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Abstract. Representative examples from 3 years of measurements from JPL’s ground-based multiangle
spectropolarimetric imager (GroundMSPI) are compared to a Mueller matrix bidirectional reflectance distribution
function (mmBRDF). This mmBRDF is used to model polarized light scattering from solar illuminated surfaces.
The camera uses a photoelastic-modulator-based polarimetric imaging technique to measure linear Stokes
parameters in three wavebands (470, 660, and 865 nm) with a �0.005 uncertainty in degree of linear polari-
zation. GroundMSPI measurements are made over a range of scattering angles determined from a fixed viewing
geometry and varying sun positions over time. This microfacet mmBRDF model predicts an angle of the linear
polarization that is consistently perpendicular to the scattering plane and therefore is only appropriate for
rough surface types. The model is comprised of a volumetric reflection term plus a specular reflection term of
Fresnel-reflecting microfacets. The following modifications to this mmBRDF model are evaluated: an apodizing
shadowing function, a Bréon or Gaussian microfacet scattering density function, and treating the surface
orientation as an additional model parameter in the specular reflection term. The root-mean-square error
(RMSE) between the GroundMSPI measurements and these various forms of the microfacet mmBRDF
model is reported. Four example scenes for which a shadowed-Bréon microfacet mmBRDF model yields real-
istic estimates of surface orientation, and the lowest RMSE among other model options are shown. © The Authors.
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1 Introduction
Ground-based sun photometers do not provide adequate spa-
tial or optical sampling to constrain the inverse problem of
global aerosol estimation.1 A downward-looking polarimeter
collects light from both the atmosphere and the Earth’s sur-
face and can provide information for spatiotemporal aerosol
estimation on a global scale.2 Many atmospheric imaging
studies are conducted over the ocean to avoid optical reflec-
tance from an unknown landscape.3 The assumption that sur-
face reflection properties are known is not valid for aerosol
retrievals over land. If the surface reflection properties are
unknown, only multiple-viewing-angle measurements of
both intensity and polarization are able to provide the rel-
evant aerosol parameters with sufficient accuracy for climate
research.4,5 Currently, models of atmospheric scattering are
more advanced than models of surface reflectance because
the polarized light scattering from the Earth’s surface is glob-
ally diverse. Analysis to date has been semiempirical6 since
entirely physical models of the Earth’s polarized light scat-
tering fail to correspond with measurements.7 Therefore,
semiempirical models are derived from extensive measure-
ments and include a small number of parameters that are fit
to measurements.8,9 To extract the optical and microphysical

properties of aerosols over urban areas, it is essential to have
more accurate models for polarized surface reflectance
coupled to atmospheric radiative transfer to allow the simul-
taneous retrieval of aerosol and surface properties.10,11 For
example, sensitivity studies have reported that an error on
the order of 10−3 for the surface polarized reflectance can
lead to an error in aerosol optical thickness (AOT) of 0.04.7,12

This work employs microfacet mmBRDF modeling
methods used in the initial analysis of GroundMSPI
measurements.13 This work builds upon those results by
reporting results on a larger diversity of scenes, augmenting
the model with a shadowing function, considering two differ-
ent scattering density functions, and including an estimate of
the objects’ surface orientation. The model predicts a polari-
zation orientation that is invariant to scattering angle and
90 deg from the scattering plane for unpolarized illumination
and materials of real-valued index. GroundMSPI measure-
ments for which this polarization orientation is observed
are usually rough and natural materials: e.g., grass, foliage,
asphalt, and soil. A root-mean-square error (RMSE) com-
parison between microfacet mmBRDF models and model
variants are reported for these GroundMSPI measurements.

2 Methods
A Stokes vector uniquely quantifies the polarization state of
a light field using four numbers s ¼ ½I; Q; U; V�.14 In this
paper, lowercase bold letters are used to denote vectors
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and uppercase bold letters are used for matrices. The MSPI
camera architecture uses a time-varying retardance in the
optical path to modulate the orientation of the linearly polar-
ized component of the incoming light, described by the
Stokes components Q (excess of horizontally over vertically
oriented polarized light) and U (excess of 45 deg over
135 deg oriented polarized light).15,16 These orientations
associate the Stokes vectors with a coordinate system;
usually either the scattering or meridian planes. In this coor-
dinate system, a polarization orientation 90 deg from the
scattering plane results in U ¼ 0. Circular polarization V
is typically negligible for sunlight scattered by the atmos-
phere or Earth’s surface17 and therefore not measured by
GroundMSPI. The units of the linear Stokes components
are radiance but can alternatively be expressed as a dimen-
sionless quantity, the degree of linear polarization (DoLP)

