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Abstract. We introduce a navigation filter fused with information of visual optical flow and data collected from an
inertial measurement unit during GPS signal degradation. Under the assumption that the tracked feature points
are located on a level plane, the feature depth can be explicitly expressed and an exact measurement model was
derived. Moreover, an error model analysis for a block-matching-based optical flow algorithm has been inves-
tigated. The measurement error follows a Gaussian distribution, which is a prerequisite for leveraging the error-
state Kalman filter. Subsequently, a local observability analysis of the proposed filter was performed yielding
the expression of three unobservable directions. We emphasize the ability of the proposed filter to estimate the
aircraft’s state, especially for accurate altitude estimation, without any help of prior knowledge or extra sensors.
Finally, an extensive Monte Carlo analysis was used to verify the findings in the observability results showing
that all states can be estimated except the absolute horizontal positions and rotation around the gravity vector.
The effectiveness of the proposed filter is demonstrated through experimental hardware used to acquire outdoor
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1 Introduction

During the past decades, there has been a growing research
interest in developing vision-based or vision-aided naviga-
tion systems for unmanned aerial vehicles (UAVs) under
circumstances without prior information.'™ The traditional
GPS/inertial navigation system (INS) may face severe drift
and inaccuracy for the estimation, especially in environments
where GPS is not reliable. Integrated inertial systems using
sensors such as radar, LiDAR, or sonar can be regarded as
a possible method to improve accuracy.’” However, radar or
LiDAR may increase the cost, weight, and power consump-
tion for an airborne platform, while low-cost sonar always
shows limited performance for flights in outdoor scenes.
Camera-aided navigation and visual odometry, on the other
hand, provide rich information about the environment and
the camera pose, which seems to be a superior solution to
the above problems.

In recent years, simultaneous localization and mapping
gathered a lot of attention since it can provide accurate
and real-time estimates of six-dimensional parameters.
Nevertheless, it is subject to a series of strict requirements
such as high-quality images for feature extraction, hardware
with powerful onboard processor needed as computational
complexity increase related to the quantity of features, and
repeated tracking for the same image features over longer
periods of time is needed to realize loop-closure.® Moreover,
there are few applications for fixed-wing aircraft that are
faster and higher than quadcopters in an outdoor unstruc-
tured environment. Optical flow-aided INS evades the need
for mapping and landmark data and shows better tolerance
in terms of handling scenes with less salient features and
little contrast texture. In addition, it has a compact image
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representation and does not require the extra burden for
image storage without loss of rich navigation information
on the translation and rotational velocity as well as the scene
depth.” It is more suitable for implementation in systems
with limited resources. Previous tests have been conducted
to compare the performance between different optical flow
algorithms for UAV navigation, as introduced in Ref. 8. The
optical flow observation error is usually modeled with the
default zero mean normal distribution without any
explanations.” We turn to computer vision scientists for a
better answer, but it was found that they mainly focus on
the evaluation methodology to give new statistics for indicat-
ing the performance.'’ They have raised definitions such
as “absolute flow endpoint error” and “frame interpolation
error,”!! rather than proposing a specific model analysis for
the flow error. Furthermore, the use of INS aided with optical
flow generated by a single camera often adopts an additional
ultrasound range sensor to measure the distance to the
ground,'? which solves the ambiguity of the scale factor
between the translational velocity magnitude and the scene
depth.” Another commonly used method assumes that the
specific maneuvers for UAV could be designed to keep a
constant height or attitude. Five optimization constraints-
based methods for the estimation of ego-motion were pre-
sented in Florian Raudies’ review,'® which can successively
solve the problem. As an example, Thomas P. Webb'? lever-
aged epipolar constraint of feature points as the measurement
equation in an implicit extended Kalman filter, also termed
the essential or coplanarity constraint, and optical flow
subspace constraint is similar to its differential version.
However, the filter does not perform well in estimating the
velocity states as the epipolar constraint weakly relates to
velocity. A bilinear constraint-based visual-inertial scheme for
relative motion estimation has been introduced.” The observ-
ability analysis of INS errors for explicit measurements of
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a subspace constraint-based optical flow method was inves-
tigated in Jacques Waldmann’s work.'* These approaches
require sufficient numbers of optical flow features to obtain
the corresponding linear equations for the unknowns. Xu
et al.” presented an autonomous landing method using planar
terrain features tracked in sequential images. Using the
assumption of a level plane, therefore allowing for the scale
of the line-of-sight vector to be expressed explicitly.
Compared to existing work, the main contributions of
the proposed research focused on (1) a detailed error model
analysis for optical flow measurement based on block-
matching algorithm was investigated and showed to obey
a Gaussian distribution and therefore suitable for error-state
Kalman filter (ESKF); (2) the feature depth was obtained
without extra-measurement device through the assumption
of flat terrain, which could be reasonably used for outdoor
navigation missions when UAVs fly at a high altitude. In the
flat terrain assumption, the height proved to be observable
by local observability analysis, which was further verified
by simulation and experimental results. In addition, a more
detailed development of the ESKF is proposed, which fused
the information from IMU and optical flow originally
described in Refs. 15 and 16. The paper is organized as fol-
lows: Sec. 2 describes the problem formulation, introduces
the adopted sensors’ dynamical model, reviews the compu-
tation of an optical flow block-matching algorithm, and
derives the measurement error analysis. Section 3 outlines
the structure of the ESKF to estimate the full states.
Section 4 presents the observability analysis. Sections 5 and
6 show the simulation, experimental results, and correspond-
ing discussion; the final conclusions are given in Sec. 7.

