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Abstract. Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify
capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean
capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the com-
plex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved
by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors
that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving
particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that
represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first
lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, includ-
ing the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating
the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within
a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic
channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid
solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experi-
ments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability
of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the prac-
tical usefulness of the proposed method for providing important quantifiable information about capillary tissue
beds in the investigations of neurological conditions in vivo. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
The development of optical coherence tomography (OCT)1,2

has witnessed constant improvement in its imaging perfor-
mances in terms of its resolution (up to ∼1 μm),3 sensitivity
(up to 120 dB),4–6 and imaging speed (up to 20 MHz).7–9 These
promising developments clearly create new opportunities for
researchers/scientists/physicians to investigate the dynamic blood
flow responses at a micron scale, which otherwise would be
difficult to assess using currently available biomedical imaging
modalities. Previously, Doppler OCT (DOCT) or phase-resolved
DOCT10,11 has been developed to provide an ability to measure
absolute flow velocity for application in retinal imaging,12–14

brain imaging,15 cochlear imaging,16 tissue engineering,17 etc.
DOCT utilizes the phase difference (due to the Doppler effect)
between adjacent A-lines acquired at one spatial location to
estimate the axial velocity of moving particles.18,19 However,
DOCT has limitations; for example, the estimation is highly
dependent on the Doppler angle of the vessel of interest,
which is difficult, if not impossible, to know in priori in practice.
Another issue is its inability to provide either visualization or
quantification of capillary blood flows because (1) the capillary
flow is slow and (2) capillary beds are often approximately
perpendicular to the incident OCT probe beam.

OCT angiography (OCTA) is a recent addition to the OCT
developments, for the purpose of visualizing functional blood
flow within microcirculatory tissue beds in vivo, especially for
imaging functional capillary vessels.20–29 Because it is fast, safe,
noninvasive, and inexpensive, OCTA has now been used in
biomedical imaging applications with promises for the investi-
gations of tissue responses and injuries that have vascular
involvements. The most exciting is its recent translation to clini-
cal ophthalmology.30–34 There are a number of algorithms that
have been introduced to generate the OCTA angiograms of
perfused tissue beds, including methods that are based on
OCT amplitude signal (e.g., speckle variance),24,25 phase signal
(e.g., phase variance),26 and complex signal [i.e., combined use
of the OCT amplitude and phase information, e.g., optical
microangiography (OMAG)].21–23 All these algorithms are
developed to detect the signal variations caused by moving
red blood cells (RBCs), with the assumptions that the OCT
signals that emerge from static tissues are static.21 Although
promising and proven clinically useful in ophthalmology,
none of these algorithms possess convincing ability to provide
quantitative information about the capillary blood flow, which
is, however, often required if one wants to understand how
microcirculation works to maintain tissue integrity under both
healthy and diseased conditions.
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The blood flow in the capillary beds is characterized by
one-by-one RBC movement in the vessels, i.e., single-file
flow. Furthermore, the single-file RBC flow is spatially and tem-
porarily heterogeneous.35 There were several prior methods pro-
posed in the development of OCT that attempt the quantification
of RBC velocity and flux in single capillaries, for example, the
methods that are based on the signal decorrelation time36–38 and
amplitude peaks at capillary locations.39 While interesting, there
remains a concern on whether these methods are valid in terms
of the flow speeds within functional capillary vessels, which
typically range from 0.3 to 5 mm∕s;40 furthermore, statistical
evaluation of the capillary flows within scanned tissue beds
remains cumbersome and time-consuming.

Multiple signal classification (MUSIC) based on eigende-
composition (ED) analysis is a method widely used in color
Doppler ultrasound imaging.41 It is a super-resolution spectral
estimation method based on the orthogonality of signal eigen-
vector subspaces.42 The MUSIC-based estimations of RBC flow
flux within vessels have been applied to the OMAG dataset
and validated by phantom studies and in vivo experiments in
previous publications.42,43 However, using MUSIC to provide
flow velocity is only amendable to relative large functional
blood vessels, and there is no indication of its possibility to
provide the capillary flow quantification within scanned tissue
beds. In this paper, we propose an alternative model-based
statistical analysis approach of ED-based analysis to estimate
the mean frequency (MF) and frequency bandwidth (BF) of
the dynamic OCT signals due to moving blood cells. The
MF and BF indicate the mean velocity and the velocity hetero-
geneity of the blood flow within capillary tissue beds of the
scanned tissue volume, respectively.