EQ-TARGET;temp:intralink-;e001;63;576DoLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2

p
I

; (1)

where I is the total radiance. The angle of the linear polari-
zation (AoLP) is

EQ-TARGET;temp:intralink-;e002;63;510AoLP ¼ 1

2
tan−1

�
U
Q

�
; (2)

and is undefined DoLP ¼ 0. Note that DoLP and radiance
measurements are invariant to the coordinate system of Q
and U. AoLP, Q, and U depend on the coordinate system.
For the remainder of the paper, AoLPs∕Qs∕Us and
AoLPm∕Qm∕Um will be used to denote quantities with
respect to the scattering (s) or meridian (m) planes.

The meridian plane contains the global horizontal surface
normal and the view vector. The solar illumination vector
(i.e., the direction between the sun and the object) is denoted
as r̂i ¼ ½cos ϕi sin θi;− sin ϕi sin θi;− cos θi� where the
hat denotes a unit vector. The scattering plane contains
the solar illumination vector, and the view vector that
describes the direction that MSPI is pointed and is denoted
by r̂r ¼ ½cos ϕr sin θr;− sin ϕr sin θr;− cos θr�. Our con-
ventions are vectors point in the direction of photon travel,
polar angles are measured from nadir, and azimuth angles are
measured clockwise from north, see Fig. 1. The variable
Δϕ ¼ ϕi − ϕr is used when only the difference in azimuth
angles has an effect. The scattering angle Ω is defined as
the angle between the view and illumination vectors

EQ-TARGET;temp:intralink-;e003;63;245 cos Ω ¼ r̂i · r̂r ¼ μiμr þ sin θr sin θi cosðΔϕÞ; (3)

where μi ¼ cos θi, μr ¼ cos θr, and Δϕ ¼ ϕr − ϕi. Given
the convention of view and illumination vectors pointing
in the direction of photon travelΩ ¼ 180 deg indicates com-
plete backscattering. The results of this paper are reported
in Sec. 3, where the scattering angle is used to create
two-dimensional graphs comparing measurements and
model at various three-dimensional acquisition geometries.
GroundMSPI measurements are acquired in time-sequences
throughout the day; details in Table 1. Note that the viewing
geometry, i.e., r̂r, is constant during this acquisition.
Therefore, the scattering angles reported in this paper are var-
ied by changes to the illumination direction, i.e., r̂i. Figure 2
shows an example GroundMSPI measurement of a cowboy
boot sculpture made of concrete. Figure 2 (Video 1) is a static
image and a time-sequence from 08:39 to 16:37 MST is
available as supplementary material. In Sec. 3, the same mea-
surements are reported in Fig. 3(d) range where the range of
scattering angles is 60 deg to 120 deg. Figure 5(c) offers
another depiction of the acquisition geometry where the
blue vector is rr, and the illumination vector is ri.

2.1 Microfacet Model for the mmBRDF

When light is incident upon a surface, the light–matter inter-
action can be quantified as a change to the Stokes vector.
Linear effects are conventionally described by a 4 × 4matrix,
which relates an incident Stokes vector to a reflected Stokes
vector

Fig. 1 GroundMSPI angular conventions: the solar illumination vector
and view vector are orange and blue, respectively. Vectors point in the
direction of photon travel, therefore the blue cylinder marks the posi-
tion of GroundMSPI and the orange sphere marks the sun. Zenith
angles are measured from nadir and azimuth angles are clockwise
from north.

Table 1 Acquisition specifications for GroundMSPI datasets.

