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Classifying structural alterations of the cytoskeleton
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Abstract. A classifier capable of ranking structural alterations of the
cytoskeleton is developed. Images of cytoskeletal microtubules ob-
tained from the epifluorescence microscopy of primary culture rat
hepatocytes are analyzed. Morphological descriptors are extracted by
contour and mass fractal analysis, direct methods, and spectrum en-
hancement. All methods are designed and tuned to make the ex-
tracted morphological descriptors insensitive to absolute fluorescence
intensities. Spectrum enhancement is a nonlinear filter that involves
spatial differentiation of the gray-scale image followed by conversion
of power spectral density to the logarithmic scale and averaging over
arcs in the reciprocal domain. Enhanced spectra exhibit local maxima
that correspond to the structured microtubule bundles of a normal
cytoskeleton. Descriptor fusion for classification is achieved by means
of multivariate analysis. The classifier is trained by image sets repre-
senting normal �“negative control”� microtubules and those altered by
exposure to a fungicide at the highest dose of the experiment design.
Some sensitivity and validation tests, including discriminant functions
analysis, are applied to the classifier. The latter is applied to recognize
images of microtubules not used in the training stage and comes from
treatments at lower concentrations and shorter times. As a result,
structural alterations are ranked and structural recovery after treatment
is quantified. The method has potential use in quantitative,
morphology-based tests on the cytoskeleton treated either by antican-
cer drugs or by cytotoxic agents. © 2006 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2187423�
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1 Introduction and Motivation
The automatic classification and recognition of images ob-
tained from various microscopic applications is a task of para-
mount importance to disciplines ranging from materials sci-
ence to cell biology. This paper focuses on the morphology of
the cytoskeleton, made visible by epifluorescence microscopy,
processed by some methods that extract features �morpho-
logical descriptors� and classified by means of multivariate
statistics.

1.1 Cytoskeleton
The cytoskeleton is a network of proteins that structurally and
dynamically organize the cytoplasm of living cells.1 It is com-
posed of three major structural elements: microtubules, inter-
mediate filaments, and microfilaments, each consisting of
polymers of protein subunits.

The cytoskeleton is responsible for the maintenance of cell
architecture, shape, and internal organization. For example, it
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enables the transport of organelles and vescicles. Microtu-
bules and actin filaments play a role in mitosis, cell signaling,
and motility.2

A well-organized cytoskeletal network exhibits, as in the
top tile of Fig. 1 and in Fig. 2, bundles of microtubules radi-
ating from the microtubule organizing center �MTOC�, lo-
cated near the cell nucleus, toward the cell periphery.

In general, alterations of cytoskeletal functions are related
to �may be the cause or the effect of� a broad spectrum of
biochemical reactions such as adenosine triphosphate �ATP�
depletion, disruption of intracellular ion �Ca2+� homeostasis,
thiol oxidation, and phosphorylation,3–7 all of which have ma-
jor repercussions on cell functionality. Many substances are
known to directly or indirectly interact with cytoskeletal con-
stituents and cause damage: metals,8,9 herbicides and
fungicides,3,10 the neurotoxin4 MPTP, as well as natural
toxins.5

In morphological terms, damage to the microtubule net-
work consists of structural disorganization, inhibition of as-
sembly, disassembly, or depolymerization. All of these pat-
1083-3668/2006/11�2�/024020/18/$22.00 © 2006 SPIE
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terns can be visualized by means of suitable techniques11

�e.g., Sec. 3�.
In turn, morphological alterations of the cytoskeleton re-

flect functional disturbances of the whole cell, e.g., altered
transport of very low density lipoproteins in hepatocytes,12

neurodegeneration,13–15 and cell transformation.16 For this last
reason the cytoskeleton has become one of the preferred tar-
gets of anticancer drugs.17–22

Therefore cytoskeletal morphology is a valuable indicator
of cell functionality. In this context, morphological analysis
and classification of cytoskeletal images can assist in estimat-
ing the degree of cell injury.

Fig. 1 Outline of the experiment design. All images show microtu-
bules of cultured rate hepatocytes obtained by immunolocalization
and epifluorescence microscopy. C, tile from the untreated �control�
set; T502h, tile from treatment at the highest concentration
�50 �g/ml� for the longest time �2 h�; R; tile from the recovery experi-
ment; and T2530; tile from an intermediate treatment. In tiles T502h
and T2530 the dark round area corresponds to the nucleus, in prox-
imity of which the MTOC is located. Square side length=13 �m.

Fig. 2 Microtubules of a control cell, tile cont�03o. Square side

length=13 �m.
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1.2 Image Classification
Image classification can be either dichotomic or of “continu-
ous” type. The former is meant to provide yes/no answers, the
latter is expected to rank images according to some predefined
properties. Moreover, image classification paradigms differ by
the type of data processed. Raw images can be supplied as
such to a black box algorithm, which is requested to sort out
similarities and rank images accordingly.23,24 Instead, the
paradigm implemented in this paper starts with the extraction
of a few quantitative morphological descriptors, also called
indicators or features, believed to effectively translate struc-
tural, hence functional information. Features were extracted
by the following methods: contour �Secs. 5.2 and 6.1� and
mass fractal analysis �Secs. 5.3 and 6.2�; spatial differentia-
tion �Secs. 5.4 and 6.3�; and “spectrum enhancement,” a non-
linear filter in the Fourier domain �Secs. 5.5 and 6.4�. Descrip-
tor selection is based on known function-morphology
relations and driven by the properties of the available images
�Sec. 4.1�.

Classification and quantitative assessment then relies on
the four standard steps:

1. training on sets of images which represent extreme situ-
ations �Sec. 7�

2. sensitivity analysis with respect to control parameters
and validation by the submission of new inputs �Sec. 8�

3. recognition of images coming from different experi-
ments �Sec. 9�,

4. image ranking by means of some numerical indicators,
as required by the intended application �Sec. 9�.

These stages are all reflected in the experiment design
�Sec. 4� and the developments described in the following,
where the eventual application is the quantitative description
of cytoskeletal morphology affected by damage �Sec. 9.1� or
undergoing recovery �Sec. 9.2�.

2 Related Work
Very roughly speaking, mathematical models of the morphol-
ogy and organization of the cytoskeleton have served two
different purposes: either to simulate cytoskeletal dynamics or
to analyze a specific process of interest. Although a compre-
hensive overview of prior work is beyond the scope of this
paper, some results concerning modeling and simulation de-
serve to be mentioned, namely, those by Dufort and
Lumsden,25 who developed a cellular automaton model; by
Edelstein-Keshet and Ermentrout,26 who interpreted actin-
filament length distribution in a lamellipodium; and by Aon
and Cortassa,27 who investigated the influence of cytoskeletal
organization and dynamics on cell biochemistry. Moreover,
fractal models have been proposed in a variety of situations
involving the cytoskeleton.28,29

On the process analysis side, as early as 1992 and within a
program aimed at extracting features from moving cells,
Lifshitz30 developed a microtubule tracking algorithm that re-
lied on model matching, and Thomason et al.31 related the
mass fractal dimension to cytoskeleton rearrangement dynam-
ics in cardiac muscle. Spatial differentiation and edge detec-
tion have been applied, e.g., by Karlon et al.,32 who measured
cell alignment and cytoskeletal organization by means of a
gradient method; Knight et al.33 applied a Sobel filter to ob-

tain comprehensive results about the quantitative morphology
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of cytoskeletal organization. Fourier analysis was used, e.g.,
by McGough and Josephs34 to quantify the structure of eryth-
rocyte spectrin and by Petroll et al.35 to describe the orienta-
tion of stress fibers. To the best of our knowledge Kohler
et al.36 were the first to compare arc-averaged power spectral
profiles of cytoskeletal images in the reciprocal domain. In
fact, image comparison based on arc-averaged power spectra
�improperly called “radially averaged”� is a well-established
procedure37 derived from robust �rotation-invariant� target de-
tection. Other methods of pattern analysis such as hierarchical
feature vector matching have been applied to confocal micro-
scope images of living cells to quantify cytoskeletal
deformation.38 More generally, the supervised or unsupervised
classification and recognition of subcellular structures are
strategic tasks in cell biology and proteomics,39,40 which have
far reaching consequences in diagnostics and health care.