2 Methods

2.1 Complex Optical Coherence Tomography Signal

Assuming at time t when the OCT system captures an A-scan
signal, i.e., depth-scan, there areM RBCs passing across this A-
scan at various depths of zi and a speed of vi (i ¼ 0; 1; : : : ;M).
Without considering DC offsets, the spectral OCT signal of the
A-scan at time t can be expressed as
EQ-TARGET;temp:intralink-;e001;63;309

Iðk; tÞ ¼ 2SER

Z∞

−∞

aðzÞ cosð2knzÞdz

þ 2SER

XM
0

bðziÞ cos½2knðzi − vitÞ� þ Noise; (1)

where k is the wavenumber, ER is the reference light field, S is
the spectral density of the light source, n is the refractive index
of the tissue, and z represents depth. aðzÞ is the backscattering
light field of tissue at the depth z. Here, we assume a uniform
refractive index of the entire tissue, including blood, for simplic-
ity. The first term is the contribution from the static components
of the tissue sample. The second term represents the contribu-
tion of moving RBCs, i.e., blood flow signal. The detected sig-
nal also includes an additive noise due to system noise. It is not
difficult to understand that if the A-scan is repeatedly captured
at the same position, the first term in the left of Eq. (1) would
be constant, while the second term varies with the time t.
Therefore, the detected OCT signal consists of mixed signals

between the static tissue signal and dynamic moving signal,
as well as the system noise.

It is known from literature that the whole blood consists of
only ∼3% to 7% in volume in the living body. The moving
RBCs within blood act like scattering particles that give
the dynamic OCT signal, which can be extracted to achieve
OCTA.29 In the whole blood, the RBC concentration is about
45% in normal subjects, i.e., hematocrit. Therefore, from
Eq. (1), it is not difficult to appreciate that the signal content
within an OCTA-scan is dominated by the static tissue compo-
nents. There are two models used to describe the backscattering
of RBCs that contribute to OCT signal: (1) single backscattering
model and (2) multiple backscattering model. A general agree-
ment exists in both models that the scattering of light from the
RBCs can be described by diffraction approximation, typically
as a result of the convolution of the point spread function (PSF)
with the blood cells. The PSF of probing light is a Gaussian-
shaped beam profile, indicating a Gaussian-shaped profile for
the OCT signals appearing in the A-scan [or B-scan, three-
dimensional (3-D) scan], representing the backscattering of
the moving RBCs within functional blood vessels.44

Temporarily, the OCTA signal captured from the moving
RBCs overtime at one spatial location is a time-varying signal
and depends on the direction and velocity of the RBCs passing
through the OCT beam. Each scatterer (i.e., RBC) contributes to
the total received time-varying OCTA signal, i.e., dynamic
speckle signal, which is of an MF and a finite BF due to the
limited observation time related to the movement through the
sample volume. According to Brier,45 the dynamic speckle sig-
nal is equivalent to the laser Doppler. Therefore, the MF of the
dynamic OCT signal would relate to the mean velocity of RBC
movement within the tissue beds. The increase of flow hetero-
geneity within the microcirculatory tissue beds would increase
the signal BF.

Static tissue is composed of a wide range of scatterers that
have different scattering characteristics according to the Mie and
Raleigh scattering theory.46,47 When light propagates within a
homogeneous tissue volume containing a large amount of ran-
domly distributed scatterers, a Gaussian-shaped signal results,
which appear as speckles in the OCT images. Considering
that the practical biological tissue is optically heterogeneous,
the distribution of scatters is nonuniform within a larger tissue
region, which would result in non-Gaussian distribution of the
received tissue signal. However, when a smaller tissue region is
considered, it would approach a uniform medium. In this case,
the spatial distribution of received OCT signal from static tissue
components would approximate a Gaussian distribution. An
example is shown in Fig. 1, where the cerebral cortex of a
mouse was imaged using a spectral domain OCT (SD-OCT)
system. As expected, when the OCT signals within a smaller
area of region 2 are analyzed, the distribution of the tissue signal
indeed approaches a Gaussian shape; however, this distribution
slightly deviates away from Gaussian for the relatively larger
region (marked as region 1). Note that the analysis was per-
formed on the OCT signals within the B-scan with the dynamic
flow signal removed (using OMAG approach).28,29

Because the scatters within the tissue are of a wide range in
size, they would contribute to a range of frequency components
for the OCT signals due to their different characteristic behavior
of either Raleigh or Mie scattering. In addition, the bulk tissue
movement would contribute to the frequency components of the
OCT signals. Compared to the dynamic signal from moving
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blood, the signal from static tissue would be of lower frequency
and sets a lower bound for the flow signals.

2.2 Signal Components and Decomposition

In OCTA scanning protocol, to build up time-varying OCT sig-
nals from which the flow signal can be extracted, multiple A-
lines are acquired at the same spatial location. From the analysis
above, this time-varying OCT signal, Eq. (1), consists of three
components that represent the depth-resolved field speckle
signals due to static tissue components, dynamic speckle signals
due to moving blood cells, and additive system noise. We
assume that statistically there exists no correlation between
the speckle signal induced by blood flow and the speckle signal
due to the background tissue. It would then be reasonable to
consider that the dynamic blood flow signal superimposes on
the tissue signal and that it disturbs the simplicity of the tissue
signal. Therefore, the separation of tissue signal and blood sig-
nal by dimensional reduction can be achieved, assuming that the
tissue signal arises from a low-dimensional space and the blood
signal arises from a dynamic space with a much higher dimen-
sion. In this case, the problem can be reduced to the separation

of a signal in a low-dimensional space from a more complex
one. According to statistical signal processing,48 such problem
solving can be well dealt with by eigendecomposition of the
received signals.