2 Problem Formulation

The geometry of the general case of an aircraft equipped with
an IMU and a monocular camera is shown in Fig. 1. Symbol
{B} represents the aircraft body-fixed frame, and the vehicle
relative position to the global inertial reference frame {G} is
denoted by the vector “r. The camera frame {C} is fixed to
the aircraft with a mounting displacement 2A. We denote the
coordinates of the j’th feature point P; in the frame {G}
by “P;, while “P; denotes the relative position of P; w.r.t.

{G}xyy424-the global reference frame, GP, denotes the coordinates of the feature point P;
in frame {G}, “ r denotes the aircraft relative position in frame {G}.
{B}xyy)zy---the aircraft body-fixed frame, 4 denotes the camera’s mounting displacement.
{C}x,y.z.---the camera frame, (‘Pj denotes the coordinates of the feature point P; in frame
{G}.ie. “P=[ x;, “y;, z;]".
Uj vj---the projection of the feature P; on the image plane.
f---the focal length.

Fig. 1 Problem geometry and pinhole camera model.
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the camera frame {C}. The transformation matrices 57 ; and
cT 5 describe the rotations from {G} to {B} and {B} to {C},
respectively, where T is dependent on the mounting of
the camera to the aircraft. The relative position of P; can be
expressed in the camera frame {C} as

CP; =TT (°P; = Or) — TPA. (1)

Considering the differential equation with respect to the
reference frame {G} would require calculating the derivative
of the rotation transformation matrix. Therefore, the rota-
tional velocities of the vehicle expressed in the frame {B}
and {C} are represented by 2w and “o, respectively, result-
ing as

CPj = CTBBTG(GPj —0F) - TR(°A + B x BA)

— Ty PoxCP,, @

where °P ;7 = 0 derives from the assumption for static feature
point. Consider a strapdown camera that can be assumed to
have a fixed location coinciding with the center of gravity
of the aircraft, so that {B} and {C} can be regarded as
the same frame, i.e., BA = BA = 0, and T} is the identity
matrix, which yields the simplified Eq. (3):

P = —T5% — Pw x °P;. 3)

2.1 Pinhole Camera Model

This work used a pinhole camera model, whose details are
shown in Fig. 1. The camera coordinate frame is defined by
€z paralleling to the optical axis, x and ¢y matching the
horizontal and vertical image directions. The projection
results of the feature P; on the image plane are expressed as

ui| _ S ij}
et @

where f is the focal length, [u;,v;]" is the projected pixel
coordinates of the feature point, and “P; = [“x;,“y;,“z;]".
With the previous assumption on the identity of the frame
{B} and {C}, the coordinate of the feature expressed in the
camera frame is given as
Cz;

Py =5T6(OR =) =[x Oy Gl =2l v S

®)

When considering the flight environment for fixed-wing
aircraft, which generally holds the flight height above
hundreds of meters, flat terrain such as plain and farm field
the topographic relief can be neglected compared to the
flight height. In such scenes, we assume that the visual
features lie in a level plane. Further, without loss of general-
ity, by assuming the feature plane contains the origin of
the global inertial frame, we obtained e3TGPj =0, where
e;=[0 0 1]7. We also adopted the unit quaternion
396 = 9ol + q1J + gk + g5 to represent the rotation from
the global coordinate frame {G} to the body-fixed coordi-
nate frame {B} at the time 7. Hence, 5T can be replaced
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by C(q,) which describes the rotational matrix correspond-
ing to zq. Thus, the scale of line-of-sight vector and also
the depth component of “P;, namely “z; in Eq. (5) can be
represented as

TG
—e3°r

c, _
7 = :
! egCT(BqG)%[”j vi fI"

(©6)

2.2 Optical Flow Computation

After the characterization of the motion equation of the
camera and pinhole camera model, we focused on the optical
flow computation method. In this work, the optical flow was
determined as the displacement between two successive
images divided by the time interval between their capture.
Based on the local brightness constancy assumption and
small motion assumption, the block-matching algorithm
approximates the image motion by a displacement, which
yielded the best match between image regions. The concept
of the procedure, shown in Fig. 2, as well as the specific algo-
rithm for displacement computation outlined in Fig. 3, starts
with distinct feature extraction and ends up with minimizing
the SSD cost function among the search window,”!” and
the result provided the displacement d(X;) of the current
feature, which can be formulated as

SSD(X;. dx, dy)
xet+b—1 y+b-1
= > > Uolijit)=1Ic(i+dx.j+dy.t+ A,

=X j=Vk
@)
d(Xy) = arg min SSD(X,,dx,dy), 8)
—w<dx,dy<w

where I,(-) and I(-) are both image intensity functions.
Thus, the two-dimensional (2-D) optical flow é,’ can be
obtained, i.e., Q = %.