This paper is an account of the results obtained so far by
the authors. The earliest results appeared in some conference
proceedings.41–45

3 Materials and Experimental Methods
Experiments that yielded the images of interest involved pri-
mary cultures of rat hepatocytes. The latter cells were ob-
tained by the modified method of collagenase perfusion.3

Male Sprague-Dawley rats �weighing 200 to 250 g� were
anesthetized by intraperitoneal �ip� injection of 40 mg sodium
penthobarbital/kg body weight. The abdomen, previously
washed with alcohol, was opened and the portal vein cannu-
lated, the liver was perfused with 50 ml Hank’s balanced salt
solution �HBSS�—Ca2+-Mg2+ buffer �138 mM NaCl,
5.3 mM KCl, 0.33 mM Na2HPO4·2H2O, 0.44 mM
KH2PO4, 5.5 mM glucose, 150 mM phenol red, 7.5% w/v
NaHCO3, pH 7.4� for 10 min and then for 15 min with
75 ml HBSS buffer containing collagenase �28 mg/8 ml me-
dium�. The liver was placed in a culture dish containing Wil-
liam’s E medium �Sigma Chemical Company, St. Louis, Mis-
souri, USA� supplemented with 0.2% bovine serum albumine
�BSA�, 10−7-M dexamethasone, 10-�g/ml bovine pancreas
insulin, and 50-�g/ml gentamycin sulphate and decapsu-
lated. The suspension was filtered through cotton gauze and
washed twice with culture medium by sedimentation. Cell
viability was determined by trypan blue exclusion and was
�85%. Hepatocytes were plated on collagen-coated glass
coverslips at 18,000 cells/cm2 density with William’s E me-
dium supplemented with 5% fetal calf serum �FCS�. Collagen
isolated from rat tail was supplied by Sigma Chemical Co.
�St. Louis, Missouri�. Twenty-four hours after plating, some
cells were processed right away for tubulin visualization and
formed the “negative control” set. Some more were exposed
to the fungicide Benomyl™ �ICI Soplant S.p.A., 98% purity�
dissolved in dimethylsulphoxide �DMSO: 1% v/v final con-
centration� at a given concentration and for a given time and
formed the various “treated” sets. The “recovery” experiment
consisted of replacing the Benomyl™-contaminated medium
by the standard one and letting the culture incubate for 24 h
more. Tubulin was made visible through the following steps.
Cells were washed in phosphate-buffered saline �PBS:
136 mM NaCl, 2.6 mM KCl, 8 mM Na2HPO4·2H2O,
1.6 mM NaH2PO4·H2O, pH 7.4� and fixed for 10 min at

room temperature with 3% formaldehyde in PBS. After rins-

Journal of Biomedical Optics 024020-
ing with PBS, cells were permeabilized first with high perfor-
mance liquid chromatography �HPLC�-grade methanol then
with HPLC-grade acetone both at −20 °C for a few seconds,
then incubated with a blocking solution made of PBS+1%
BSA for 10 min. Standard indirect immunofluorescence stain-
ing was performed: the primary anti-�-tubulin antibody �Am-
ersham, Amersham Buks., United Kingdom� was diluted
1:100 in PBS+1%BSA and the cells incubated in a humid
atmosphere for 1 h at 37 °C. After rinsing with PBS
+1%BSA, fluorescent staining was performed for 45 min at
37 °C with the secondary antibody �Amersham, Amersham
Buks., United Kingdom�, namely, Texas Red-conjugated goat
anti-mouse immunoglobulin �Ig� �1:50 in PBS+1%BSA�.
After the final rinsing with PBS and distilled water, the cov-
erslips were mounted and viewed in a Zeiss Axioplan™ mi-
croscope equipped with epifluorescence optics at 630� mag-
nification and a numerical aperture of 1.40 in oil. The filter set
consisted of the bandpass BP 546 tuned for excitation wave-
lengths ranging from 540 to 552 nm, a bandstop FT 580, a
dichroic beamsplitter and a lowpass LP 590, which transmits
fluorescence radiation at 590 nm and higher. Photographs
were taken with Kodak T-max 400™ film.

All epifluorescence images were digitized at a resolution
of 700 dpi �27.5 dots per mm� and saved in BMP, 8-bit gray
scale format such that 0 corresponded to black and 255 to
white, as a consequence they had the same magnification
�551� �. Since spectral analysis relied on the discrete Fourier
transform �Sec. 5.5�, square tiles had to be cut out of the
original images by supplying the upper left corner coordinates
to the image readin function. The size of a tile was 512
�512 pixels. Original images usually contained more than
one cell. Therefore, tiles were cut in such a way as to include
the border areas of the cell aggregate, where microtubules
were best visible in each set. This rule applied to all tiles
except the one labeled X �Fig. 6 in Sec. 6.4�, taken from the
perinuclear region of an untreated cell. In that area, the orga-
nization of microtubule bundles could not be evaluated;
context-independent visual observation was insufficient to tell
whether the image came from a control cell or from a treated
one, regardless of dose.

4 Classifier Specifications and Design
4.1 Required Morphological Descriptors
Since experiments were carried out in different situations, the
average fluorescence yield affecting a given image varied.
Moreover, the photograph sets of a given experiment were
developed and printed at different times. As a consequence,
images had to be analyzed by methods exhibiting the least
possible sensitivity to the average fluorescence intensity and
to the absolute relation between exposure and film density.

The features to be extracted from the images for classifi-
cation had to translate into quantitative terms those properties
that a human expert believes to characterize cytoskeletal or-
ganization or loss thereof. In morphological terms, said fea-
tures depend on image structure �leading features� and, to
some extent, on texture �fine details�.

The fully developed microtubules of a normal cytoskeleton
are known to have indented contours, whereas an altered cy-

toskeleton has a smoother contour. One morphological de-
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scriptor known to quantify indentation is the contour fractal
dimension, denoted by DFP �Secs. 5.2 and 6.1�.

The number of microtubule bundles per unit area, i.e., the
“mass density,” of a normal cytoskeleton is lower than that of
an altered one. A suitable descriptor, suggested, e.g., by the
morphological analysis of dendritic materials,46 is the mass
fractal dimension DFM �Secs. 5.3 and 6.2�.

Microtubule bundles give rise to more or less visible edges
in a gray-scale image. Global, direction-independent edge in-
dicators are therefore necessary, such as the total variation
�TV� and a suitable norm of the Laplace operator L. Both
descriptors are computed in the direct domain, i.e., by �dis-
crete� spatial differentiation �Secs. 5.4 and 6.3�.

Finally, a set of descriptors was required that
1. are independent of the coarse �very low spatial fre-

quency� details in the image and possibly of the absolute fluo-
rescence intensity

2. can quantify the organization of microtubule bundles
for example by �a� detecting straight or fan-shaped bundles
regardless of their direction and �b� discriminating straight
bundles �typical of a normal cytoskeleton� from curly ones
�caused e.g., by treatments�

3. include the contribution from weakly emitting although
structured microtubule bundles far away from the MTOC

4. quantify “structure” as compared to “texture” of the im-
age, e.g., in terms of relative power spectral densities.

Separation of image structure from texture is one of the
fundamental tasks of image understanding, which was formal-
ized by the Osher-Rudin paradigm �Chap. 1 of Ref. 47�. In
this application, structure observed in a cytoskeleton is due to
organized microtubule bundles, whereas �straight or curly�
isolated tubules and image noise contribute to texture. The
diameter of a microtubule is 25 nm. If straight bundles are
formed by, say, 5 to 20 microtubules, the image will contain
structures of spatial period ranging from 250 to 1000 nm.
The corresponding fundamental spatial frequency will range
from 4 to 1 cycles/�m. Hence the analysis of the power
spectrum shall be tuned to that frequency domain.

The implementation of these requirements by means of
“spectrum enhancement” is described in Secs. 5.5 and 6.4.
Note also that Table 1 summarizes the symbols used in this
paper.

4.2 Classification Experiment Design
The classification experiment was designed to implement all
three stages, i.e., training, validation and recognition. Figure 1
provides examples of the image types and an outline and
Table 2 the complete list of processed tile sets. Untreated
cells, which underwent all sample preparation stages de-
scribed in the previous section except exposure to
Benomyl™, served as negative control: they yielded compa-
rable images divided into the C and CV tile sets for experi-
mental purpose. The T502h and T502hV sets were derived
from treatment with Benomyl™ at experimental conditions
�50 �g/ml for 2 h� classified as “extreme” according to the
morphological and biochemical evidence given by Ref. 3.
Cells from intermediate treatments gave rise to other tile sets,
e.g., T2530 �25 �g/ml for 30 min�. Cells from 24-h recov-
ery after the T502h treatment yielded the R tile set. The C and

T502h sets were used for classifier training �Sec. 7� as well as
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the X tile �Sec. 3 and Fig. 6 in Sec. 6.4�. The CV and T502hV
tiles were used for classifier validation �Sec. 8�. Sets T5015,
T5030, T252h, and T2530 were used in the recognition stage
to rank the effects of intermediate concentrations and expo-
sure times on morphology �Sec. 9.1�. The analysis of set R is
presented in Sec. 9.2.