Assuming there are N repeated A-scans captured at one loca-
tion, these complex OCTA-scan signals can then be collectively
expressed as a two-dimensional vector form

EQ-TARGET;temp:intralink-;e002;326;225x ¼ ½xð1Þ; xð2Þ; : : : ; xðNÞ�T; (2)

where N is the ensemble size with xðiÞ representing the i’th
A-scans (i ¼ 1; 2; : : : ; N). Being a sum of the signals from a
large number of independent scatters, the central limit theorem
applies, indicating that x is a zero mean Gaussian random
process.49 The vector x has a complex Gaussian probability
density function with zero mean given by

EQ-TARGET;temp:intralink-;e003;326;127fxðxÞ ¼
1

πN jRxj
e−x

�TR−1
x x; (3)

where x�T is the complex conjugated transpose (Hermitian
transposition) of x and the correlation matrix Rx is defined as

Fig. 1 The distribution of spatial tissue signals within OCT images captured from cerebral cortex in
rodents. (a) Representative B-scan image. (b) and (c) The signal distribution within region 1 and region
2 marked in (a), respectively. The distribution of tissue signal in a smaller region approaches a Gaussian
shape.
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EQ-TARGET;temp:intralink-;e004;63;752Rx ¼ Efxx�Tg; (4)

where Ef�g is the expectation of the argument.
Because the OCT signal is the summation of the static com-

ponent (xs), moving particle (RBCs) components (xb), and addi-
tive white noise (xn), the signal of each vector can be given as

EQ-TARGET;temp:intralink-;e005;63;686x ¼ xs þ xb þ xn: (5)

Assuming that these three signal components are statistically
uncorrelated to each other, the correlation matrix of Eq. (5)
can then be given by the following equation:

EQ-TARGET;temp:intralink-;e006;63;622Rx ¼ Rs þ Rb þ σ2ωI; (6)

where Rs is the static correlation matrix, Rb is the moving blood
correlation matrix, σ2ω is the noise variance, and I is the identity
matrix.

To separate the OCT signals into its signal subsets, the
discrete Karhunen–Loeve transform (DKLT) can be utilized;
the DKLT orthogonally decomposes a general nonstationary
random signal and can be considered a generalization of conven-
tional Fourier analysis for nonstationary random processes.
The DKLT is based on an eigenvector decomposition of the
correlation matrix, where the eigenvectors and eigenvalues can
be achieved by solving the equation

EQ-TARGET;temp:intralink-;e007;63;469Rxei ¼ λiei: (7)

The correlation matrix Rx is the Hermitian symmetric and
positive semidefinite. It is then possible to find N orthonormal
eigenvectors e1; e2; : : : ; eN and corresponding eigenvalues
λ1; λ2; : : : ; λN , which are real and nonnegative. The correlation
matrix can be written with eigenvalues and eigenvectors in the
following form:

EQ-TARGET;temp:intralink-;e008;63;372Rx ¼ EΛE�T; (8)

where Λ and E are the eigenvalue (λ1 > λ2 > · · ·> λN) and
eigenvector matrices, respectively, defined as

EQ-TARGET;temp:intralink-;e009;63;319

Λ ¼

2
666664

λ1 0 : : : 0

0 λ2 : : : 0

..

. ..
. ..

.

0 0 : : : λN

3
777775
; E ¼

2
664

j j j
e1 e2 : : : eN
j j j

3
775:

(9)

The total energy in the received OCT signal equals the sum of all
the eigenvalues. Thus, the eigenvalue distribution must be
a measure of the signal spectrum. In this case, the eigenvalue
spectrum is a generalization of the Fourier power spectrum.
An example of eigenvalue spectrum from the three components
is shown in Fig. 2 for a typical cortical tissue in rodents, where
the largest energy is dominated by the static signal located at
the first eigenvalue. However, the moving blood signals are
distributed in the subsequent eigenvalues with relative energy
higher than that of static tissue components. The noise compo-
nents are almost equally distributed across the spectrum, which
is a typical behavior of the system noise.