Furthermore, we proved that the error of optical flow
computation based on the SSD block-matching algorithm

Displacement

(Flow vector
117 feature - -7 computation

between
image frames

Original (old) image
frame: Frame (t)

Current (new) image frame
Frame(t + At)

I 2w+b
x T
(xx +di\ Vi + dy))
Y Search
__|. | window of
original
b —» b
(e Vi) ¥ frame
— W — b 2w+b
T N ( Xk, Yx )---the coordinates of the k-th extracted
Block of original feature from the original image.
frame (dx, dy) ---the motion displacement vector
l w ---the radius of the search window
b ---the edge length of block

Fig. 2 Block-matching method.
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Algorithm 1 for displacement computation

for all coordinates from the original image do
set sum-of-squared differences (SSD) value and displacement(dx, dy)to zero
if the feature is salient enough according to its gradient value of pixel intensity then
obtain the distinct feature’s coordinates X, = (xx, Yx)
for each possible displacements: —w < dx,dy < w
for —x, <i<x+b—land—y, <j<y,+b—-1
calculate the SSD cost function expressed in Equation 7
if the SSD value is smaller then before
update the SSD value and setd (X) = (dx, dy)
end if
end for
end for
end if
end for

Fig. 3 Algorithm for displacement computation.

is subject to a Gaussian distribution, which is not fully
explained by most reviewed articles, such as Farid Kendoul’s
work.” Therefore, we redefined the whole algorithm as a
maximum likelihood estimation problem. The displacement
of the pixel can be seen as a warp function @, which trans-
forms a pixel point p;(x;,y;) in the original image frame
(Ip) into a point p/(x/,y;) in the current image frame (I.)
by a 2-D deformation vector & namely py(xi,vi) € Lo,
o(pr. &) = pj(x(,y;) € Ic. Based on the local brightness
constancy assumption, which is given as

Lo(pr) = Ic[o(pr, §)] + & )

without loss of generality, €, can be modeled as Gaussian
noise as &, ~N(0,0%). Given the b X b size block of
pixels, the problem aimed at the estimation of by a patch
of pixel samples {/,(p;)}i=t*?. According to Eq. (9),
1o(p) ~ N{Ic[w(p.&)], 6%}, thus the corresponding prob-
ability density function is provided as

exp [ — {To(pi) = Ic[o(p, §)]}?
o )

PIo(pi)[E] = 252

1
oV2n
(10)

Hence, we derived the likelihood function for the pixel
samples as

L(&) = Pllo(p1).1o(p2) -+ Lo(pn)IE] = kliIIP[IO(PkNC]
_{lo(py) —Ic[a’(Pk,Q]P)’ (an

20?2

—McC.
k:lC exp(

where the log-likelihood can be written as

tog () = =55 > {lo(px) = Iclo(pe. €)1 +n log C.
k=1
(12)

in which, n log C only contains items irrelevant to &.
The maximum likelihood estimator é maximizes the log-
likelihood, i.c., = arg max, log L(§), which is equivalent
to finding the optimal displacement value that minimizes
the least square function according to Egs. (7) and (8).

Therefore, we obtained é = arg min SSD(X,,dx,dy).

—w<dx,dy<w
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The maximum likelihood estimate (MLE) is proven to be
asymptotically normally distributed,'®!? and the estimated
covariance error of MLE is given by the inverse of the
observed Fisher information matrix; therefore, the maximum
likelihood estimator can be expressed as

s g 1 1
~ T e N| T [T N ) 13
b o] =V J(QML)] -

where {, denotes the true displacement parameter, which can
be obtained by the SSD block-matching algorithm. It is
worth mentioning that in this context, the SSD block-match-
ing algorithm is a brute force method that would guarantee
returns with the global optimum. Matrix J() is the Fisher

information for an individual observation, while J(yy ) is
the observed Fisher information matrix and is defined as

J(Ew) = —E{ {% log L(C)} } (14)

which is also the expectation of the negative Hessian matrix
of the log-likelihood function.'® Since the optical flow § was
calculated with the displacement motion divided by inter-
frame time, we saw that the optical flow error maintained a
Gaussian distribution, which was the prerequisite for adopt-
ing the Kalman filter.