5 Methods of Morphological Analysis
An image is conveniently modeled by the discrete counterpart
of a nonnegative function g�x� of position x with support in
the open set �, the tile.

5.1 Preprocessing and Optimal Thresholding
Given the heterogeneity of experimental conditions and of
photographic processing �Sec. 4.1�, independence of the ab-
solute fluorescence intensity could be achieved by normaliz-
ing the gray-scale histogram of each tile separately. Histo-
gram normalization is an affine transformation of g�x� into
f�x� according to

g�x� → f�x� = �g�x� + � � 0 in � , �1�

where � and � depend on the specific tile.
The extraction of a few morphological descriptors required

image thresholding, e.g., for binarization or background sub-
traction. Several methods exist that determine a binary thresh-
old according to some optimality criterion. In this paper, the
optimum threshold for each tile � was determined to maxi-
mize cross-correlation 	g
�t� between the original gray scale
g and the black-and-white image 
�t� binarized according to
the threshold t. Formally,

� ª arg max
0�t�smax

�	g
�t�� . �2�

The algorithm, described by Kindratenko,48 is reported in Ap-
pendix A. Adaptive methods that determine position-
dependent thresholds were not implemented to avoid intro-
ducing statistical heterogeneity between images.

5.2 Contour Fractal Analysis
The purpose of contour fractal analysis is to estimate the cor-
responding fractal dimension DFP. A typical algorithm con-
sists of the following eight stages: �1� � thresholding �Sec.
5.1�; �2� determination of the Férét diameter FD; �3� contour
tracking; �4� estimation of the perimeter P�y� by different
values of the yardstick y; ranging from y= �1/2�FD to y
=1 pixel; �5� contour correction wherever applicable; �6� con-
struction of the log�P�y�� versus log�y� Richardson plot; �7�
determination of the morphological threshold yMT; and �8�
linear interpolation of the plot in 1�y�yMT. Some of the
computer algorithms can be found in Ref. 48.

As shown in Appendix B, Proposition 1, the value of DFP
estimated from an image binarized by the � of Eq. �2� is
invariant with respect to affine transformations of g�·� such as
histogram normalization �Eq. �1��. As a consequence DFP is
an intrinsic property of the analyzed tile, not affected by ab-

solute gray levels.
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Table 1 List of symbols.

Symbol Meaning Symbol Meaning


�t� Binarized image FD Feret diameter

� Set centroid g�x� Gray-scale image


 DIRAC measure h�u� Enhanced spectrum

� Background threshold I Axis of inertia

� Polar angle J Dimension of Princ. Component space

� Arc of integration K Number of classes

�n Sample mean � Pixel size

	g
�t� Cross-correlation L Tile side

�n Sample standard deviation L� Laplacian norm

� Optimum threshold M Number of tiles

W Spatial domain m�p� Spectrum model

A Area under the curve MTOC Microtubule organizing center

b1,b2 Branches of a Spanning Tree N Number of descriptors

C ,CV , Ĉ Control sets p Model exponent

c Average curvature P�y� Perimeter

d Polynomial degree PCA Principal component analysis

D Morphological descriptor set q Interpolating polynomial

D1, and D2 Discriminant functions Q �.� Flop-flip reflection

DA Discriminant analysis qR Degree of recovery

dCT Distance between centroids R Recovery set

DFM Mass fractal dimension R Rectangle in principal component plane

DFP Contour fractal dimension s�u� Averaged spectral density

T Surface of the torus SL� Averaged Laplacian

T Projection matrix VK Information content

T252h 25 �g Benomyl/ml, 2-h set wm Vector in principal component Space

T2530 25 �g Benomyl/ml, 30 min set X Outlier tile

T5015 50 �g Benomyl/ml, 15 min set x Position vector

T502h, T̂ 50 �g Benomyl/ml, 2-h sets X Raw feature matrix

T502hV 50 �g Benomyl/ml, 2-h validation set y Yardstick

T5030 50 �g Benomyl/ml, 30 min set Y Feature matrix

TV� Total variation ym Feature vector

u Wave number z Principal component
Journal of Biomedical Optics March/April 2006 � Vol. 11�2�024020-5
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5.3 Mass Fractal Analysis
Among the methods that estimate the mass fractal dimension
DFM, box counting46 is the most straightforward. It also oper-
ates on a binarized image and relies on regression of a Rich-
ardson plot. Details are left to the implementation �Sec. 6.2�.

5.4 Direct Methods �Spatial Differentiation�

Although all methods are applied to a discrete context, a con-
tinuum setting now simplifies the description. By assuming

g � W2,1��� , �3�

the Sobolev space of functions absolutely integrable in � to-
gether with their derivatives up to the second, the following
subdomain was defined

�� ª �x � ��g�x� � �� , �4�

where � is a suitable threshold. Heuristically, � is an estimate
of peak background noise, hence g�x� in �� is above such
noise level. The �� averaged total variation

TV� =
1

����
��g�1, �5�

and 1 norm of the Laplacian,

L� =
1

����
��2g�1, �6�

where ���� is the area of ��, can serve as direction-
independent edge indicators, as specified in Sec. 4.1. Obvi-
ously, they are affected by affine gray-scale transformations.
By letting �=��+� �Eq. �1��, where � is directly propor-

Table 2 Image sets formin

Tile Set

Benomy™
Concentration

��g/ml�

Exposure
Time

�hh:mm�

Recovery
Time

�hh:mm�

C
X

NA NA NA train
inclu

CV NA NA NA valid

T502h 50 2:00 0:0 train
extre

T502hV 50 2:00 0:0 valid

T5015 50 0:15 0:0 dam

T5030 50 0:30 0:0 dam

T252h 25 2:00 0:0 dam

T2530 25 0:30 0:0 dam

R 50 2:00 24:00 dam
reco
bottNA stands for not applicable.
tional to � of Eq. �2�, and defining ��ª �x�� � f�x����,
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then ����= ���� and one can immediately verify that the
norms scale according to

��f�1 = �����g�1 and ��2f�1 = �����2g�1. �7�

5.5 “Spectrum Enhancement”
The spectrum enhancement algorithm, suggested by the ex-
perimental results from a coherent optical image processor
many years ago49 and specifically developed41,50–53 for image
classification in the past 3 yr, meets all the specifications
listed in Sec. 4.1.

Let Q� denote a square of side-length L and consider an
image, i.e., a function Qg�x�, x	�x1 ,x2��Q�, which is
continuous on the surface T of the torus obtained by glueing
the opposite sides of Q� together. One way of obtaining such
a Qg�·� from an image g�·� defined in a square tile � of
side-length L /2 is the application of the twofold Q�·�
=flop�flip�·�� reflection. Next let Q� be discretized by a
square grid of step-length �. Let u	�u1 ,u2� be the spatial
frequency vector. Then the discrete Fourier transform G�u� of
Qg�·� is defined in the square

0 � �u1�, �u2� � umax = L/2� − 1 cycles/image. �8�

In the implementation below L=1024 pixels, corresponding
to 26 �m, hence,

umax = 511 cycles/image 	 19,650 cycles/mm. �9�

As a consequence of the continuity of Qg�·� on T, G�u� ex-
hibits no “cross-artifact” �e.g., Chap. 4 of Ref. 46�.

Represent u in polar coordinates u	�u ,��, where u= �u�
is the wave number, and � is the polar angle such that 0��

2

xperiment design.

Remarks Number of Tiles Section

ntrol set �Fig. 1, top�:
e perinuclear tile, X �Fig. 6�

8�C�+1�X�
�see text�

8

control set �Fig. 9�a�� 8 9

ated set:
atment �Fig. 1, left�

8 8

treated set �Fig. 9�b�� 8 9

nking set 22 9.1

nking set 6 9.1

nking set 7 9.1

nking set �Fig. 1, right� 20 9.1

nking set: treatment, then
control medium �Fig. 1,

12 9.2
g the e

ing co
des th

ation

ing tre
me tre

ation

age ra

age ra

age ra

age ra

age ra
very in
om�
�2�. Denote by �G�u�� the power spectral density. Due to
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the symmetry of Qg�·�, the main axes of inertia of �G�u��2
�those that diagonalize the inertia tensor� coincide with u1 and
u2. Let � denote an arc symmetric with respect to either axis.
Then the normalized, arc-averaged spectral density profile is
the function s�·� of u alone defined in 0�u�umax �cycles/
image� according to

s�u� =
1

���
�

10 log10� �G�u��2

�G�0��2�ud� , �10�

where ��� is the length of �, and obviously �G�0��2�0 for
any nondegenerate image. The value of ��� is provided in
Sec. 7.

