arrayed 1-D PCNC units.
There is a linear relationship between the cavity length
and the output wavelength (λ). In this work, in order to obtain
uniform channel spacing, the cavity length of each cavity
unit in the channel from top to bottom is lc1 ¼ 409.0 nm,
lc2 ¼ 409.8 nm, lc3 ¼ 410.6 nm, lc4 ¼ 411.4 nm, lc5 ¼
412.2 nm, lc6 ¼ 413.0 nm, lc7 ¼ 413.8 nm, and lc8 ¼
414.6 nm, respectively. Figure 6 shows the composed trans-
mission spectra of the proposed eight-channel WDM demul-
tiplexer. As expected, the proposed device can divide the
input light wavelength into eight different wavelengths with
λ1 ¼ 1348.67 nm, λ2 ¼ 1349.36 nm, λ3 ¼ 1350.06 nm,
λ4 ¼ 1350.75 nm, λ5 ¼ 1351.45 nm, λ6 ¼ 1352.14 nm,
λ7 ¼ 1352.84 nm, and λ8 ¼ 1353.54 nm, where the uniform
channel spacing is smaller than 115 GHz (<0.7 nm). The
insertion losses of each output port of the proposed eight-
channel demultiplexer at the corresponding resonant wave-
length of λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8 are 14.12, 14.28,
14.30, 14.33, 13.93, 13.19, 13.71, and 13.57 dB, respec-
tively. The excess loss, namely the total loss, is 4.88 dB.
The power division ratio, defined as the ratio of the minimum
and maximum power of all output powers, is 1.14 dB. The
channel isolation levels, defined as the level difference of
the output power in all channels at the same resonant wave-
length, are better than 10 dB for all the different resonant
wavelengths of the proposed demultiplexer.

In addition, we compare the performance of our device
with that of previously reported devices, as shown in
Table 1. As seen, we find that the performance of the pro-
posed WDM device based on parallel arrayed 1-D PCNC
units are greatly improved compared with other silicon-
based WDM devices. The average channel spacing and
per-channel footprint are decreased by two times and five
times, respectively, compared with that of the recent 2-D
PC cavity-based WDM demultiplexer.24 In addition to the
small footprint, the structural simplicity of the proposed
demultiplexer in this paper lends itself to easier fabrication.
The experimental realization of the proposed demultiplexer
is generally technically achievable with modern nanofabrica-
tion technique, such as electron beam lithography (EBL)
technique. Thus, the proposed demultiplexer structure can
be experimentally achieved on an SOI platform using the
EBL technique, as demonstrated in our previous work.34

Moreover, it is worth mentioning that by changing
the cavity length on the subnanometer scale, the peak

Fig. 5 Cavity resonant wavelength and FSR as a function of the cav-
ity length (l c ) changed from 300 to 500 nm, where Nm ¼ 5, Nt ¼ 4.
The air-hole gratings radii and periodicities in the mirror region and
the tapered region are kept fixed.

Fig. 6 3-D FDTD normalized transmission spectra of a typical eight-
channel WDM demultiplexer device with uniform channel spacing
smaller than 115 GHz (λ < 0.7 nm).

Table 1 Performance of various silicon-based WDM schemes.

Structure and platform Nanocavity Configuration
Number of
channels

Average channel
spacing

Footprint of
per channel Ref.

AWG SOI – In-plane 8 250 GHz 1.7 × 104 μm2 10

2-D PC SOI L3 cavity Out-of-plane 32 100 GHz ∼130 μm2 21

2-D PC SOI Width modulation cavity In-plane 8 267 GHz 110 μm2 24

2-D PC SOI Nanobeam cavity In-plane 8 115 GHz 22.5 μm2 Present work

Note: SOI, silicon on insulator.
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wavelengths at 100-GHz spacing in the wavelength range
between 1330 and 1420 nm can be successfully controlled,
as shown in Fig. 7, which is potentially a promising platform
for developing ultracompact 100-GHz spaced dense WDM
system with more than 100 channels. However, the insertion
loss in the proposed demultiplexer will increase as the chan-
nel number increasing. To solve this problem, the feasible
methods to minimize the insertion loss are as follows:
(1) increasing the transmission efficiency of each channel
by further optimizing the structure parameters of the 1-D
PCNCs; (2) choosing other optical power splitters with
extremely low insertion losses (e.g., MMI-based beam
splitter12,41) for the proposed 1-D PC-based demultiplexer
to decrease the insertion loss.

4 Conclusion
We have proposed and numerically demonstrated an ultra-
compact in-plane eight-channel WDM demultiplexer with
dense channel spacing smaller than 115 GHz and ultrasmall
footprint of 22.5 μm2 per channel, using parallel-arrayed
1-D PCNC units. Compared with the 2-D PC nanocavity-
based WDM devices, both the average channel spacing
and footprint of per channel are significantly decreased.
This is achieved thanks to the high-Q and ultracompact
size of the 1-D PCNC. In addition, it is important to
point out that the method for building an ultracompact
WDM device demonstrated in this work is straightforward.
And the device structure is very simple. Thus, we believe
that the results presented here may widen the highly parallel
performance and multiplexed capability of 1-D PCNCs.
Moreover, it also may widen the dense integration perfor-
mance of on-chip integrated photonic devices or integrated
optical circuits based on 1-D PCNCs.
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