Next, we deduce the measurement equation of optical
flow. The projected pixel coordinates of the feature point P;
on the image plane are given by Eq. (4), taking the time-
derivatives of both sides of Eq. (4) leads to the expression
for optical flow velocity

. i f 1% 0 =Cx]¢
g-:{./]:—{ J T5P;. 15)
J v c2| 0 Czj _Cyj J

Consider the relative motion between the camera and fea-
ture point by replacement of P ;in Eq. (3) into Eq. (15), and
eliminating [“x;, ©y;, “z;] with [u;,v;, f] based on Egs. (4)
and (6), the optical flow equation can be computed as

Hj
e;{CT(B(IG)} vj
c A f11=f 0 u G
e = C v
& L}j] e3TGr lo —f v, (396)
(1)
+ Po+¢;, (16)

L
f f f ,uj

where Cv is the absolute velocity of the aircraft in the global
inertial frame, i.e., “F = v, and &; was modeled as zero
mean, white Gaussian noise with covariance Réj which is
related to the inverse of the negative Hessian for log-
likelihood function as shown in Eq. (14).

2.3 IMU Measurement

The IMU outputs are measured quantities in the body-fixed
frame, angular rate ®,, and acceleration a,,, which were
modeled as**?!
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b, (¢

0(1) = @,,(1) = by (1) — 0 (1),
Bm(t) = nbm(t),
a(t) = C"[qg(1)][an(t) = ba(r) = my(1)] + g,
)

Ny, (1), a7

where ® € R? and a € R? are the true value, which are cor-
rupted by IMU biases b,, and b,, IMU drift noise n,, and n,
which assumed to be zero-mean Gaussian white noise. g is
the gravitational acceleration. The IMU biases are nonstatic
but rather are seen as a random walk process with the biases
noise ny, and ny,. All the noise terms n = [nl,nl, nl,,
n} |7 are specified by the corresponding scalar variance
coefficient 6} , o3, oa, . and o3, ; the diagonal covariance
matrices are given by Q, =03 15, Qu =0n I3, Qp, =
6,2,‘“13, and Qy, = O'%hml3. According to Refs. 22 and 23,
they can be obtained by the Allan variance technique.

3 Estimator Description

With the purpose to integrate the two different sources of
information collected by IMU and monocular-camera, an
ESKF was designed. While the IMU information served
to make predictions to the filter, the optical flow vision infor-
mation was used to correct the filter. Compared to the general
extend Kalman filter, which consists of states prediction step
and update step, the ESKF considers the error states induced
by the reset process, producing more precise results by
reducing the long-term error drift in odometry system.

3.1 System State and Propagation

The estimator vector was the 16 X 1 vector, and all the sym-

bol definition can be found in Sec. 2.

x2 [T Oy Lqf bl bBL]T. (18)
The system kinematic equation that describes the time

evolution of the state was similar to Hesch’s model,?! of

which the corresponding linear discretized form of predicted
state estimate is provided as

R R . AP . R
Ot = Of + ACVE + T[C:T(am,k —b,,) +g.
GQ’I:Jrl = G‘A’/j + At[C;T(am,k - b;—.k) + g}’

~ n At N ~
3G = pAG 4 + jg(wm,k —bos) - 5454

A ry
ba,k+l - ba.k’

by ii1 = by (19)

In order to derive the process noise covariance matrix,
the error dynamic needed to be derived from the kinematic
equation along its nominal form. We defined the error state in
the estimate X of a quantity x for aircraft position, velocity,
and IMU biases as 6x = x — . And it is exceptive for the
quaternion error, which was defined by the 3 X 1 angle-
error vector 60, as 5q = [1507 1]7. Then, the linearized
first-order approximation of continuous-time error-state
kinematics'“**** are provided as
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S1(t) = ov(1),
5v(1) % ~C7 (51 (1)) L[, (1) — Ba(1)]x] 56(1)

= CT 545 (1)]8ba (1) = CT 546 (1)Ima (1),
50(1) ~ = [, (1) = by (1)]x ] 50(1) = 8bq, — 1y (1),

5ba(t) = N (1),

5bm(t) = nbm(t)' (20

In practical terms, the ESKF is realized in a time-discrete
manner, with the update time interval Az = ¢, — #;, which
was also seen as the sampling period of IMU signals.
By using numerical integration of Eq. (20), we obtained the
discrete error-state equation

ox =[orT svl 6§07
= (I)kéxk + Gknk,

sbI  sbL 1T,
OXp1 (21
where @, was the transition matrix and G; denoted the
perturbation matrix of noise vector n,. In the process of
integration and discretization, based on Joan Sola’s results,zo
the following auxiliary series was introduced:

oS

Atk+”

L-oxt, (22)

L Ay =25 CT (g (k)] [a, (k) — (k)]
O L —ACT[5a4g (k)] [[a, (k) = ba(k)]x)
P = | 035 033 Iy
O3x3  O3x3 03x3
| 0355 O3x3 O3x3
(0355 0333 O3 033
I3 033 033 Osys
G = | O3 Iz 033 Osy3
033 O3z Iz Osys
033 0353 O3z I3

by assigning the value of n with {0,1,2,3}, we obtained

— el-oxIA — R{wAr}T,

z‘x’: —@X | At

k=0
I(w)=1- At_%' [R{oA}T —1—(|—@x|Ar)],
F{(m):%l-mz Tl {R{(:)AI}T I—(|—®X]Ar)
- {l-oxan].
T 1 ) T
[ (@) =51+ AF + W.{R{mm} — I (|~wx]Ar)