As discussed above, the DKLT expansion is to decompose
the signal into the orthogonal eigenvectors. Each eigenvector
and its corresponding eigenvalue represent a subset of the signal
to be analyzed. The highest eigenvalue contains the highest
energy content of the signal. The eigenvector of the highest
eigenvalue describes the spectral content of the signal with
the highest energy. The frequency transform of the eigenvector
gives the spectrum of the corresponding signal component.
Therefore, each eigenvector is related to a specific frequency
band. From the eigenvalue/energy spectrum, the static signal
originates from stationary and slowly moving tissue or particles,
which dominate in the low frequency and concentrate in a few
eigenvalues corresponding to low-frequency eigenvectors. By
contrast, the signal from the faster moving blood has most of
the energy concentrated along eigenvectors with higher fre-
quency component. The noise has equal energy along all of
the eigenvectors. This is evidenced from Fig. 2 for brain imaging
of cortical tissue in rodents. Therefore, the static component can
be maximally suppressed to retain the flow signals with minimal
distortion through applying the eigenregression filtering,50

where the filter identifies and removes eigencomponents that
represent static tissue signal. Assuming that Kc is eigencompo-
nents corresponding to static tissue signal, the eigenregression
filter can be interpreted as having a filter order of (Kc − 1).
From Fig. 2, for rodent brain imaging, Kc ¼ 1 would be suffi-
cient to remove the static signals from the OCT signals to
contrast the blood flow. This static tissue signal suppression
approach is inherently adaptive to the repeated A-scans (or
repeated B-scans) because its attenuation response of the regres-
sion filter is defined according to the eigencomponents in the
ensemble signal composition.

The power spectrum of the signal is the Fourier transform of
the autocorrelation function defined as

EQ-TARGET;temp:intralink-;e010;326;158GxðωÞ ¼
Z∞

−∞

RxðτÞe−iwτdτ: (10)

If the frequency components have spectral support on the inter-
val ð−π; πÞ, the signal power indicating the presence of blood
flow, i.e., OCTA signal, can be simplified as follows:

Fig. 2 Typical eigenvalue spectrum, where 30 eigenvalues are ana-
lyzed for the signals representing static tissue components,
dynamic motion signal, and noise. The OCT signals are captured
from the cortical tissue of a rodent.
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EQ-TARGET;temp:intralink-;e011;63;752P ¼
Zπ

−π

GðωÞdω: (11)

The MF of signal frequency spectrum, ωm, representing the
mean velocity of blood flow within scanned tissue volume and
the BF, B2, of the frequency spectrum, which is related to
the flow fluctuation (temporal heterogeneous of flow) can be
defined as follows:

EQ-TARGET;temp:intralink-;e012;63;650

ωm ¼ 1

P

Zπ

−π

ωGðωÞdω and

B2 ¼ 1

P

Zπ

−π

ðω − ωdÞ2GðωÞdω: (12)

The estimation of spectral moments can be obtained using the
well-known lag-one autocorrelation equation51 given by the
following equation:

EQ-TARGET;temp:intralink-;e013;63;519

ωk ¼
FPS∕2
2π

argfRð1Þkg;

for Rð1Þk ¼
1

ND − 1

XND−2

m¼0

e�kðmÞekðmþ 1Þ; (13)

where Rð1Þk is the lag-one autocorrelation value for the k’th
eigenvector, FPS is the sampling rate, and ND is the number
of eigenvectors. We investigate the frequency content of the
individual eigenvectors, upon which the spectral band informa-
tion as well as the eigencomponents that represent them are
obtained. One frequency measure of interest is each eigenvec-
tor’s MF. Figure 3 provides the relationship between frequency
and eigenvectors, presented in box-whisker plot form,52 which

were evaluated from 10 3-D scans from rodent brain in vivo.
The red squares connected with a black dash line indicate the
MF of each eigenvector. Combined with the energy spectrum
of Fig. 2, a conclusion can be made that the highest energy
is associated with the highest eigenvalue, representing the static
or slowing moving signal, corresponding to the eigenvector of
lowest frequency (Kc ¼ 1). Additionally, the signals from the
moving blood were mainly concentrated in higher frequencies
(Kc > 1).

3 Experimental System Setup and Design

3.1 System Setup Used in the Study

For all the results reported in this study, we used a fiber-based
SD-OCT system that was previously described in Ref. 53.
Briefly, the system employed a superluminescent diode
(Thorlabs Inc., Newton, New Jersey) that has a central wave-
length of 1340 nm with a bandwidth of 110 nm, providing
a ∼7-μm axial resolution in the air. In the sample arm, a 10×
scan objective lens was used to deliver the light onto the sample,
achieving a lateral resolution of 7 μm (full width at half
maximum). The detection system was a fast spectrometer
that employed a line scan camera (Goodrich Inc., Princeton,
New Jersey) with a line scan rate of 92 kHz to capture the spec-
tral interferograms formed between the reference light and the
sample light. With a probe light power of 3.5 mWat the sample
surface, the system had a measured dynamic range of 105 dB.
The operations for probe beam scanning, data acquisition, and
data storage were controlled by a custom software package
written in Labview.