Figure Date Time range (θr , ϕr ) Location

1 and 3(d) April 17, 2015 08:46 to 16:37 (MST) [79 deg, 217 deg] 32°N, -110°W

2 April 5, 2015 15:30 (MST) [110 deg, 359 deg] 32°N, -110°W

3(a) gravel March 19, 2014 08:23 to 16:25 (MST) [122 deg, 25 deg] 32°N, -110°W

3(b) brick December 27, 2013 07:42 to 16:51 (MST) [86 deg, 221 deg] 32°N, -110°W

3(c) tree December 27, 2013 07:36 to 16:45 (MST) [100 deg, 184 deg] 32°N, -110°W
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EQ-TARGET;temp:intralink-;e004;63;105sr ¼ ðIr; Qr; Ur; VrÞ† ¼ FλðI0; Q0; U0; V0Þ† ¼ Fλs0; (4)

where Fλ is called the bidirectional reflectance distribution
matrix (mmBRDF), which is in general dependent upon

the wavelength λ of the incident s0 and reflected sr fields;
the transpose is denoted by †. The scalar-valued counterpart
of the mmBRDF describes nonpolarimetric light scattering
[i.e., the first component of the vectors in Eq. (4)] and is

Fig. 2 (a) Intensity, (b) AoLPm , and (c) DoLP images that are time samples from a daylong GroundMSPI
dataset. The black metal logo and the white concrete boot at Vactor Ranch in Tucson, Arizona, have
reverse contrast in the intensity and the DoLP images are predicted by Umov’s effect.18 Measurements of
AoLPm are equal for unshaded concrete and the sky. The AoLPm of the black metal logo is tangential to
the surface orientation and is approximately independent of the sun’s position (Video 1, MOV file,
58.5 MB [URL: https://doi.org/10.1117/1.OE.58.8.082416.1]).

Fig. 3 LS fits to microfacet mmBRDF models when the surface orientation of the model is set to zenith.
Four example GroundMSPI measurements are shown in (a–d). The mean value of the linear Stokes
parameters within the yellow box in the RGB image is used for an LS fit to the model. The double
y -axis plots show intensity in red (left y -axis) and Qs and Us in blue (right y -axis). The Stokes measure-
ments of Us are triangle markers and Qs are square markers. The lines show the LS fit of the models
without a shadowing function (solid line) and with a shadowing function (dashed line). The thicker solid
and dashed lines indicate a Gaussian scattering density function and the thinner lines a Bréon function.
The Bréon models contain one parameter [see Eq. (8)] and the Gaussian models contain two parameters
[see Eq. (10)].
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called the bidirectional reflectance distribution function
(BRDF). Some authors relate Ipol of the incident to reflected
fields using a bidirectional polarized reflectance distribution
function (BPDF). In general, the mmBRDF, BPDF, and
BRDF are all dependent upon the geometric configuration
between the camera, the illumination, and the object. The
microfacet mmBRDF model used in the work is

EQ-TARGET;temp:intralink-;e005;63;675

Fλðaλ; k; b; ξjμi; μr;ΔϕÞ
¼ aλ

π
½−ðμi − μrÞμrμi�k−1 expðb cos ΩÞD

þ ξ
prðβ;ΨÞ

4μrμi cosðβÞ
Pðn; γÞMðα0Þ; (5)

where Fλ is a 4 × 4 matrix and aλ, k, b, and ξ are four
scalar-valued dependent variables. The independent varia-
bles describing the acquisition geometry are μi, μr, and Δϕ.
The first term in Eq. (5) describes the unpolarized portion of
the total reflected field and the second term describes the
polarized portion. Therefore, the variables aλ, k, b describe
the unpolarized field and ξ describes the relative intensity of

the polarized radiation. In other words, the mmBRDF in
Eq. (5) specifies the form of the polarized light scattering
as a function of the acquisition geometry. Agreement
between this model and GroundMSPI measurements is
based only on adjustments to the relative intensity of the
polarized radiance through the parameter ξ. The polarized
light scattering from specularly reflecting microfacets is
described by the function prðβ;ΨÞ. Variations of this
mmBRDF model introduce more dependent variables to
the polarized term by parameterizing prðβ;ΨÞ. For example,
the surface normal of the object is estimated by relating
prðβ;ΨÞ to the acquisition geometry.