1 , 1
_i(t_mxjm) —m(L—meAt)ﬂ. (23)

Here, I‘g means the incremental rotation matrix if rotating
an arbitrary coordinate frame with a rotational rate of — for
timespan Ar according to the Rodrigues rotation formula;
therefore, the discrete linearized error dynamic transition
matrix @, as a function of above series®* (for readability

The discrete process noise covariance matrix Q, was calculated as

AP AP AR N
TlQa +2_6Qba TtQa +TlQba

S Q+5Qn  AQ+Qn
Q= 033 0353 A1Qg +
- [BqG( )1Qba [BqG( )1Qpa
03><3 03><3

Thus, the error covariance propagation resulted as

Pk+l == (I)kPk¢lzc- + Qk' (27)
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I" = I'[®,,(k) — by (k)]) can be written as in matrix
—2LCT3a6(k)]  Osy
—ArCT[3q45(k)]  Osx3
O3 -7 | 24
I 03x3
03x3 I |
(25)
03><3 At} CT [BflG(k)]Qba 03><3
2 A
93x3 A -4 CT[BqG(k)]Qba A03><3
(T3 +T3) - Qpe 03x3 —T3 - Qo (26)
A03><3 A1Qp, 0353
=I5 - Qp, 0353 A1Qy

|
3.2 Measurement Update Equation

According to Eq. (16), the optical flow measurement can be
expressed by the estimated state vector. Since the aircraft
angular rate was not part of the state vector, we replaced
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it with 2® = ®,,(r) — b, (). Substituting the coefficient
matrices associating with y s Ujs and f in Eq. (16), and it
would be clearer with notation listed as

1
7, 2 }[ﬂj vi f1N
A é _f 0 //l]
R IV R
2
Bp 2 7 _(f +”7) g (28)
b b% HiYj ’
_f+7 7 —H;j
2 e;C" (3q5)7p N A A
A el Gt L Ap,C(345)°V + Bp, (@, — bg,)
(29)

Furthermore, by subtracting measured angular rate item

and redefining the revised optical flow measurement éj as
a new measurement of the filter, the right side was expressed
only using the state vector X; therefore, the following nota-
tion remains as

~

¢j =&; — Bp,o,

TT( &
e3C" (3q5)7p, NG ~
=g AnCs)V - Brb. (30)

So that the measurement residual, also called innovation,
was given as

i _(H _p _¥ ws J 31
Yi (Ck ijm) Cp ™ OXk + My, (31)

where the Jacobian measurement was

. ohd ox . ; . .
{c 2 Ox  06x . = [H{ﬁr,k H{Sv,k H{se,k 0253 H{Sbm,kL
(32)
j egcT(BﬁG,k)”Pi N N
Hy, = eI, 0, e, ' APjC(BqG_k)GVk%T, (33)
TAT( A
j e3C" (546 )7, N
Hj, = ————gr——Ap,C(pAc4) (34)
elr, :
i AP-C(BQG,k)G‘A'ke%r N
Hyy =——¢% CT(BqG,k)I_ﬂPjXJ
e3 ry
TAT( A
e;C (B‘IG,k)”Pi A N n
- TGr ' APjC(BqG,k) [9Vix|CT (3G 4)- (35)
e3 |
H}, . = —Bp, (36)

Note that the residual noise 1]‘,’; was involved with the
optical flow algorithm error and gyroscope drift noise,

i.e., My =& — Bp, - Ny, hence, the covariance matrix of
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the revised optical flow measurement was the sum of the
covariance of optical flow algorithm R‘:/ and the gyroscope

covariance Q,,, which was given as
R} = E{n{(m})"} =Rg, + Bp,Qu,Bp". (37)

In general, there were a set of optical flow vectors mea-
sured at one time, stacking all the observation residuals of
Eq. (31) into one vector, which yielded, y, = H;0x; + n,
where y;, Hy, and n;, were composed of the block elements
y;» Hi, and 1, such that the measurement covariance matrix
could be stacked together diagonally as

R}< v Oy
Rk -
_()3><3 RkN
_Rgl + Bp, QuBp, " - 033
O3x3 -+ Re, + Bp,QuBp,”

(38)

Then, the a priori state estimate would be updated with
current measurements according to the following steps: (1)
calculate the Kalman gain as

K, = Py H{ (P H] +R;)™", (39)

and (2) calculate the observed error state correction as

Ax; = Kiyy, (40)

with these quantities, the nominal states and error covariance
get updated as

At A
X, = X; + Axy,

P/ = (1 - KH)P; (1 - K;H)" + KRKT. 41)