3.2 Scanning Protocol

To quantify the capillary blood flow faithfully, the system is
required to capture OCT signals that represent dynamic speckle
signals due to the blood flow without losing its information con-
tent. Capillary flow is reported to possess a wide velocity range,
from hundreds of micrometers per second to a few millimeters
per second.40 According to the study conducted by Choi et al.,53

the time interval of 50 μs to contrast blood flow for OCTA
is required to establish a quantitative relationship between
dynamic OCT signals and vascular flow up to 5 mm∕s. To fulfill
this requirement, we employed an M-B scan protocol on the SD-
OCT system with a time interval ranging from 50 μs to 2.5 ms to
detect both fast (up to 5 mm∕s) and slow flow (∼100 μm∕s),
simultaneously. According to these parameters, 50 A-scans
were required to repeat at the same spatial position with an
A-scan rate of 20 kHz. Two hundred A-scans formed one
B-scan in the fast axis (x-direction) with an imaging region of
1.4 mm. In the slow axis (y-direction), 200 sampling B-scans
were captured to cover 1.4 mm.

After 3-D volumetric data acquisitions using the scanning
protocol above, the following analyses were conducted to
generate the vascular image (dynamic signal power), the MF
(related to capillary velocity), and BF of blood flow (related
to the temporal bandwidth of capillary flows). Note that, in
the analysis of animal results below, the relative large vessels
(>30 μm) were excluded from the analysis because the flows
in these vessels are likely fast, which would probably exceed
the flow measurement limit using the current scanning protocol
(i.e., 5 mm∕s).

Fig. 3 The relationship between frequency and eigenvalue (eigen-
vector) presented in box-whisker plot form. The results were obtained
and evaluated from 10 3-D scans of rodent brain in vivo.
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3.3 Phantom Study

To validate the proposed ED-based quantification approach, we
first conducted phantom experiments using microfluidic chan-
nels perfused with 5% intralipid solutions with predefined flow
velocity in each microfluidic channel. The details of the micro-
fluidic flow phantom and its fabrication were described in the
previous study.53 Briefly, the scattering phantom consists of
four equal-height (40 μm) microfluidic channels at its interface
with a glass substrate, shown in Fig. 4. The sizes of the channels
are 120 μm (D1), 60 μm (D2), 30 μm (D3), and 15 μm (D4) in
width, respectively. The imaging protocol above covered all the
channels in each imaging scan. The flow of 5% intralipid in the
microfluidic channel was driven by an external precision syringe
pump. Since the channel design was based on a dimidiate and
symmetric strategy, the flow parameters in each subchannel are
predictable. Moreover, the symmetric design provides an impor-
tant feature in the flow-field distribution, for which the average
flow velocity is constant throughout the microfluidic channels
with different sizes. Table 1 lists the predictable flow rate and

average velocity in each of the four channels at a range of pump
rates. These pump rates covered a flow velocity range from 0.1
to 5 mm∕s, which were used in experimental verification to
establish the mean velocity measured in each channel through
the methods described above.

3.4 Distal Middle Cerebral Artery Occlusion

For the observation of cerebral capillary flow response to ische-
mic stroke, dMCAO was used as a rodent stroke model in which
permanent focal ischemia in the cerebral cortex is induced
through ligating the distal middle cerebral artery (dMCA).54

C57BL/6 mice (23 to 25 g) were prepared under isoflurane anes-
thesia (1.5% to 2.0% in 0.2 L∕min oxygen, 0.8 L∕min air) and
placed on a stereotaxic frame. The body temperature of the
mouse was maintained at 36.8°C by a heating blanket on the
frame whose temperature was controlled by a homeothermic
monitoring system (50-7220F, Harvard Apparatus) that continu-
ally monitored the body temperature using rectal insertion of a
temperature-sensing probe. Under anesthesia, the mice received
an open skull craniotomy,55,56 where a 4 mm × 4 mm area of the
skull over the somatosensory cortex in right hemisphere was
removed along with the dura and then the exposed somatosen-
sory cortex was covered with a 5-mm-diameter transparent glass
coverslip. The cranial window covered the territories supplied
by the anterior cerebral artery and middle cerebral artery,
as well as anastomoses. Following the surgery, OCTA imaging
of the cortex according to the scanning protocol described in
Sec. 3.2 was performed to obtain the baseline scan. Then,
dMCAO was induced, in which a 1-cm skin incision was
made between the right ear and eye of the mouse and the tem-
poral muscle below the skin was removed. Then, the temporal
bone overlying the dMCA was slightly thinned to expose the
dMCA. The exposed artery was permanently occluded using
a microbipolar electrocoagulator (Aaron 940™, Bovie Medical
Corp.). Following this procedure, the animal was OCTA-scanned
again to obtain the capillary flow responses to the dMCAO
ischemic injury. All experimental procedures performed in
this study were approved by the Institutional Animal Care and
Use Committee of the University of Washington (Protocol
No. 4262-01).