Let m�u� be a model spectral density. For example, choose

m�p��u� = 0, 0 � u � 1; m�p��u� = − 10 log10�up�,

u � 1 cycles/image, �11�

where p��0� is the model exponent. Then the enhanced spec-
trum h�u� is defined by

h�u� = s�u� − m�p��u�, 1 � u � umax. �12�

Intuitively, the function h�·� represents deviations of s�·� from
a given model.

Among the properties of the enhanced spectrum h�u� the
following two are worth mentioning.

Proposition 2. In the interval 0�u�umax, h�u� is invari-
ant with respect to scaling transformations such that �=0 in
Eq. �1�, applied to the gray levels of the input image.

This is a straightforward consequence of normalization
�Eq. �10��. As a result, the enhanced spectrum reflects the
intrinsic properties of the analyzed tile.

The second property is a relation between h�u� and spatial
differentiation of Qg�x�.

Proposition 3 (in words). When p /2 is an integer, the en-
hanced spectrum corresponds to evaluating all spatial deriva-
tives of order p /2 of the image, taking their Fourier trans-
forms, forming a linear combination of the squared moduli,
adding 
�u�, taking the logarithm and averaging over �.
The formal statement and other remarks are provided in
Appendix C.

From a practical point of view, conversion of �G�u��2 to
the log scale �Eq. �10�� amplifies the contribution of struc-
tured but weakly emitting microtubules. Averaging over �
makes s�u� independent of bundle direction. Comparison be-
tween the asymptotics of the given power spectrum and a
model of the m�p��·� class has been implied by previous stud-
ies involving visual processing.54 The emphasis herewith is on
the low-frequency behavior of h�·� for example in 1�u
� �1/4�umax, aimed at enhancing image structure and assess-
ing the relative weight of texture. Given the scale factor of
Eq. �9�, the approximate spatial frequency range to which
microtubule bundles shall contribute most in terms of power
spectral density is

20 � u � 100 cycles/image. �13�

The spectrum enhancement code was based on the fast Fou-
rier transform and singular value decomposition taken from

Ref. 55 and on additional authors’ own feature extraction
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functions. It was written in C and run in conjunction with
other pieces of software.

6 Extraction of Morphological Descriptors
6.1 Contour Fractal Dimension DFP

Contour correction, step 5 of Sec. 5.2, consisted of subtracting
from P�y� the y independent length of the straight segments
along the boundary of the square before building the Richard-
son plot. Otherwise DFP would have been underestimated.
The threshold yMT �step 7� was determined once for all from
the Richardson plot of a contour of known dimension. This is
a yardstick value that separates the structural part �large y,
highly oscillatory graph� of the plot from the textural one
�small y, smoother graph�. The Richardson plots yielded by
the tiles of Figs. 2 and 3 are shown by Fig. 4. Contour cor-
rection was applied to the former plot. The latter tile, instead,
which showed a whole cytoskeleton, did not need any correc-
tion. The estimated values of DFP for C tiles, including that of
Fig. 2, were affected by the deep contour indentations due to
filaments. The smoother contours of T502h tiles �Fig. 3�
yielded lower values, as expected.

6.2 Mass Fractal Dimension DFM

The DFM was estimated by box counting46 on each previously
normalized and � binarized tile. The software used was
Benoit™ 1.3 of TruSoft Inc.56 Typically, the box scaling ratio
was 1.3 and the grid orientation angle was stepped by 15 deg.

The values of tile set-averaged DFP and DFM and their
standard deviations are shown in Table 3.

6.3 Total Variation TV� and Laplacian Norm L�

The relation between � and � mentioned at the end of Sec. 5.4

Fig. 3 Microtubules of a treated cell, tile be502� 04. Square side
length=13 �m.
was
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� = 0.8� , �14�

where the coefficient 0.8 was found during classifier training
�Sec. 7�. The set-averaged values of TV� and L� and their
standard deviations are listed by Table 3. The signed, domain-
averaged Laplacian SL�= �1/ �����
��

�2f d� was used in
early training attempts �Sec. 8.1� and later dismissed.

6.4 Descriptors of the Enhanced Spectrum
From here on the wave number is assumed to be discrete and
span the interval 0�u�umax. The enhanced spectrum can be
regarded as the signature of a given tile, and as such, the
graph �u ,h�u�� is an array of first-level morphological de-
scriptors. The decision was made to extract fewer second-

Fig. 4 Richardson plots related to contour fractal analysis. All length
values in units of the Férét diameter. For plot cont�03o, derived from
Fig. 2, estimated DFP=1.54 after discounting for straight edges, and for
plot be502�04 derived from Fig. 3, estimated DFP=1.11. No straight-
edge correction was required.

Table 3 Set averages of descriptors u

Set DFP DFM TV� L

C 1.49�±0.05� 1.78�±0.03� 6.84�±0.52� 7.82�

X 1.31 1.82 6.51 60

CV 1.43�±0.04� 1.84�±0.04� 6.28�±0.62� 6.48�

T502h 1.32�±0.11� 1.88�±0.05� 5.75�±0.60� 7.12�

T502hV 1.34�±0.10� 1.818�±0.40� 5.29�±0.70� 6.29�

T5015 1.45�±0.10� 1.83�±0.40� 5.37�±0.70� 5.84�

T5030 1.36�±0.07� 1.84�±0.04� 6.15�±0.49� 7.37�

T252h 1.32�±0.07� 1.87�±0.02� 6.29�±0.56� 7.96�

T2530 1.34�±0.11� 1.82�±0.07� 6.77�±0.74� 8.61�

R 1.40�±0.60� 1.81�±.61� 5.52�±1.25� 4.99�
Units of measurement, wherever defined, are omitted, Standard deviations are sh

and c can be negative, zero or positive.
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level descriptors according to some criterion. For any expo-
nent p ,h�u� exhibits a trend over which jumps and
oscillations are superimposed. In fact, the latter are amplified
with respect to those of s�·�. For this reason the value h�0�
=0 was reassigned according to h�0�←h�1� and h�·� was
interpolated in 0�u�umax by a polynomial q�· ;d� of suit-
able degree d. Four parameters eventually affected q�· ;d�: the
axis of inertia �I=1: major axis, I=2: minor axis� about which
integration was carried out �Eq. �10��, the arc �, the model
exponent p, and the degree d.

Plots obtained from some tiles used in classifier training
with I=1, ����46 deg, p=1.8, and d=9 are shown in Fig. 5.
In agreement with the estimate of Eq. �13�, enhanced spectra

the implemented classifier.

A q��0� c

51.72�±0.59� 0.167�±0.43� 0.762�±0.711�

−68.40 −0.199 −0.598

52.50�±96.88� 0.125�±0.23� 0.864�±0.16�

−141.84�±0.78� −0.352�±0.63� −1.188�±0.36�

−243.01�±127.76� −0.618�±0.39� −0.704�±0.94�

−45.37�±0.99� −0.059�±0.39� 0.351�±0.94�

−206.13�±21.41� −0.470�±0.29� −0.652�±0.33�

−187.20�±27.70� −0.451�±0.35� −0.629�±0.92�

−159.32�±146.56� −0.384�±0.39� −0.936�±0.65�

55.82�±0.87� 0.193�±0.45� 0.897�±1.18�
tween parentheses. DFP, DFM, TV�, and L� are strictly positive, whereas A, q��0�,

Fig. 5 Interpolated enhanced spectra of representative tiles used in
classifier training. Integration is about the major axis of inertia over an
arc of ±46 deg; model exponent p=1.8; degree of polynomial d=9.
Plots cont�1a and cont�3b represent the C set, plots be502�1a and
be502�3a represent the T502h set; and plot cont�x is the perinuclear
tile �see Fig. 6�. Local maxima in the spatial frequency range 20�u
�100 cycles/image correspond to structured microtubule bundles of
a normal cytoskeleton.
sed by

�

±0.96�

.45

±0.74�

±0.89�

±0.99�

±0.99�

±0.89�

±0.51�

±1.14�

±2.18�
own be
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from the C set generally exhibited a local maximum in 0
�u�63 cycles/image as shown, e.g., by cont�3b �Fig. 5�.
One exception was tile cont�1a. None of the T502h tiles �plots
be502�3a and be502�1a of Fig. 5� had such maximum; in fact,
q��·��0 in the same frequency range. The plot cont�x of the
perinuclear tile X seemed to deviate from all other plots of
either set. Tile X itself is shown in Fig. 6.