3.3 Error-State Kalman Filter Reset

For the ESKF reset process, we considered the expression
among the new error 5)2,(*, the old error 5&;, and the observed
error correction Axy, as the true value was constant, yielding
X! + 8% = X + 6X;. Considering that the observed error
has been injected into the updated nominal state, i.e., X; =
X; + Ax; so that 6X; = 6X; — Ax;, we defined an error
reset function 6x £ g(6x) = 6X; — Ax;, where the reset
operation was to ensure the error would reset 6x«0, mean-
while, the covariance of error needed to be modified as
well,'* thus leading to

P <GP/ GT, 42)

where G represented the Jacobian matrix according to Joan
Sola’s proof' defined as
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4 Observability Analysis

The estimator employed a linearized and discretized version
of the nonlinear system model (to simplify the analysis, we
only consider one single feature point):

Xy = BpXp + Gyny, i = Hyox + 1, (44)
where errors caused by linearization and discretization are
combined with the noise items n; and n,. With the purpose
of revealing the theoretical limitation of the observer, a tool
for the analysis of the observability properties—Ilocal observ-
ability matrix M(x) was adopted,” which was defined by
the error dynamic transition matrix @, and measurement
Jacobian Hy, i.e.,

H, H,
H,®, H,®,
M(x) = ) = i , (45)
H,®, H,®,_ ®;_, --- D,
H, = [Hs Hs Hsor Ong Hgp i), (46)

L AL, ®5F @F @b
03><3 13 (I)23 (1)24 (1)25
D= [ 035 O35 PP 055 DF . 47)
033 O3x3 033 I3 O3y
033 033 0353 O3z I3

Here Af; =1, —t;, and the computing method for
obtaining analogous expressions of the subblock elements
@™ can be found in Joel Hesch’s work.”® Furthermore,
using these expressions of @, we obtained the k’th block
row M, of M(x), for k > 2

M, =H®, =[My; My, Mz My M), 49)

and both @™" and M, are presented in detail in Sec. 8. It is
noted that M4 and M5, as containing the nonzero integrals
are time-varying matrices and have the linearly independent
columns. So that we can only consider the remaining block
elements of M, to form the basis of the right nullspace of
M(x), which is stated as follows:

Theorem I: The right nullspace N of the local observ-
ability matrix M(x) for the linearized model is spanned
by three unobservable directions:

i Nl 03)(1
030 —[“Vix]g 1
null[M(X)] =N= 03><2 Clg , Nl =(01]. (49)

O30 O3y

| 032 031

The proof of the Theorem I is detailed in Sec. 9.
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Nullspace N reveals that global rotations about the gravity
vector is not observable, and global horizontal position is
unobservable while height is fully observable. The remaining
states, i.e., the velocity, pitch, and roll angle as well as IMU
biases are also observable. The fact that the rotation around
the gravity vector is unobservable is due to the missing of an
absolute inertial yaw orientation, namely the yaw angle in the
inertial frame is unobservable, while the absolute roll and
pitch angle of aircraft w.r.t the global inertial frame is made
observable by the gravity vector measurement. Similarly,
without a global reference, the position in the direction of
x and y is not observable, but what is different from previous
findings, the altitude is observable because the assumption
that optical flow features used for filter updates lie in a level
plane and the plane contains the origin of the inertial frame.
Only use the feature-plane assumption, according to Eq. (6),
the feature depth is explicitly determined by absolute altitude
and aircraft attitude, which becomes part of the components
in the optical flow measurement equation and it, therefore,
can get corrected when the new measurement update is
coming.

5 Numerical Simulation

To numerically investigate the previous analysis, the pro-
posed navigation scheme was implemented in a simulation.
As shown in Fig. 4, there were 100 features randomly placed
in a [-350, 350 m] X [-350, 350 m] horizontal plane around
the origin. For generating the ground truth and sensor read-
ings, we simulated a flight with a piecewise continuous tra-
jectory, beginning with constant velocity at 20 m/s straight
line motion lasting for 4 s, following by banking turn with a
maximal angle of bank of 30 deg, and then a spiral motion
with a pitch angle of up to 9 deg at the altitude between —200
and —300 m, ending with a 50 s of circling. A full list of
parameters is shown in Table 1, in which most of those quan-
tities were referred in the commonly used IMU datasheet,
e.g., MPU6050 or ADIS16448.

The choices of the initial state values are given in Table 1,
which is showing that the filter had fault tolerance to the
initial state offset to an extent for convergence. In addition,
the initial filter error covariance matrix was set as Py =
diag([2500I; 100I; 0.25I; 0.01I; 7.6 x 10713]).

X Optical Flow Features
Trajectory

r, (m)

z

Fig. 4 IMU-camera trajectory and feature used in the simulation.
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Table 1 Simulation parameters and initial conditions of the filter
[‘rand (3, 1)” here represents a 3 x 1 random vector obeying standard
normal distribution].