4 Results

4.1 Phantom Verification

The quantification algorithm was applied on the 3-D data
acquired from the microfluidic phantom to obtain the OCT
structural image [Fig. 5(a)], static tissue signal [Fig. 5(b)], and
the flow signal power [Fig. 5(c)], which contributes to OCTA
flow signal. According to the analysis demonstrated in Fig. 3,
each eigenvector corresponds to a specific frequency or velocity
in each single channel. By averaging all the frequencies in each
channel, the MF can be obtained for each pump rate applied to
the microfluidic channels. After calculating the signal power
and MF with different pump rates, the relationship of velocity
with signal power/intensity and MF was obtained and summa-
rized in Figs. 5(d) and 5(e). In Fig. 5(d), the signal power
decomposed by the ED-algorithm is related to the OCTA signal
magnitude/intensity that is seen to increase with the increase of
flow velocity and asymptotically approaches a plateau, which
agreed well with the results reported in previous publica-
tions,38,53 indicating its relationship with flow flux. In Fig. 5(e),

Fig. 4 Cross-sectional view of the microfluidic phantom. Four micro-
fluidic channels with the sizes as shown were fabricated at the inter-
face between the channel body and the substrate of glass slide. The
channel body was fabricated with polydimethylsiloxane (PDMS) mixed
with TiO2 powder to mimic static tissue surrounding blood vessels.

Table 1 Parameters of pump rate and corresponding flow rate and
average velocity in the four channels.

Pump rate
(μL∕h)

Flow rate (μL∕h)
Average velocity

(mm∕s)

D1 D2 D3 D4 D1 D2 D3 D4

3.46 1.76 0.88 0.44 0.22 0.1 0.1 0.1 0.1

10.37 5.20 2.60 1.30 0.65 0.3 0.3 0.3 0.3

17.28 8.64 4.32 2.16 1.08 0.5 0.5 0.5 0.5

27.65 13.84 6.92 3.46 1.73 0.8 0.8 0.8 0.8

41.47 20.72 10.36 5.18 2.59 1.2 1.2 1.2 1.2

51.84 25.92 12.96 6.48 3.24 1.5 1.5 1.5 1.5

62.21 31.12 15.56 7.78 3.89 1.8 1.8 1.8 1.8

69.12 34.56 17.28 8.64 4.32 2.0 2.0 2.0 2.0

103.68 51.84 25.92 12.96 6.48 3.0 3.0 3.0 3.0

138.24 69.12 34.56 17.28 8.64 4.0 4.0 4.0 4.0

172.8 86.40 43.20 21.60 10.80 5.0 5.0 5.0 5.0
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the relationship between MF and flow velocity among all the
channels is shown to possess the same linear relationship
with squared Pearson’s correlation coefficient of 0.983 of
D1 channel, 0.982 of D2 channel, 0.970 of D3 channel, and
0.920 of D4 channel among all the velocities given. Although
the exact relationship between MF and the flow velocity remains
to be explored, the one-to-one relationship of MF to the flow
velocity regardless of the channel sizes demonstrates that the
ED-quantification algorithm is able to measure accurately the
velocities in capillaries with different sizes.

4.2 Capillary Flow Responses to Distal Middle
Cerebral Artery Occlusion Ischemic injury

After demonstration on microfluidic phantom to verify the linear
relationship of measured average frequencies of dynamic OCT
signals with the predefined flow velocity in the microfluidic
channels, we investigate whether the proposed ED-quantifica-
tion algorithm is able to detect the cerebral capillary response
to ischemic injury (dMCAO model). The capillary flows within
cortical tissue beds would exhibit heterogeneity. Ischemic
injury would modify this heterogeneous property of the cerebral
capillary flow. In the experiment, we selected two regions in
the affected brain region to provide quantitative assessments of

the changes in cerebral vessel morphology and capillary flow
response to the dMCAO. The purpose of this choice was to
check the consistency of quantification because the responses
in these two regions must be approximately the same.

The changes in cerebral tissue and blood vessel morphology
before and after the dMCAO are summarized in Fig. 6. The
scanning positions at two selected locations were shifted.
This was due to the animal being required to be removed
from the imaging platform to the surgery table for the surgical
ligation of the dMCA to induce dMCAO, and then placed back
on the imaging platform for the next imaging session. We tried
our best to colocate the regions for baseline scan and dMCAO
scan, but a shift in position was eminent due to lack of an auto-
mated tracking mechanism in our system setup. Despite these,
the decrease of the blood flow and capillary density was clearly
observed on OCTA images when comparing the results before
[Figs. 6(a)–6(d)] and after the dMCA ligation [Figs. 6(e)–6(h)].