The selection of second-level descriptors was a part of
classifier training �Sec. 7� and initially involved the following
five quantities:

1. A=
0
uH�q�u�−q�0��du, a signed area under the curve,

where uH=15 cycles/image
2. q��0�, the first derivative of q�·� at the origin,
3. c=−�1/uC�
0

uC�q��u� / �1+q��u�2�3/2� du, the opposite
of the average curvature of the graph in 0�u�uC, where
uC=umax/2

4. q��0�, the second derivative of q�·� at the origin
5. argmax1�q�, the abscissa of the first proper maximum

of q�·�, if any, in 0�u�uC.
The values of uH and uC were also determined in the train-

ing stage. As one can infer from the last three columns of
Table 3, the first three descriptors, A, q��0�, and c were even-
tually selected for image classification.

7 Classifier Training
The data used at this stage came from 8 C tiles, 8 T502h tiles,
and X, hence a total of M =17 tiles were analyzed. By exam-
ining morphological descriptors one by one �univariate analy-
sis� it was found that none of them was capable of discrimi-
nating the three classes. For example, according to
argmax1�q� two C tiles were clustered with the T502h set.
The same misclassification error was caused by choosing
q��0� alone. As a consequence, descriptor fusion had to be

Fig. 6 Perinuclear tile X cut from a control image. Context-free clas-
sification of this tile is impossible, even to a human expert. It is clas-
sified as an outlier �Sec. 7�.
attempted: the chosen method was principal components
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analysis �PCA�, which is one of the most relevant procedures
in unsupervised factor extraction �e.g., Chap. 5 of Ref. 57�.
The goal of training was to maximize discrimination between
classes in the sense to be specified in the following. This was
achieved by finding optimal �or suboptimal� values of the
following:

1. the number N of descriptors to use
2. the set D of descriptors such that card �D�=N
3. the parameters � /� �Eq. �14��, I, �, p, d, uH, and uC

�Sec. 6�
The raw feature matrix X= �xn,m� consisted of N rows and

M columns. Each column was formed by the N descriptors of
a tile. Before applying PCA the entries of X were normalized
rowwise: the sample mean �n, 1�n�N, of each descriptor
over the training set was subtracted and the difference divided
by the sample standard deviation �n. The normalized feature
�column� vectors denoted by ym, 1�m�M, formed the nor-
malized feature matrix Y. As is well known, PCA constructs
the linear space spanned by principal components, i.e., the
eigenvectors z1 ,z2 , . . . of the covariance matrix generated
from Y. Eigenvectors are labeled after the corresponding ei-
genvalues, arranged in a nonincreasing sequence. Then PCA
projects the yms onto a subspace, the dimension of which J is
no greater than min �M ,N�. The quotient

Vk = 100
� j=1

k
� j

� j=1

J
� j

�15�

is the cumulated percent variance or information content car-
ried, or explained by the first k��J� eigenvalues. Each of the
M tiles is represented by a J-dimensional vector wm, 1�m
�M. For ease of interpretation the result is displayed in the
plane �z1 ;z2� of the first two principal components. Eventu-
ally, to each tile in the training set there corresponds a point in
�z1 ;z2�.

Discrimination between classes C, T502h, and X was rated
by drawing the minimum spanning tree �MST� �Ref. 58 and
algorithm AS13 in Ref. 59� in �z1 ;z2�. The two longest
branches, b1 and b2, of the MST by definition divide the
whole set of points into three subsets, say S1, S2, and S3. If
each of these subsets contains points belonging to one class
only, i.e., there is a one-to-one correspondence between the
a posteriori assignment �S1 ,S2 ,S3� and the a priori classes of
belonging �C ,T502h ,X�, then classification is MST-correct
and as such accepted.

Optimization of the preceding items 1 to 3 was performed
by running cluster analysis �e.g., Chap. 8 of Ref. 57�, varying
N and the parameter values within reasonable bounds, run-
ning PCA, and looking at the ordered branch list of the MST.
After several attempts the following values were determined:

�/� = 0.8, I = 1, ���/u = 92 deg, p = 1.8, d = 9,

N = 7, uH = 15 cycles/image, uC = umax/2,

D7 = �DFP,DFM,TV�,L�,A,q��0�,c� . �16�

In the first place, an MST-correct classification was attained:

b1 joined X to a C tile, thus classifying X as an “outlier.”
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Moreover, the distance dCT between the set centroids �C and
�T502h was found to be dCT=3.78 and the fractions of ex-
plained variance were V1=58%, V2=75%, and V3=89%.
Since N�M it was decided to let J=N and to form the N
�2 matrix

T = �z1 z2� �17�

to be used later in validation �Sec. 8.2� and recognition �Sec.
9�. The classification result is shown by Fig. 7�a�, where the

Fig. 7 �a� Training set represented in the �z1 ;z2� principal plane,
where C set, filled boxes; T502h set, filled triangles; X �diamond�, the
perinuclear tile; and b1 and b2, two longest branches of the MST. The
spread of both the C and the T502h sets along z1 is slightly larger than
that along z2. The first principal component explains 58% of the
sample variance, the first two together explain 75% and the first three
89%; Rtraining, rectangle circumscribed to the tiles. �b� Factor loadings
of the seven morphological descriptors extracted by the methods of
Sec. 6. Four descriptors �DFP,A ,c ,q��0�� correlate negatively with z1
and are less correlated to z2. The total variation TV� is more nega-
tively correlated with z2 than with z1. Mass fractal dimension DFM is
positively correlated with z1. The Laplacian L� is highly anticorrelated
with z2 and uncorrelated to z1. The two fractal dimensions carry in-
dependent pieces of information, whereas a high mutual correlation
characterizes the three spectral descriptors A, q��0�, and c.
rectangle circumscribed to the training tiles,
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Rtraining = �− 3 � z1 � 3.1,− 1 � z2 � 1.4� , �18�

is drawn.
The factor loadings of the morphological descriptors are

shown by Fig. 7�b�. The caption carries some comments. Fac-
tor loadings provide, in part, the morphological interpretation
of the principal components themselves and justify the posi-
tion of some tiles in �z1 ;z2�. For example, X stands out for its
high L�, therefore it will lie in the lower half-plane far away
from the origin. All C tiles have a larger DFP, therefore they
will end up in the left half-plane. All T502h tiles have a larger
DFM, and are therefore located in the right half-plane. Those
C tiles that have larger A, c, and q��0� lie in the second
quadrant. All of these deductions are easily verified by in-
specting Fig. 7�a�.

PCA was carried out by SPSS™ �Statistical Package for
the Social Sciences�, version 11.

8 Classifier Sensitivity and Validation
8.1 Sensitivity to Descriptors
In an early training attempt,44 the set

D8 = �DFP,DFM
127,TV�,L�,SL�, argmax1�q�,q��0�,c� ,

�19�

such that N=8, was formed by using the same parameters as
in the first line of Eq. �16�, with one exception: DFM

127 was
computed at the fixed binary threshold, 127. The resulting
representation in �z1 ;z2� is shown by Fig. 8. Classification

Fig. 8 Classification of the C set �filled boxes�, the T502h set �filled
triangles�, and X� *� by descriptor set D8. Modulo reflections of both
axes, the pattern is similar to that of Fig. 7�a�, in spite of the different
number �N=8 instead of 7� and list of descriptors �Eq. �19� instead of
Eq. �16��. Note the different scales of z1 and z2. The first principal
component explains 41% of the sample variance, the first two to-
gether explain 75%, and the first three 87%.
was MST-correct and yielded dCT=3.52. More comments are
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provided in the figure caption. The factor loadings also exhib-
ited a pattern that, modulo reflections of both axes, resembled
that of Fig. 7�b�.