Microfacets are perfect Fresnel reflecting elements that
are small compared to the imaging system resolution.19

The magnitude of the total reflected polarized light is propor-
tional to the quantity of microfacets that are oriented toward
specular reflection at a given acquisition geometry. At a
given acquisition geometry, the illumination vector and view
vector are bisected by a surface normal n̂, which reflects
specularly. The angle β is between n̂ and the vector normal
to the surface of the object r̂s. If at a given acquisition geom-
etry and surface orientation, there are many microfacets in

Fig. 4 Microfacet mmBRDF fits when the surface orientation is estimated and true surface orientation is
known. The mean value of the linear Stokes parameters within the yellow box in the RGB image is used
for an LS fit to the model. The double y -axis plots show intensity in red (left y -axis) andQs and Us in blue
(right y -axis). The Stokes measurements of Us are triangle markers and Qs are square markers. The
lines show the LS fit of the models without a shadowing function (solid line) and with a shadowing function
(dashed line). The thicker solid and dashed lines indicate a Gaussian scattering density function and the
thinner lines a Bréon function. Here, the surface normal is estimated from the measurements so the
Bréonmodel contains three parameters and the Gaussianmodel contains four parameters. Two example
measurements are shown in (a) and (c) and the surface orientation estimates are the green planes in (b)
and (d). The fan of yellow vectors in (b) and (d) is the illumination angles over the time period of data
collection. The blue vector in (b) and (d) is the direction of photon travel toward the camera.
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the β orientation, then the specular reflection will be strong.
Conversely, if at that value of β the surface does not
have many microfacets the specular reflection is weak.
The microfacet structure of a surface is described by a scat-
tering density function prðβ;ΨÞ, which parameterizes the
density of microfacets at a polar and azimuth angle; denoted
β and Ψ, respectively. The orientation of microfacets is
usually assumed to be azimuthally uniform so that
prðβ;ΨÞ ¼ prðβÞ. The assumption of azimuthal symmetry
imposes an invariance in the polarized light scattering
when rotating the source and the view direction together
about the surface normal. For top of atmosphere measure-
ments, the surface normal to the land surface can be reason-
ably approximated by the zenith ẑ. The surface normal of
each object in a GroundMSPI image is not known a
prior. In this work, two approaches to defining β are com-
pared: (1) with respect to the zenith ẑ (as in Fig. 3) and
(2) with respect to the object’s surface normal vector r̂s,
which is not known a prior and is estimated from the mea-
surements (as in Figs. 4 and 5). The variable r̂s is inserted
into Eq. (5) using the substitutions

EQ-TARGET;temp:intralink-;e006;326;752 cosðβÞ ¼ r̂s · n̂; μi ¼ −r̂s · r̂i; μr ¼ r̂s · r̂r; (6)

where r̂s is a vector normal to the surface.
The first term in Eq. (5) models the unpolarized portion of

the reflected field. Here, D is a 4 × 4 matrix that is zero
except for the (1,1) element. Without the matrix D, the first
term in Eq. (5) reduces to a scalar-valued BRDF model
referred to as a modified Rahman–Pinty–Verstraete (mRPV)
that is currently used in aerosol retrievals by NASA’s MISR
instrument.20 The mRPV model uses three parameters to
describe a nonpolarimetric intensity measurement: aλ to
characterize the amount of reflectance at each wavelength,
k to characterize the anisotropy of reflectance, and b to char-
acterize the forward/backscattering contribution.21,22

The second term in Eq. (5) models polarization. Pðn; γÞ is
a 4 × 4 matrix of Fresnel reflection coefficients of a material
where n is the index of refraction and γ is the angle of inci-
dence. A wavelength subscript on Pðn; γÞ is not used due to
the assumption that the refractive index of the surface is
spectrally neutral within the measured waveband. Since
specular reflection from each microfacet is assumed the