Parameter Value
IMU sampling rate (Hz) 100
Camera process rate (Hz) 30

Accelerometer noise [m/ (s\/E)] op, =2.24 % 108

Gyro noise [deg /+/3] on, = 0.005

Accelerometer bias noise [m/ (sZ\/E) op,, = 7.53x107°

Gyro bias noise [rad/(sv/s)] 6py, = 1.08x107°

Field of view (FOV) (deg) 920

Optical flow noise (pixel-rad/s) 0.01

State Initial value True value

Position (m) True value + [-50 -180 -200]
50-rand(3,1)

Velocity (m/s) True value + [20 0 O]
10-rand(3,1)

Quaternion True value + [0001]

0.5-rand(3,1)

Accelerometer bias [000] [0.0981 0.0981
(m/s?) 0.0981]
Gyro bias (deg/s) [000] [0.5 0.5 -0.5]

Even though using a single optical flow measurement
ensured the observability, in a practical trial through proper
setting of FOV and initial feature quantity, we would have at
least seven features to be extracted every time step to obtain
better convergence. After running 100 Monte Carlo simula-
tions, we computed the Monte Carlo standard deviation,
also known as the root mean squared error, denoted by the
sample error covariance P?’“’“‘e through collecting N simu-
lation results as

N

1 - A
P?’[Ol‘lte = NZI(X] —xij)(xj —.Xij)T. (50)

Here, at the j’th time step, x; was the true state, and X; i
was the estimated value in the i’th simulation. The Monte
Carlo standard deviation and filter standard deviation are the
square root of the elements in the main diagonal of P?’["me
and ESKF estimation error covariance, respectively.

In Figs. 5-9, it is shown the results of the proposed filter
tracking ground truth for the position, attitude, velocity, and
IMU bias. The shown results outline that most of the state
estimations converge to ground truth occurred within 20 s,
except the unobservable states, positions along x and y axes
and the yaw angle, whose Monte Carlo standard deviation as
well as the filter standard deviation at the final time main-
tained around values at the initial time. The unobservable
states could remain with a constant error rather than absolute
divergence since they could have proper evolution and
IMU biases correction but lacking the initial reference. This
correlated well with the observability analysis of horizontal
position and yaw in Sec. 4.

Among the observable states, as the observability analysis
disregards process noise and initial offset, as the filter stan-
dard deviation decreases promptly, the Monte Carlo standard

r (m)

X

-100

— — — Ground Truth

-200

! Filter Esti

| SN - ——

300 T

400 1 L 1 1

e\t D filter +o standard deviation R
< - g :
et 97 98 99 100
-300 -

1 1 1 1 1

50 60 70 80 90 100

time (s)

Fig. 5 Position estimation and corresponding Monte Carlo and filter standard deviation ¢ hull with

respect to the ground truth.
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Fig. 6 Attitude estimation and corresponding Monte Carlo and filter standard deviation ¢ hull with

respect to the ground truth.
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Fig. 7 Body-fixed velocity estimation and corresponding Monte Carlo and filter standard deviation ¢ hull

with respect to the ground truth.

deviation seems to converge to zero slowly. Comparing with
curves of the gyroscope bias, the uncertainty of accelerom-
eter bias presented a much slower convergence, which was
induced by the gyroscope bias being explicitly included in

Optical Engineering
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the measurement equation and therefore directly corrected
while the accelerometer bias only relied on states propaga-
tion and obtained the effect via coupling with other states.
For the estimation of roll and pitch angle, height as well

August 2019 « Vol. 58(8)



Deng et al.: Measurement model and observability analysis for optical.. .

v (m/s)

v, (m/s)

-40 L . . L L — — —Ground Truth
0 0 20 30 40 50 Filter Estimate 0
————— Monte Carlo + o standard deviation
' ' ' 1 — - filter + o standard deviation
10 - -

v_ (m/s)

90 100

Fig. 8 Inertial velocity estimation and corresponding Monte Carlo and filter standard deviation ¢ hull with

respect to the ground truth.
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Fig. 9 IMU bias estimation and corresponding Monte Carlo and filter standard deviation ¢ hull with
respect to the ground truth: (a) the accelerometer bias and (b) the gyro bias.

as vertical velocity, a better agreement between the Monte
Carlo sample covariance and the filter error covariance than
other states are shown in plots; nevertheless, the estimation
of horizontal inertial and body-fixed velocity relied on
mutual tight coupling effect with estimated attitude con-
tained with accelerometer bias and unobservable yaw angle.

6 Experiment

The proposed filter has been tested on an X-star quadcopter
which was equipped with Pixhawk 4 and PX4Flow board.

Optical Engineering
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The optical flow camera consisted of a 752 X 480 MT9V(034
image CMOS sensor with global shutter and 16 mm M12
lens, 24 X 24 ym, whose output to optical flow data was
4 x 4 binned image at 10 Hz. The camera module could be
considered as a pinhole camera with the mounting method
for pointing the camera straight down. The employed IMU
was a dual redundancy solution with BMIO55 and ICM-
20689, providing inertial measurements at 125 Hz.
Ground truth was collected by the conventional INS based
on extended Kalman filter and attitude and heading reference

August 2019 « Vol. 58(8)
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Flight Path

Fig. 10 Test flight path.

system algorithm, which integrated IMU outputs, magne-
tometer readings, and barometric altitude with GPS data.
Note that these extra sensors were only for generating true
value and not a part of the proposed navigation system, nor
used for estimates.