The sensitivity of the classification to changes in the de-
scriptor sets �from D8 to D7� can be now quantified as fol-
lows. The set D7 differs from D8 by three descriptors out of
eight. The situation in �z1 ;z2� can be summarized by the fol-
lowing quotients: �dist�C ,T502h� /dCT�, �diam�C� /dCT�, and
�diam�T502h� /dCT�, where dist�·,·� is the distance between
two clusters �minimum distance between two points belong-
ing to either cluster�, diam�·� is the diameter of a cluster, and
dCT serves as a yardstick in the �z1 ;z2� plane. The values are
given by Table 4. Ideally �dist�C ,T502h� /dCT� would be
close to 1, and the other two will be much smaller than 1.
Neither D8 nor D7 provide the “ideal” classification. How-
ever, the focus is on classifier sensitivity: therefore, a com-
parison between D8 and D7 has to be made in relative terms.
The normalized distance between clusters
�dist�C ,T502h� /dCT� is almost insensitive to the descriptor
set: this means sets C and T502h are as “separable” by D7, as
they were by D8. Instead, the normalized diameters
�diam�·� /dCT� of both clusters C and T502h are more sensi-
tive to the replacement of D8 by D7, because they increase by
26 and 13%, respectively; D7 makes both training sets look
“more heterogeneous” than they were under D8. From this
numerical experiment, one can conclude that the classifier is
relatively “stable.” Further evidence of classifier “stability” is
provided by the values of Vk, k=1,2 ,3, given in the caption
of Fig. 8; the first three principal components derived from
either D8 or D7 carry the same amount of information.

8.2 Internal Validation
Internal validation consisted of submitting to the trained clas-
sifier some new tiles belonging to either class, then projecting
the corresponding feature vectors onto �z1 ;z2� by means
of T of Eq. �17� and finally computing sensitivities and
specificities.

In detail, the 8 CV and 8 T502hV tiles defined in Sec. 4
were selected from boundary areas of the available images.
Unlike those used in training, some CV and T502hV tiles
could not be easily classified visually. For example Figs. 9�a�
and 9�b� exhibit “borderline” morphologies; at the top right of

Table 4 Indicators of classifier sensitivity with respect to descriptor
sets.

Descriptor Set
dist�C ,T502h�

dCT

diam�C�

dCT

diam�T502h�

dCT

D8 0.52 0.58 0.58

D7 0.50 0.73 0.66
Note dCT serves as a yardstick in the �z1;z2� plane. Classifier sensitivity to
descriptors has to be assessed in relative, not absolute, terms. In going from D8
to D7 the normalized distance between clusters. �dist�C ,T502h�/dCT� �column
2�, in almost unchanged, whereas the normalized diameters �diam�.�/dCT� of
both clusters C �column 3� and T502h �column 4� increase by 26 and 13%
respectively. One can conclude that the classifier is relatively “stable,” Details
are provided in the text.
Fig. 9�a�, near the cell nucleus, is a dense mass of tubulin,

Journal of Biomedical Optics 024020-1
which looks disorganized, whereas the boundary tubules
of Fig. 9�b� are sufficiently structured as in a control
cytoskeleton.

Descriptors were extracted by the procedure outlined in
Sec. 7. By assumption, the training tiles represented their re-
spective sets, therefore normalization consisted of subtracting
the �n and dividing by the �n computed in the preceding. The
normalized feature vectors ym, 1�m�M =16, were deter-
mined for each tile of the validation sets. The yms were pro-
jected onto �z1 ;z2� according to

wm = TTrs · ym. �20�

The validation result in terms of centroids is displayed by Fig.
10�a�. The relevant distances between centroids are dCCv
=1.12 and dTTv

=0.424, which can provide the confidence

Fig. 9 �a� Tile of the CV validation set, where the dense, poorly struc-
tured microtubules on the upper right, close to the perinuclear region,
look treated. Misclassification is expected, as shown in Fig. 10�b�.
Square side length=13 �m. �b� Tile of the T502hV validation set,
where microtubules on the boundary, although randomly oriented,
exhibit sufficient structure as in a control cytoskeleton. Misclassifica-
tion is expected, as shown in Fig. 10�b�. Square side length=13 �m.
bounds of subsequent recognition results. In relative terms,
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using dCT as a yardstick again, the quotients dCCv
/dCT=0.30

and dTTv
/dCT=0.11 quantify the “stability” of the classifier.

In terms of individual tiles the result is shown by Fig.
10�b�. References to a few images are also displayed. The
diameters of both CV and T502hV clusters are larger than
those of C and T502h. Two CV tiles, one of which is Fig. 9�a�,
are positioned closer to the T502h set and one T502hV tile
�Fig. 9�b�� is closer to the C set. The z1 coordinates of these
three tiles �Fig. 10�b��, which deviate from those of the re-
maining tiles, can be explained by means of the z1 loadings of
the morphological indicators �Fig. 7�b��. For example, the tile
of Fig. 9�b� has DFP=1.475, the highest value in the T502hV
set, comparable to the C and CV set averages �Table 3�. Since
DFP is negatively correlated to z1, this property suffices to
position the tile in the left half-plane. About the CV tile of Fig.
9�a�, its enhanced spectrum, like that of a T502h tile, has no
local maximum. The presence or absence of the latter affects
all three indicators A, q��0�, and c, which negatively correlate
to z1. Therefore, this tile shall lie away from the centroid of
the C-�training� set and possibly in the right half-plane.

Table 5 Sensitivity and specificity of the classifier in validation
mode.

Set Sensitivity �%� Specificity �%�

C 75 86

T502h 87 77

Fig. 10 �a� Centroids of the training sets �C ,T502h� �gray� and of the
validation sets �CV ,T502hV� �black�. The displacement of the T502hV
centroid with respect to the T502h centroid is relatively small. �b�
Validation result. Tiles of the CV set are represented by filled boxes,
those of the T502hV set by filled triangles. Training tiles �Sec. 7� are
shown by gray boxes and triangles respectively. Not all CV tiles are on
the left half-plane as well as not all T502hV tiles are on the right one.
Journal of Biomedical Optics 024020-1
If �z1 ;z2� is regarded as a feature plane, then inspection of
Fig. 10�b� suggests the training sample is separable; there is a
straight line, e.g., z1=−0.036, that divides the C and T502h
sets. Each tile of the validation set could be classified accord-
ingly. The confusion matrix was formed and the sensitivity
and specificity values of Table 5 were obtained.

8.3 Discriminant Function Analysis
Classification is said to be supervised whenever the class to
which a feature vector belongs is known beforehand. Given K
classes, discriminant analysis �DA for short; e.g., Chap. 3 of
Ref. 57� implements supervised classification by looking for
K−1 affine combinations, called discriminant functions, of
the N features �the morphological descriptors�, which maxi-
mize separation between classes and minimize within-class
scatter. Three classes of belonging were defined: �1� the

singleton X, �2� Ĉ made of 8 C and 8 CV tiles, and �3� T̂ made
of 8 T502h and 8 T502hV tiles, hence M =33. The corre-
sponding N�M raw feature matrix was normalized rowwise
as in Sec. 7 and DA carried out both by SPSS™ and by the
LDA module of Q-Parvus.60 The 3�3 classification �or “con-

fusion”� matrix K was constructed. Since 14 Ĉ tiles were

assigned to the Ĉ class and 2 to the T̂ class, whereas X and all

T̂ tiles were correctly classified, the relevant sensitivity �nor-
malized row-wise sums of entries of K� and specificity �nor-
malized column-wise sums of entries of K� of Table 6 re-
sulted. A cutout of the �D1 ;D2� discriminant functions plane
is shown by Fig. 11. For the purpose of classifier training and

Table 6 Sensitivity and specificity obtained from discriminant analy-
sis.

Set Sensitivity �%� Specificity �%�

Ĉ 87 100

T̂ 100 89

Fig. 11 Discriminant analysis where the Ĉ and T̂ sets are made of
training and validation tiles together; Ĉ �boxes� and T̂ �triangles� tiles
are represented in a plane where the discriminant functions �D1 ;D2�
form the reference frame. The X tile is located further away from the

origin.
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validation, DA answers the question of how suitable are the
given morphological descriptors to discriminate between the
given K classes.

Sensitivities and specificities shall all be greater than 50%,
regardless of K. In the ideal case, they are all equal to 100%,
which corresponds to a diagonal K. From the entries of Table
6 one deduced that information stored in the chosen descriptor

set, D7, could adequately and reliably tell Ĉ from T̂ tiles, a
necessary condition for going over to the next, more challeng-
ing tasks: recognizing and ranking tiles from other
experiments.