Fig. 5 Microfacet mmBRDF fits when the surface orientation is estimated and true surface orientation is
unknown. The mean value of the linear Stokes parameters within the yellow box in the RGB image is
used for an LS fit to the model. The double y -axis plots show intensity in red (left y -axis) andQs andUs in
blue (right y -axis). The Stokes measurements of Us are triangle markers and Qs are square markers.
The lines show the LS fit of the models without a shadowing function (solid line) and with a shadowing
function (dashed line). The thicker solid and dashed lines indicate a Gaussian scattering density function
and the thinner lines a Bréon function. Here, the surface normal is estimated from the measurements so
the Bréon model contains three parameters and the Gaussian model contains four parameters. Two
example measurements are shown in (a) and (c) and the surface orientation estimates are the green
planes in (b) and (d). The fan of yellow vectors in (b) and (d) is the illumination angles over the time
period of data collection. The blue vector in (b) and (d) is the direction of photon travel toward the camera.
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scattering angle is related to the angle of incidence by
cos Ω ¼ − cos 2γ. Details about the structure and elements
of the matrix Pðn; γÞ, for applications in GroundMSPI analy-
sis, have been described in Ref. 1. This model assumes all
reflected polarized radiance is generated by a single reflec-
tion of light from the top surface. The matrix Mðα0Þ rotates
an incident Stokes vector from the solar meridian plane to
the scattering plane where α0 is the angle between the two
planes. If results are desired in meridian, rather than scatter-
ing, coordinates then another rotation matrix can be inserted
on the left-hand side of Pðn; γÞ. The second term in Eq. (5)
models the polarimetric contribution to the microfacet
mmBRDF using only a single linear parameter: ξ. The
model describes the functional relationship between the
linear Stokes parameters and the acquisition geometry and
fitting ξ to the polarimetric measurements simply scales this
functional form. This simplification is useful since polari-
metric measurements show a similar trend with respect to
scattering angle for rough materials and the Earth’s natural
landscapes.7

Shadowing effects manifest themselves both in photomet-
ric and polarimetric characteristics of scattered radiation.23

Without a shadowing function, microfacet mmBRDF models
assume that every element of the surface contributes to the
reflected field. This assumption neglects the shadowing of
points on the surface caused by neighboring points, an effect
that is increasingly important at large angles of incidence. A
shadowing theory described in Refs. 24 and 25 derives the
probability that a backscattering specular point on the surface
will not be shadowed for a Gaussian slope density function.
Analytic results for a non-Gaussian example are presented in
Ref. 26. The slope density function is related to the scattering
density function prðβÞ from which a shadowing function
Sðμi; μrÞ can be calculated so that the shadow-modified
scattering density is prðβÞSðμi; μrÞ. Both the Bréon27,28

and Gaussian scattering density functions are used in this
work and reported in Table 2. Measurement comparisons
to these models will be computed both with and without
a shadowing function.

Note that the Bréon shadowing function only depends on
the acquisition geometry. The Gaussian shadowing function
depends on both the acquisition geometry and the width of
prðβÞ, denoted as σ. This width parameter of the Gaussian
model is an additional dependent parameter as compared to
the Bréon model. For empirical analysis, an optimal model
imposes the strictest constraints possible while characterizing
a realistic population of measurements. In this application,

mmBRDF constraints are valuable for untangling land sur-
face and atmospheric polarized light scattering for the task of
aerosol retrieval. Since the Bréon model imposes a more
strict constraint on the surface polarized light scattering,
it would be preferable to the Gaussian model in the case
where equivalent RMSE values were observed.

A Gaussian scattering density function is also called the
Cox-Munk distribution in reference to the first researchers to
use this model to describe ocean roughness.29

Where,

EQ-TARGET;temp:intralink-;e007;326;642ΛðμÞ ¼ 1

2

2
4exp

�
−X2

2

�
X

ffiffi
π
2

p − erfc

�
Xffiffiffi
2

p
�35

X¼ μ

σ
ffiffiffiffiffiffi
1−μ2

p :

: (7)

Derivations of Eqs. (9) and (11) can be found in Refs. 24,
26, and 28.

Recent work on microfacet modeling for polarized light
scattering has demonstrated that shadowing functions intro-
duce errors at large grazing angles, i.e., μi, μr → 0.30 In this
paper, only GroundMSPI measurements that are directly
solar illuminated are considered. Therefore, the range of
reported acquisition geometries does not include grazing
angles because of the long shadows physical objects cast
on each other when the sun is near the horizon.

2.2 Assumptions for Passive Outdoor Scenes

Only GroundMSPI measurements at 660 nm are included in
this work given that the spectral invariance hypothesis is well
supported for polarized light scattering from the Earth’s
surface. GroundMSPI measurements have been analyzed
with respect to the spectral invariance hypothesis in other
work.1,31 The spectral invariance hypothesis assumes that
both the magnitude and the angular shape of the polarimetric
term in the mmBRDF are spectrally neutral. Researchers
have noted only small exceptions, such as wavelength
dependencies in the shortwave infrared (SWIR) at large scat-
tering angles, that could affect aerosol retrievals over land
when the AOT is small.32 A conventional approach is to
fit the parameters of a mmBRDF model for land surface
reflectance in the SWIR where, in general, the atmospheric
contribution is small. Since the polarized surface reflectance
depends weakly on the wavelength, the fitted values for
the parameters are used at other wavelengths to predict
the contribution of polarized light scattering from the land
surface.