Quantitative analysis was performed to calculate the changes
in vessel density before and after the dMCA ligation. The mor-
phological parameter of vessel density was defined as the ratio
of the area occupied by blood vessels to the total scanned
area.57,58 Due to the shift of the scanned position, proper quan-
tification required coregistration so that the comparison was
made for the same region [i.e., region of interest (ROI)] before

Fig. 5 The ED-algorithm is capable of measuring the mean flow velocity in the microfluidic channels.
(a) The structure OCT image, (b) static tissue signal image, and (c) OCTA flow image of the scanned
microfluidic phantom. (d) The relationship between velocity and OCTA signal power within four channels.
(e) The relationship between velocity and MF for four channels. A same linear relationship between MF
and velocity is found with squared Pearson’s correlation coefficient of 0.983 of D1 channel, 0.982 of
D2 channel, 0.970 of D3 channel, and 0.920 of D4 channel among all the given velocities.
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and after the dMCA ligation. This was done automatically by an
in-house software. The ROI coregistration is shown as the white
boxes in the pair of images in Fig. 6, upon which the vessel
density was evaluated. The results are shown in Figs. 6(i)
and 6(j) for location 1 and location 2, respectively, both giving
a ∼30 percent reduction in vessel density after the dMCA
ligation, demonstrating that the dMCA ligation in the current
experiment caused the cessation of ∼1∕3rd capillary blood
flow in the cortical tissue, giving rise to mild ischemia in the
affected regions.

The MF map and BF map were demonstrated in Fig. 7 before
and after the dMCA ligation for both the locations. In Fig. 7, the
cross-sectional images at the position marked with the white
lines in the MF maps are also given, where structural (typical
OCT cross-section image), blood flow (OCTA cross section),
MF, and BF images are provided side-by-side for detailed scru-
tiny. The OCTangiograms shown in Fig. 6 do not provide direct
information about capillary velocity or flow information before
and after ligation. With the ED-based quantification algorithm,
the reduction of capillary flows was observed on enface MF

Fig. 6 The ED-based algorithm is capable of visualizing and quantifying the changes in capillary vessel
density after the dMCA ligation in the mouse brain. The results are presented for two selected locations
(left: location 1 and right: location 2) within the dMACO affected brain regions before (top row) and after
(middle row) the dMCA ligation. (a, c, e, g) The reflectance and (b, d, f, h) OCTA enface images are given
side-by-side. For quantification of vessel density, the ROIs (marked as white boxes) are selected through
coregistration of OCTA angiograms obtained at location 1 (b, e) and location 2 (d, h) for the comparison
between baseline and dMCAO. The quantification results are shown in (i) for location 1 and (j) for location
2. A reduction of vessel density about 30 percent was found for both ROIs after the dMCA ligation.
The enface image size is 1.4 × 1.4 mm2.
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maps through comparing the results before and after ligation
[Figs. 7(a) and 7(b), Figs. 7(e) and 7(f)]. According to the micro-
fluidic phantom study, the current scanning protocol with a
20-kHz A-line rate is able to provide the measurement of the
velocity range from 0 to 5 mm∕s, in which range the velocity
is linear with the mean frequencies (from 0 to ∼2000 Hz). The
MF range on the mouse brain shown in Fig. 7 is observed
from 0 up to ∼1200 Hz, which corresponds to the velocity in
a range from 0 to ∼3 mm∕s. BF maps reflect the temporal
heterogeneity of capillary flows. This heterogeneous property
is clearly observed in capillaries or penetrating capillaries, espe-
cially in the downstream of capillaries after dMCA ligation [see
Figs. 7(c), 7(d), 7(g), and 7(h)]. Comparing the results before
and after the dMCA ligation, the velocities of capillary flows
were decreased with the induction of dMCAO in the brain
region, as was the temporal heterogeneity of the capillary flows.
Note that the vessels with a size more than 30 μmwere excluded
in the assessments, where the blood flow likely exceeded the
measurement limit of the current scanning protocol.

To investigate how the capillary flow responds to the ische-
mic injury, we attempted to statistically quantify the velocity
changes among the capillaries within the scanned tissue beds.
In doing so, the flow histograms of both MF maps and BF

maps in the same ROIs before and after dMCA ligation for
both location 1 and location 2 were calculated and displayed
in Fig. 8, respectively, indicating the velocity distribution for
all the capillaries investigated. Note that the assessment
excluded the vessels with a size more than 30 μm. Histogram
distribution gives a nice way to show the spatial heterogeneity
property of the capillary flow [Figs. 8(a) and 8(c)]. After the
dMCA ligation, the reduction of capillary flows is clearly
seen, but the capillary flows still possess the property of spatial
heterogeneity. To show more clearly how the capillary flow is
reduced, we performed differentiation of the histogram func-
tions between before and after the dMCA ligation. The results
are provided as insets in Fig. 8, where we can conclude that after
the dMCA ligation, the capillary flows in most of the capillaries
are statistically moving to slow velocities, while the counts of
faster flow velocity become less. The same is true for the tem-
poral heterogeneity of the capillary flows [Figs. 8(b) and 8(d)].
Such behavior of the capillary blood flow is characteristic for
the ischemic injury because of the lack of perfusion from the
dMCA. We understand that the capillary flow responses and
its characteristic heterogeneity property are extremely compli-
cated and that may be related to how the brain tissue is trying
to utilize and extract the oxygen from the blood to support the

