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Abstract. Particle probability hypothesis density (PHD) filter-
based visual trackers have achieved considerable success in
the visual tracking field. But position measurements based
on detection may not have enough ability to discriminate an
object from clutter, and accurate state extraction cannot be
obtained in the original PHD filtering framework, especially
when targets can appear, disappear, merge, or split at any
time. To meet the limitations, the proposed algorithm com-
bines a color histogram of a target and the temporal dynamics
in a unifying framework and a Gaussian mixture model clus-
tering method for efficient state extraction is designed. The
proposed tracker can improve the accuracy of state estima-
tion in tracking a variable number of objects. C©2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3638121]
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1 Introduction
Probability hypothesis density (PHD) filter-based1 trackers
have enjoyed growing popularity in recent years, particu-
larly in the field of nonlinear non-Gaussian multitarget visual
tracking. The original PHD filter-based visual tracker usually
uses outputs of detectors, such as a motion detector to estab-
lish the observation model, whose efficiency relies on the
accuracy of the detection.2 In addition, due to the potential
nonlinearity and non-Gaussianity of target models in most
visual trackers, a particle PHD filter3 is used to implement
the PHD recursion. However, the intersections of multiple
targets like occlusion and clutter often lead to the complex
multimodality distribution of the resampled particles, which
obviously increase the complexity of state extraction. The
classical k-means clustering algorithm may present serious
degradation in state extraction performance.

In this paper, to avoid inaccurate detection generating esti-
mation errors in the original PHD filter-based visual tracker,2

color histogram with position constraints4 is incorporated
into the PHD filtering framework, which combines the ap-
pearance model of the target with its temporal dynamics in a
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unifying framework. Moreover, to obtain more accurate state
estimates, a new state extraction method based on Gaussian
mixture model (GMM) clustering is proposed. Hence, a ro-
bust visual tracking framework is obtained.

The multitarget visual tracking problem can be formu-
lated as multitarget Bayes filter in a random finite set (RFS)
framework by propagating the multiple-target posterior in
time. The particle PHD filter3 is a sequential Monte Carlo
implementation for the multitarget Bayes filter, which ap-
proximates the PHD with a set of random samples (weighted
particles). The particle PHD filter involves prediction and up-
date steps. Let posterior PHD at time k − 1 be approximated
by{w (i)

k−1, x (i)
k−1}Lk−1

i=1 of Lk−1 particles and their corresponding
weights. The predicted PHD vk|k−1(xk) can be approximated
by {w̃ (i)

k|k−1, x̃ (i)
k }Lk−1+Jk

i=1 after applying importance sampling
below

vk|k−1(xk) =
Lk−1+Jk∑

i=1

w̃ (i)
k|k−1δx̃ (i)

k
(xk), (1)

where
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k|k−1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φk|k−1
(
x̃ (i)

k , x (i)
k−1

)
w (i)

k−1

qk
(
x̃ (i)

k |x (i)
k−1, Zk

) , i = 1, · · · , Lk−1
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(2)

Here, qk(·|x (i)
k−1, Zk) and pk(·|Zk) are the importance func-

tions for targets at time k − 1 and new targets at time k,
φk|k−1(·, ·) denotes the intensity of survived and spawned
targets from time k − 1, and γk(·) is the intensity of new tar-
get birth RFS. Once the observation likelihood p(zk |x̃ (i)

k ) is
obtained, the weights in Eq. (2) are updated by

w̃ (i)
k =

⎡
⎣PM (x̃ (i)) +

∑
zk∈Zk

PD
(
x̃ (i)

k

)
P

(
zk |x̃ (i)

k

)
κk(z) + Ck(z)

⎤
⎦ w̃ (i)

k|k−1
, (3)

where PM (x̃ (i)) = 1 − PD(x̃ (i)) with PD(x̃ (i)) denoting the
detection probability, κk(·) is the clutter intensity, and Ck(z)
= ∑Lk−1+Jk

j=1 PD(x̃ ( j)
k )Pk(zk |x̃ ( j)

k )w ( j)
k|k−1

.