Table 2 Scattering density and shadowing functions.

pr ðβÞ Sðμi ; μr Þ

Bréon
EQ-TARGET;temp:intralink-;e008;224;136

cos β

π
(8)

EQ-TARGET;temp:intralink-;e009;446;136

�
1
μi

þ 1
μr

�
−1

(9)

Cox-Munk
EQ-TARGET;temp:intralink-;e010;224;88

expð−tan2 β∕2σ2Þ
2πσ2 cos3 β

(10)
EQ-TARGET;temp:intralink-;e011;446;88½1þ Λðμi Þ þ Λðμr Þ�−1 (11)
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We will restrict the modeling to unpolarized solar illumi-
nation [i.e., s0 ¼ ½1;0; 0;0� in Eq. (4)]; this precludes scat-
tered skylight that is polarized. In the first GroundMSPI
paper,1 modeling solar illumination as partially polarized
did not significantly improve the model and measurement
agreement for data collected on a clear day. When the
index of refraction is real-valued, the Fresnel reflection coef-
ficients are also real-valued. In this work, n ¼ 1.5 is
assumed. Putting together the two assumptions of a real
index of refraction and unpolarized illumination leads to
an important constraint on the model for the reflected
Stokes vector: the third component is zero (i.e., Us ¼ 0)
and therefore AoLPs ¼ 90 deg at all acquisition geometries.
Other researchers also use this assumption.7 Others have
also noted AoLPs ≠ 90 deg in their measurements of land
surface scattering with errors up to 15%.33

Following methods from Ref. 1, the polarimetric and non-
polarimetric parameters are estimated sequentially. This is
because specular reflection from the microfacets contributes
to the total radiance field, as well as the polarized field, but
the polarized field is unaffected by the remaining parameters.
First ξ (and σ if using a Gaussian facet distribution model)
are estimated from a least-squares (LS) fit to Qs measured at
a series of different scattering angles. These estimates param-
eterize an estimate of the first term in Eq. (5), which is then
subtracted then from the measured radiance and an LS fit to
the first term in Eq. (5) (i.e., aλ, k, and b) is performed.

Although the surface orientation affects both the nonpo-
larimetric and the polarimetric term in this work, we choose
to estimate r̂s from an LS fit of the polarimetric term (i.e.,
simultaneous with estimating ξ) and then use that estimate
when fitting the other parameters in the nonpolarimetric
term.

3 Results

3.1 Assumed Surface Orientation

Figure 3 shows four GroundMSPI intensity images along-
side double y-axis graphs of linear Stokes measurements and
the predictions from four models: Bréon and Gaussian; each
with and without shadowing [see Eq. (7)]. Here, the surface
orientation is assumed to be horizontal and therefore the sur-
face normal vector equals the zenith. The four RMSE values
of the models for each scene are in Table 3.

In Fig. 3(a), a large region of gravel is selected and the
average linear Stokes values in this region are fit to the
microfacet mmBRDF models. For this example, the assumed
horizontal surface orientation is correct. The Bréon models,

both with and without shadowing, produce lower RMSE
than the Gaussian models. The shadowed-Bréon model
RMSE is 17%, and the unshadowed-Bréon model RMSE
is 22%. In Fig. 3(b), a region on the wall of a brick building
is selected. The true surface orientation is vertical yet the
model assumes horizontal. Even with this modeling mis-
match, all four microfacet mmBRDF models trend correctly
with the measurement dependence on scattering angle.
RMSE of unshadowed-Bréon and unshadowed-Gaussian
models are both 12%, adding a shadowing function increases
RMSE in both cases. The region used for analysis in Fig. 3(c)
is the leafy part of a tree and RMSE of three of the models is
22� 1%; adding shadowing to the Bréon model reduces the
RMSE to 9%. Measurements in Fig. 3(d) are of smooth
cement and the Bréon model actually trends nearly opposite
of the measurements; the Gaussian RMSE is more than
four times lower. As shown in Table 3, shadowing does
not improve the RMSE for the Gaussian distribution. In sum-
mary, the model with the lowest RMSE is the shadowed-
Bréon for the tree and gravel measurements, the unshad-
owed-Gaussian for the smooth cement measurement, and
a tie between these two models for the brick measurement.