9 Quantitative Estimates of Structural Damage
and Recovery

The T5015, T5030, T252h, T2530, and R sets were submit-
ted to the trained classifier with the aim of representing their
elements in �z1 ;z2� and, in case of sensible results, quantify-
ing cytoskeletal organization. Feature vectors were normal-
ized and projected onto �z1 ;z2�, as in Sec. 8.2.

9.1 Effects of Different Treatments
Projection onto �z1 ;z2� scattered the T5015 tiles almost
evenly in the rectangle �−2.7�z1�2.8,−0.9�z2�3.0�, as
shown by Fig. 12. Their centroid lay at �T5015
	�−0.082,0.924�. Tiles of the T5030 set �Fig. 9 of Ref. 45�
were mostly aggregated in the T502h area. Their centroid lay
at �T5030	�1.529,−0.362�.

Classification of tiles derived from exposure at 25 �g/ml
is represented by Fig. 13, which pertains to the T2530 set.
Comments are included in the caption. Results for the T252h
set were reported in Fig. 10 of Ref. 45. The centroid coordi-
nates were �T252h	�1.714,−0.215� and �T2530	�1.028,
−0.721�, respectively.

9.2 Quantitative Estimate of Structural Recovery after
Treatment

Undisputable experimental evidence3 showed that cytoskel-
etal structures are capable of recovering after exposure to
toxic substances, provided that dose does not exceed some
threshold. Visual inspection of R images �Sec. 3� suggested

Fig. 12 T5015 tiles �filled triangles� in the �z1 ;z2� plane. Tiles derived
from exposure to 50 �g/ml for 15 min. Training C �gray boxes� and
T502h tiles �gray triangles� are shown for reference.
that cytoskeletal damage had to be reversible, at least in part.
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The first quantitative result about structural recovery was ob-
tained by the D8 classifier �Ref. 44 and Sec. 8.2�. Herewith,
the D7 classifier �Sec. 7� was applied to the R tiles and
yielded the result of Fig. 14. Only 3 out of 12 tiles are located
in the T502h half-plane and the remainder in the C half-plane.

From the z1 coordinates of centroids, z1,T502h, z1,R, and z1,C
one can form the quotient

q ª

z1,R − z1,T502h

z1,C − z1,T502h
, �21�

and estimate tile-set-averaged cytoskeletal organization there-
from. Namely, z1,C corresponds to normal structure and to a
fully functional cytoskeleton �q=1�, whereas z1,T502h corre-
sponds to the most severe damage of the whole experimental
design �q=0�. From Eq. �21�,

q = 0.73−0.07
+0.18, �22�

where the worst case confidence interval has been determined
from the spread of the centroid z1 coordinates �Sec. 8.2�. The
estimate compares to 0.77, determined by the D8 classifier.44

This may be regarded as further evidence of classifier stability
in the recognition mode.

Fig. 13 Tiles T2530 �filled disks� in the �z1 ;z2� plane. Tiles derived
from exposure to 25 �g/ml for 30 min. Training C �gray boxes� and
T502h tiles �gray triangles� are shown for reference. As compared to
T252h tiles, T2530 tiles are more scattered. Some are closer to the C
half-plane. The tile placed at the extreme left exhibited the typical
microtubule structure of a control cytoskeleton.

Fig. 14 Tiles R �filled diamonds� in the �z1 ;z2� plane. This result pro-
vides evidence of 0.73 �+0.18,−0.07� structural recovery 24 h after
extreme treatment �50 �g/ml for 2 h�. Tiles C and T502h are shown

for reference.
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9.3 Ranking by Centroids
To summarize the results, the centroids of all sets, except
those used in validation, are displayed by Fig. 15. According
to the z1 coordinate alone, the sets form the sequence

C, R, T5015, T2530, T5030, T252h, T502h ,

�23�

where the order of the last three terms shall not be taken for
final, because the confidence bounds of Sec. 8.2 apply.

10 Discussion
The relevance of microtubule dynamics in living cells and the
sensitivity of cytoskeletal organization to anticancer drugs,
xenobiotics, and pathological conditions have provided the
basic motivation for this paper. Further motivation at the prac-
tical level has come from the abundance of images of cyto-
skeletal microtubules obtained during previous experiments.3

In general, the heterogeneity of biological response and the
variability of experimental results even under controlled con-
ditions pose a challenge to quantitative classification by sim-
plistic methods intended to support and/or replace visual as-
sessment. The latter has been the only way to judge the degree
of cytoskeletal organization for a long time. However, conclu-
sions have always been influenced by the operator.

10.1 Image Formation, Capture, and Analysis
All images were obtained from an ordinary epifluorescence
microscope, acquired from photographic film developed and
printed after each experiment. Therefore,

1. The intensity of the exciting radiation need not have
been uniform.

2. The image represented a 3-D object.
3. Fluorescence intensity was converted into film transmit-

tance with batch-dependent parameters.
On one hand, the wide dynamic range of film obviously

Fig. 15 Set centroids, where Rcentroid= �−2�z1�2,−1�z2�1.5�
=rectangle containing the centroids and Rrecognition= �−5�z1�3.5,
−2�z2�3�=rectangle circumscribed to all classified tiles. Comments
are provided in Sec. 10.3. The X tile is not shown.
was an advantage because it made weakly emitting microtu-
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bules visible. On the other hand, parameter variability would
have prevented classification based on absolute fluorescence
values. The threshold of Eq. �2� �which implies Proposition 1,
Appendix B� and the spectrum enhancement algorithm of
Secs. 5.5 and 6.4 �to which Proposition 2 applies� were se-
lected as countermeasures for 1 and 2.

The opportunity of replacing ordinary by confocal micros-
copy in the morphological analysis of the cytoskeleton is still
a matter of discussion; in Ref. 38, confocal images were suc-
cessfully processed; however, there are situations61 where or-
dinary microscopy has been more informative.

In principle the whole procedure, from analysis to classi-
fication, can be applied to images acquired by different mi-
croscopes and sensors.

10.2 Meaning of Some Morphological Descriptors
The estimated values of the fractal dimensions DFP and DFM
agree with expectations �Sec. 4.1� and are easily interpreted
accordingly. Fully developed microtubules of the control set
do have indented contours �higher DFP� and lower mass den-
sity �DFM�. The loss of organization caused by treatment �sets
T502h, T252h, and R� yields a more compact cytoskeleton
�higher DFM� with a smoother contour �lower DFP�.

The two descriptors from direct methods �Secs. 5.4 and
6.3� are linked to visual properties of images. For example,
the well organized microtubules of C cells �Fig. 2� suggest a
higher value of total variation TV� than that of T502h cells
�Fig. 3�, which is in agreement with Table 3. The norm of the
Laplacian, L�, is uncorrelated to z1 �Fig. 7�b�� and uniquely
characterizes X: microtubules around the MTOC, hence in tile
X, appear entangled under an ordinary, nonconfocal micro-
scope, and as such do not exhibit any symmetry. This justifies
the very large L� of X and the anticorrelation of L� to z2. If
classes are ranked by increasing TV� one obtains the follow-
ing sequence �Table 3�

T5015, R, T502h, T5030, T252h, T2530, C .

�24�

Similarly, ranking by L� yields

R, T5015, T502h, T5030, C, T252h, T2530.

�25�

Both TV� and L� have thus determined the positioning of the
T2530 centroid in the lower half-plane and of the R and
T5015 centroids in the upper one. However, a detailed expla-
nation of how microtubule arrangement affects TV� and L�
remains beyond reach.

In spectrum enhancement �Secs. 5.5 and 6.4� the subtrac-
tion of m�p� �Eq. �11�� was the key feature of the algorithm.
Namely, the subtraction of m�p��·� from s�·� �Eq. �12�� repre-
sents the deviation of s�·� from the proposed asymptotics.
Moreover, polynomial interpolation reduced the sensitivity of
morphological indicators to the oscillations of h�·�. Separation
of structure from texture is context dependent. In this appli-
cation the values of either h�·� or q�·� in the interval 0�u
�63 cycles/image �approximately 2500 cycles/mm in the
case of Figs. 2 and 3� represented image structure, whereas

those in 63�u�umax/2 corresponded to those textural de-
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tails, which contributed to classification. In particular, local
maxima of q�·� in 0�u�63 cycles/image were originated
by high contrast bundles of microtubules, typical of control
cells, not observed in damaged cytoskeletal proteins �Fig. 3�.
Since the selected degree of q�·� is relatively low �d=9�, it is
obvious that a local maximum to the right of the origin cor-
relates with both A�0 and q��0��0. If said maximum is
peaked enough, then the c of Sec. 6.4 is positive �lines C and
CV of Table 3�. In the sets T502h and T502hV all three de-
scriptors have opposite signs. The simultaneous occurrence of
these properties explains why A, and q��0� have very close
factor loadings �Fig. 7�b��.