In Fig. 10 the outdoor trajectory during the autonomous
controlled waypoint mode flight test is shown. The flight
envelope was set with a maximum height at 10 m and maxi-
mum speed around 7 m/s. The quadcopter took off at the
origin, as we had little information of the IMU, the estimated
states were initialized with zero value as this was the only
option. The covariance parameters could be selected based
on hardware specifications, which did not require strong tun-
ing as the framework could work well with a large range of
parameters.

From results in Figs. 11-13, the filter operation was
started in the flight at around r =70 s and at a speed of
~5 m/s. The roll and pitch angle exhibit a high-quality
tracking accuracy except the growing error occurs when the
vehicle was ready to descend for landing at the time after

Measurement model and observability analysis for optical. ..

150 s, as the horizontal velocity drops which was not favor-
able for the accuracy of optical flow measurement. Due to
misalignment of the initial value, the yaw angle always kept
a deviation with true value, which might make a major con-
tribution to the estimated error of velocity along x and y axes,
especially during ¢ € [120, 140 s] as they deviate from ground
truth with a greater oscillation. Under unknown noise of the
hardware system or vehicle vibration, the horizontal velocity
and horizontal position estimates approached their true value
more slowly and less precisely, but vertical velocity, as well as
altitude estimate, exhibited more satisfactory accuracy.

7 Conclusions

This paper has presented an optical flow-based approach to
vision-aided inertial navigation. Under the assumption that
the environment of the observed feature points can be seen
as located on a plane, the feature depth can be obtained
by deducing distance expression through the optical flow
equation with a geometry-coordinate relationship based on
a vehicle-camera-feature system. In order to fill in previous
works’ gap, an error analysis for optical flow measurement
using a block-matching method was provided, which was
the prerequisite for adopting and designing an ESKF. With
the IMU dead reckoning used for prediction, optical flow,
and feature measurement for correction, the estimates of
the vehicle’s altitude, attitude, velocity, and drift IMU biases
can be obtained. The theoretical limitations and feasibility of
the filter were investigated by observability analysis, which
has shown that only the absolute position along x and y axes
along with the yaw angle were unobservable. Finally, the
Monte Carlo simulation and hardware involved experiment
validated the statement in observability analysis.

The numerical and real experiments have shown that
the effectiveness and performance of the proposed filter may
suffer from initialization errors and noise. Considering that
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Fig. 11 Position in test flight.
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Fig. 13 Inertial velocity in the test flight.

the minimal sensor configuration was low-priced and the
adopted method required less computational effort, the over-
all system could be an onboard estimator for providing
real-time supplemental state estimate when the UAV would
be placed in an unknown GPS-denied environment.
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8 Appendix I: Expression of Error Dynamic
Transition Matrix Subblock Elements ®™" and
Calculation of M,

According to Ref. 26, the sub-block elements used in this

paper are shown as
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Moreover, with these expressions, and based on
Egs. (33)-(36), the k’th block row M, of M(x) was calcu-
lated, for k > 2

T
Ckﬂp

TG
e3 r

M, = Hg ApC;Cvel, (52)

G T
k Tk €3

M;, = Ay H o + Hyy i

M;s = H (@ + Hy, @ + Hyp @ + Hyp, 4

elCTy
7’< P ApC,S
= PLk Vke
eTGr Or,Te, 3

/ / [(“a, - / CTdrds dt
C ' s
_eSTGkﬂPAPCk'/kL(Gas—g)XJ/ Cldr ds
€3Iy f "

ApC 1
%CTL PXJCk/ACITdt
e3 I I3

elCT z
Y k”"APCkL vkxj/kC,Tdt—BP. (56)
3 131

9 Appendix ll: The Proof of Theorem |

Proof: To verify the result, we just directly multiplied
each block row of M(x) with N. When

k=1, HN=[Hs N, —Hs [ x|g+Hs,Cgl
(57

for

k>2, MN=[M;N —M;|x]g+M;Cigl.

(58)

, e;Cimp AuC.Gvy.el — e;Cip AuC . Clp Go 1
keg'GrkGrkTeB Pl Ve elCr, 1 2072 Since e; =[0 0 1], both WAPC,( vie; and
(53) A"eCTk(,rvk% had such structure {g 8 ﬂ, which were marked
by X! and X, respectively, hence
_ 13 23 33
Mis = Hors® =+ Horg 7 + Hoa @ HyriNi = ZIN = 00, MN; = ZIN, = 00, (59)
eg CTITP G T
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- Aka C:dr, (55) 0,1, it yielded H;N = 0,,3, MyN = 0,,3, so that we had
el
3 f M(x)N = 0.
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