2 Tracking Model
In the proposed tracker, the target candidate in an image
is approximated with a w×h rectangle. Let the state of a
target at time k be xk = (px,k, ṗx,k, py,k, ṗy,k, w, h)T with
the centriod pk = (px,k, py,k) and the target speed. Assume
that each target follows a linear Gaussian constant velocity
model, i.e.,

xk = Fxk−1 + vk, (4)

where F is the state, transition matrix and vk is the zero-mean
Gaussian white process noise.

To incorporate the appearance model into the tracking
framework, we design the observation model by a color
histogram.4 Let {si }i=1···nh be the pixel locations of the tar-
get centered at pk = (px,k, py,k), and the window radius be
h = (w, h). Define a function b : R2 → {1 · · · m} associat-
ing the pixel at location si to the index b(si ) of the his-
togram bin corresponding to the color of that pixel. The color
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histogram of a target candidate q̂(pk) and the probability of
the feature u = 1, · · · , m are defined by Eqs. (5) and (6),

q̂(pk) = {q̂ (u)(pk)}u=1,···,m,

m∑
u=1

q̂ (u)(pk) = 1, (5)

q̂ (u)(pk) = Ch

nh∑
i=1

k

(∥∥∥∥pk − si

h

∥∥∥∥
)

δ[b(si ) − u], (6)

where u denotes the color histogram bins, k is a spatially
weighting function and Ch is a normalization term. Simi-
larly, the reference target model can be represented by q̂c
= {q̂ (u)

c }u=1,···,m . Then the observation likelihood is defined
by the similarity between a target candidate q̂(pk) and the
reference target model q̂c, i.e.,

p(zk |xk) = 1√
2πσc

exp

{
−d2(q̂(pk), q̂c)

2σ 2
c

}
, (7)

where d(q̂(pk), q̂c) = √
1 − ρ[q̂(pk), q̂c] is the similar-

ity computed by Bhattacharyya coefficient ρ[q̂(pk), q̂c]
= ∑m

u=1 q̂ (u)(pk)q̂ (u)
c , and σc is the standard deviation of noise

which is determined experimentally.

3 GMM Clustering
In the particle PHD filter, a clustering algorithm is required
to detect the peaks of the PHD defining candidate states of
targets from the resampled particles. We propose a GMM
clustering method for state extraction. First, GMM is used to
fit the underlying distribution of a resampled particle xk as

Sk(xk |	k) =
Gk∑
l=1

π l
kN

(
xk |μl

k, 

l
k

)
with

Gk∑
l=1

π l
k = 1, (8)

where Gk is the number of Gaussian components, and
	k = {π l

k, μ
l
k, 


l
k} with weight, mean, and covariance is the

parameter set of a Gaussian item. Assume that the state vec-
tors of all particles are independent, the resulting density for
the resampled particlesX̃k = {w (i)

k , x (i)
k }Lk

i=1 is

Sk(X̃k |	k) =
Lk∏
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(
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(9)

Then the maximum-likelihood estimate of the pa-

rameters 	̂k = {π̂ l
k, μ̂

l
k, 
̂

l
k}L̂k

l=1 = arg max
	k

Sk(X̃k |	k) can

be computed by the expectation maximum (EM) algorithm,
where each Gaussian component 	̂

(l)
k ∈ 	̂k indicates a clus-

ter of particles, the target number estimate is L̂k and {μ̂l
k}L̂k

l=1
are state estimates. Since EM requires a known component
number of the mixture density, a component management
procedure is proposed to estimate initial clusters for EM
from cluster set 	̂k−1 at previous time k − 1 and new clus-
ters generated by position observations at time k. The detailed
algorithm is presented in Sec. 4.

4 Particle PHD Filter-Based Visual Tracker with
Robust State Extraction

When tracking starts, the target’s initial state RFS is input
into the proposed algorithm and extract reference models of
targets using Eq. (5) at time k = 0. Then the tracking starts
from time k ≥ 1 as follows.