3.2 Estimated Surface Orientation

Here two angular parameters to describe the object’s surface
normal are included in the LS parametric fit, see Figs. 4 and
5. This surface normal is r̂s defined in Eq. (6). As reported in
Table 4, all RMSE values are below 8% and most RMSE
values are below 5%when the object’s surface normal is esti-
mated as part of the microfacet mmBRDF model. These
RMSE differences are barely noticeable in the Stokes
plots in Figs. 4 and 5. The difference in the estimated surface
normals is very noticeable in Figs. 4 and 5. The four
GroundMSPI measurements are split into the two figures:
one for which the true value of the surface normal is
known in Fig. 4, and the other for which the surface normal
is unknown or undefined in Fig. 5.

In Fig. 5(a), the true-value of the surface orientation is
undefined since the selected pixels in the tree contain numer-
ous leaves, shadows, and even the background seen through
the tree branches. The purpose of including this example is to
demonstrate the improvement in RMSE even when the sur-
face orientation parameter is undefined. In Fig. 5(c), the
smooth cement is on a south-facing vertical surface that is
angled toward the sky. Both the shadowed-Gaussian and
shadowed-Bréon are south-facing. The shadowed-Bréon is
close to perfectly vertical. The shadowed-Gaussian is angled

Table 3 RMSE values between GroundMSPI measurements and
models in Fig. 3.

Figure

RMSE (%)

Bréon-S Bréon Gaussian-S Gaussian

3(a) gravel 17 22 26 24

3(b) brick 18 12 15 12

3(c) tree 9 22 23 21

3(d) smooth cement 36 34 13 8

Table 4 RMSE values between GroundMSPI measurements and
models in Figs. 4 and 5.

Figure

RMSE (%)

Bréon-S Bréon Gaussian-S Gaussian

4(a) gravel 1 6 1 2

4(c) brick 5 3 5 3

5(a) tree 8 7 8 7

5(c) smooth cement 3 4 2 2
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close to a 45 deg angle, which appears steeper than the true-
value. The true-value of the surface orientation is somewhere
between the shadowed-Gaussian and shadowed-Bréon sur-
face orientation estimates.

As reported in Table 4, the addition of a shadowing func-
tion perturbs the RMSE values by a few percent, both
increasing and decreasing depending upon the sample. The
Gaussian and Bréon RMSE values are very similar and the
rank-ordering of model RMSE is different for each of the
four examples. For gravel shadowed-Bréon and shadowed-
Gaussian are tied at 1%. For the brick and tree examples,
the unshadowed-Bréon and unshadowed-Gaussian are tied
at 3% and 7%, respectively. The Gaussian model RMSE is
2% for the smooth cement example, both shadowed and
unshadowed.

4 Conclusions
We applied modeling methods used in the initial analysis
of GroundMSPI measurements1 to four example datasets
collected at the University of Arizona. The microfacet
mmBRDF models for this paper were modified and RMSE
comparisons were made for shadowed- and unshadowed-
Gaussian and shadowed- and unshadowed-Bréon scattering
density functions. The RMSE for both an assumed value and
an estimated value of the objects’ surface normal were com-
pared. To estimate the surface normal, two additional param-
eters were added to the model and this improved the RMSE
by a factor of 5 to 6. For the two examples where the true
value of the surface normal is well-defined and known the
estimated surface normal is most accurate for the shadowed-
Bréon model.

This analysis is preliminary. Future work will include a
greater variety of materials and acquisition geometries
from more University of Arizona GroundMSPI datasets to
characterize the utility of microfacet mmBRDF models in
aerosol retrieval. Also, other popular mmBRDF models
and shadowing functions will be included in future RMSE
comparisons. Incorporating prior knowledge and constraints
to estimates of surface orientation will be used to improve
the microfacet scattering density functions. The statistical
significance of an additional parameter in the Gaussian scat-
tering density function, as compared to the one parameter
Bréon model, will be accessed using stepwise regression
and F-tests on the error.
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