The angle-averaged spectra shown in Refs. 36 �logarithmic
intensity scale� and 37 �linear scale� can be compared to s�·�
of Eq. �10�. They do exhibit local maxima even without en-
hancement.

The remarks in this section should help in justifying the
classification result of Fig. 7�a�.

10.3 Overall Classifier Performance
The statistical significance of the described classification re-
sults is supported by the following arguments and figures.
Section 8 provided the necessary evidence of classifier “sta-
bility” and validity for continuing on to applications. Recog-
nition of a relatively large set of new tiles �67� in Sec. 9 were
essentially an extended validation test of a classifier trained
by a total of M =17 tiles: namely, the R, T5015, T2530,
T5030, and T252h centroids �Fig. 15� all belong to the rect-
angle Rcentroid= �−2�z1�2,−1�z2�1.5�, i.e., they fall
within the strip �−2�z1�2� defined by the C and T502h
centroids after training. Moreover, none of the recognized
tiles falls outside the rectangle Rrecognition= �−5�z1�3.5,
−2�z2�3� and 46 out of 67, i.e., 68.6% fall within Rtraining
of Eq. �18�. These results should not be taken for granted and
prove that training based on a set of 17 tiles has captured
enough of cytoskeletal morphology.

The correspondence between the gross a priori threefold
distinction

�no treatment�

� �intermediate treatments� � �extreme treatment� ,

and the a posteriori ranking of centroids �Fig. 15� has been
established in terms of z1, which explains 58% of the sample
variance.

10.4 Innovative Features
All image analysis methods quoted in Sec. 2 represented sig-
nificant advances toward automated classification. However,
each of them relied on only one type of morphological de-
scriptor. Instead, this paper implemented the fusion of hetero-
geneous morphological descriptors: fractal analysis, direct
methods, and spectrum enhancement together have led to the
fingerprint of an image.

Moreover, spectrum enhancement is a relatively new algo-
rithm. It was introduced by the first author and so far it has
been successfully applied to classify scattering patterns50 and
electron microscope images of other materials such as ce-
ramic nanoaggregates51,52 and tire tread particles.53 Its first

application to images of cytoskeleta was presented in Ref. 41.
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The third innovative feature of this paper is the application
of the trained classifier to rank structural damage and quantify
recovery.

10.5 Possible Developments
Although multivariate statistics is a standard tool in image
classification and pattern recognition, feature extraction re-
mains task specific and deserves additional effort. Therefore,
some improvements could be brought in to increase classifier
throughput and to speed up the learning phase:

1. automated image tiling, intended to replace the selec-
tion of tiles by user supplied coordinates �Sec. 3�

2. automated selection of descriptors out of a predefined
set followed by the tuning of control parameters �Sec. 7 and
8�

3. the inclusion of more descriptors which have immediate
morphological and functional meaning, as those used by Refs.
39 and 40.

On the applications side, the analysis of image sets coming
from different experiments on different cell lines would out-
line the “operating region” of the whole approach.

11 Conclusion
Images of cytoskeletal microtubules obtained from the immu-
nofluorescence microscopy of primary culture rat hepatocytes
were processed. Contour and mass fractal analysis, direct
methods, and spectrum enhancement were designed and tuned
to make the extracted morphological descriptors insensitive to
absolute fluorescence intensities. Data fusion for classification
was achieved by means of multivariate analysis. Validation
was supplemented by discriminant functions analysis. Finally,
the classifier was applied to ranking structural damage and
quantifying recovery.

The innovative features of the classifier described here,
other than the application of spectrum enhancement, are the
concurrent implementation of different analysis methods, the
fusion of morphological descriptors by multivariate statistics,
and the application of the classifier to images from various
experiments.

Differences in cytoskeletal morphology were translated
into the selected descriptors. The procedure developed and
implemented here may lead to automatic image recognition.
Namely, the method can become a tool for testing cytotoxicity
and for extracting quantitative information about intracellular
alterations of various origins.

Appendix A
The optimum threshold � is defined as follows. Let the image
be the discrete counterpart of a nonnegative function g�x� of
position x with support in the open set �, the tile, which takes
values in the interval 0�s�smax. Denote by t a threshold,
0� t�smax, and by 
�t� the t binarized image. Let ps denote
the relative frequency by which the gray level of g is s and
define the below and above threshold means m0�t�, m1�t�, of


�t� according to
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m0�t� = �
s=0

t

sps��
s=0

t

ps�−1

, m1�t� = �
s=t+1

smax

sps� �
s=t+1

smax

ps�−1

.

�26�

Next define the first- and second-order moments of g�·� and

�t�:

Eg ª �
s=0

smax

sps,

Egg ª �
s=0

smax

s2ps, E
 ª �
s=0

t

m0�t�ps + �
s=t+1

tmax

m1�t�ps,

E

 ª �
s=0

t

m0
2�t�ps + �

s=t+1

tmax

m1
2�t�ps,

Eg
 ª �
s=0

t

sm0�t�ps + �
s=t+1

tmax

sm1�t�ps, �27�

and let

Vg ª Egg − �Eg�2 and V
 ª E

 − �E
�t��2. �28�

The cross-correlation function of t is defined by

	g
�t� ª �Eg
�t� − EgE
�t��/�VgV
�t��1/2. �29�

As a consequence the optimum threshold � is the value that
maximizes 	g
�t� �Eq. �2��.

Appendix B
Proposition 1. DFP is invariant with respect to affine transfor-
mations of g�·� defined by Eq. �1�.

Proof. Let �=��+� be the transformed threshold, � de-
note the � binarized counterpart of f , and let Ef, E�, Ef f, Ef�,
and E�� denote the corresponding moments. By applying the
affine transformation of Eq. �1� it is immediate to show that
the moments relate by

Ef = �Eg + �, Ef f = �2Egg + 2��Eg + �2,

Ef� = �2Eg
��� + ���Eg + E
���� + ��E
��� , �30�

and so forth. As a consequence the standard deviations of Eq.
�28�, scale according to

Vf = �2Vg, V���� = �2V
��� , �31�

and therefore the correlations can be shown to comply with

	 f���� = 	g
��� . �32�

Finally, the subdomains ��ª �x�� �g�x���� and ��ª �x
�� � f�x���� satisfy

�� = ��. �33�

Since ���=���, i.e., the contours are the same, one con-

cludes that the estimated contour fractal dimensions coincide.
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Appendix C
Let 
�·−ul,m� be the Dirac measure supported at integer
coordinates

�l,m� = �0,0�,�±1,0�,�0, ± 1�, . . . ,�±umax, ± umax� , �34�

in the u plane. As a consequence of periodicity, the Fourier
transform of Qg�x� is the tempered distribution

G�u� = �
l,m

al,m
�u − ul,m� , �35�

with the ranges of l and m specified by Eq. �34�. The integral
over � of Eq. �10� therefore is understood as a sum over the
grid nodes where the distribution is supported. The normal-
ized power spectral density derived from Eq. �35� is

�G�u��2

�a0,0�2
= � �al,m�2

�a0,0�2

�u − ul,m� . �36�

Proposition 3 (formally). Assume the image is not degen-
erate, the derivatives of Qg�·� up to a suitable order exist as
tempered distributions and the model exponent satisfies p /2
=N��0�, integer.

1. Then the enhanced power spectral density defined by

H�u� = �u�p
�G�u��2

�a0,0�2
+ 
�u� , �37�

where �u�p= �u1
2+u2

2�p/2, complies with

H�u� =
1

�a0,0�2�n=0

N �N

n
��F� �NQg

��N−n�x1�
nx2

��2

+ 
�u� . �38�

2. Moreover, if all Fourier coefficients satisfy

�al,m�2 � � � 0, �39�

then the function of Eq. �12� complies with

h�u� =
10

���
�

log10�H�u��u d� . �40�

Statement 1 is proved by means of the differentiation theorem
applied to distribution-valued Fourier transforms �e.g., Sec.
74 of Ref. 62�. Statement 2 follows from the properties of
tempered distributions.

If p /2 is not an integer, H�u� can be related to a pseudo-
differential operator ��DO� acting on Qg�·�.
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