1. Prediction: according to Eq. (1), draw particles x̃k and
compute the predicted weights {w̃ (i)

k|k−1
}Lk−1+Jk

i=1 .

2. Compute the observation likelihood: for i = 1,

· · · , Lk−1 + Jk , compute p(zk |x̃ (i)
k ) using Eq. (7).

3. Update: update the weights {w̃ (i)
k|k−1

}Lk−1+Jk

i=1 using

p(zk |x̃ (i)
k ) according to Eq. (3).

4. Resampling: resample the updated particles to
get {w (i)

k , x (i)
k }Lk

i=1 using multinomial resampling
algorithm.

5. GMM clustering: cluster the resampled particles
{w (i)

k , x (i)
k }Lk

i=1 using the proposed GMM clustering
method.

Fig. 1 Detecting and tracking results of frames 155, 280, and 330
and an example of failure modality in frames 104, 113, and 125: (a)
detection results of background subtraction; (b) tracking by DPHD;
(c) tracking by KPHD; (d) the proposed method; (e) an example of
failures of the proposed method.
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Fig. 2 Comparison results of Wasserstein distance for DPHD, KPHD,
and the proposed method.

Step 1: generate observations (positions) Zk
of candidate targets by detectors like background
subtraction.

Step 2: ∀ each observation z ∈ Zk , associate z to
	̂k−1 by the nearest neighborhood algorithm, discard
z if it can be associated to an old cluster, otherwise
add it to θk . Then ∀ each remained observation c ∈
θk , initialize a new cluster {1/N̂k|k, [c, 0, 0],

∑
(c)}

and add it to new cluster set 	′.
Step 3: augment 	̂k−1 with 	′, and update their

parameters using EM algorithm on {w (i)
k , x (i)

k }Lk
i=1 to

obtain 	̃k .
Step 4: remove the small clusters in 	̃k with π̃k

< 0.2, where 0.2 is set experimentally and merge
similar clusters using pruning method in Ref. 5 to
obtain 	̂k .

6. State output: extract X̂k = {ûk,i |π̂k,i > 0.5}Ns
i=1 from

	̂k where 0.5 is set experimentally.

5 Results
The pedestrian sequence from the CAVIAR data set is used as
a test video. Figure 1 indicates that PHD filter-based visual
trackers can deal with a variable number of targets track-
ing problems without data association. Figure 1(a) presents
the detection results by a background subtraction detector.
Figure 1(b) shows the particle PHD filter directly using de-
tection results as measurements (denoted as DPHD) would
like to generate some false state estimates due to inaccu-

rate detection such as person detection splitting into several
blobs. Figure 1(c) shows the particle PHD filter with ob-
servation likelihood based on color histogram and K-means
clustering (denoted as KPHD) can avoid failures due to inac-
curate detection but output state estimates without satisfying
accuracy. Figure 1(d) demonstrates that more accurate state
estimates can be filtered and extracted effectively by our
method. Figure 1(e) shows an example of a slower response
of the proposed tracker due to color histogram variation of
the candidate target region suffering occlusion. Moreover, it
can be derived that the appearance variation of targets due
to illumination change and occlusion, as well as regions of
background with similar color histograms to targets would
mislead the tracker using color histograms only. To improve
the tracker additional information is needed.

The Wasserstein distance5 is introduced here to evaluate
the performance of trackers. In Fig. 2, the comparison of
Wasserstein distance of the three trackers is provided and it
demonstrates that our tracker is the best.

6 Conclusions and Discussion
In this paper, we have presented a robust multitarget visual
tracking framework based on the PHD filter which stabilizes
the tracker by incorporating color histograms of targets and
their temporal dynamics in a unifying framework and im-
proving the accuracy of state extraction using the proposed
GMM clustering method. Experiments show the proposed
framework can effectively track a varying number of tar-
gets with more accurate state estimates. Possible topics of
future work include the incorporation of brightness gradi-
ent into the appearance model for more robust observation
likelihood and the development of a more efficient particle
clustering method.
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