Fig. 7 The ED-based algorithm is capable of visualizing and quantifying the changes in capillary flows
after the dMCA ligation in the mouse brain. (a, b, e, and f) The MF maps and (c, d, g and h) BF maps are
given for both locations 1 and 2. The cross-sectional images of structural, blood flow, MF, and its band-
width at the positions marked as dashed line in (a, b, e, and f) are given at the bottom row for locations 1
and 2, respectively. Location 1 (red box): before ligation, (a1 to a4); after ligation: (b1 to b4). Location 2
(green box): before ligation, (e1 to e4); after ligation: (f1 to f4). The enface image size is 1.4 × 1.4 mm2.
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brain activities while under the ischemic condition. The inves-
tigation of this exceeds the scope of the current study. Our pur-
pose here is to demonstrate whether the ED-based quantitative
algorithm is useful for providing quantitative information about
the cerebral blood flow response to the known tissue injury,
which is the dMCAO model in our case.

5 Discussion
We have proposed and demonstrated a useful method that is
capable of quantifying the hemodynamics of capillary blood
flows using the model-based eigencomposition approach with
OCTA scanning protocol, which evaluates the eigenvalues

and eigenvectors of the ensemble scans (repeated scans at the
same location). In mathematics, eigenvalues are a special set
of scalars associated with a linear system of equations (i.e., a
matrix equation) that are sometimes also known as characteristic
roots or characteristic values. An eigenvector corresponds to a
real, nonzero eigenvalue point in a direction that is stretched by
the transformation while the eigenvalue is the factor by which
it is being stretched. In other words, the eigendecomposition
analyses of the OCT signals are comprehensive and statistical
analyses of the signal features embedded with the ensembles;
in this study, the feature of interests is the capillary blood flow.

In the current study, the eigenvalues were calculated from
the covariance matrix among the repeated A-lines/B-scans to

Fig. 8 Statistical analyses for capillary blood flow response to the ischemic injury for both locations 1 and
2. The same ROI is chosen before and after the dMCA ligation (see Fig. 6 for ROIs used for quantifi-
cation). The quantification was performed to provide histogram distribution of the (a, c) MF and (b, d) BF,
which indicate the spatial heterogeneity of capillary flows. The BF map indicates directly the temporal
heterogeneity of the flow. The insets are the results of differentiation between the histogram functions
before and after the dMCA ligation, where the negative value in the curve indicates the increase of
the probability within this region, and the positive indicates the opposite. The enface image size is
1.4 × 1.4 mm2.
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differentiate the static tissue signal and blood flow signal based
on the energy of each eigenvalue. The eigenvalue distribution is
a measure of the signal spectrum. Each eigenvector and its cor-
responding eigenvalue represent a part of the signal to be ana-
lyzed. At the same time, the corresponding eigenvectors provide
the direction for each eigenvalue, i.e., phase information in OCT
signal, which is related to the velocity of moving particles. By
evaluating the phase changes between eigenvectors, the relative
velocity/frequency of dynamic OCT speckle signal due to the
blood flow can be estimated. Each eigenvector is related to a
specific frequency band. From the eigenvalue/energy spectrum,
the static signal originates from stationary and slowly moving
tissue or particles, which dominate the low-frequency compo-
nents and concentrate in a few eigenvalues corresponding to
low-frequency eigenvectors. By contrast, the signal from the
faster moving blood has most of the energy concentrated along
eigenvectors with higher frequency component.

Considering the relationship between dynamic OCT signal
and the blood flow velocity, a number of studies38,53 reported
that, to provide quantifiable information about the capillary flow
that is of a wide range from 0 to 5 mm∕s, a relative short time
interval is required to capture the dynamic OCT signals due to
RBC movements in the capillary vessels. Choi et al.53 found
a linear relationship between the dynamic OCT signal and flow
velocity with a range from 0 to 5 mm∕s if the OCT system cap-
tures the OCT signal at a time interval of ∼50 μs. This critical
information dedicates the design of the scanning protocol in this
current study. With the time interval of 50 μs, i.e., the scanning
speed of 20 kHz A-scan rate, the results confirmed the findings
by Choi et al. (see Fig. 5 from the purposely designed phantom
study). This protocol required repeated A-scans at the same
position (i.e., M-B mode) rather than the repeated B-scans scan-
ning protocol (i.e., B-M mode) used in the standard OCTA
imaging. At the current OCTA system imaging speed of up to
400 kHz, the time interval between repeated B-scans is typically
around the millisecond range, a value that only provides a pos-
sibility of quantifying the flow speed up to 300 μm per second
(according to Choi et al.),53 which would not be suitable for
quantifying the capillary blood flow within tissue beds that
often cover a range from 0 to 5 mm∕s. Therefore, with the cur-
rent OCT system designed for OCTA imaging, the M-B scan-
ning protocol perhaps is the only feasible solution to provide
quantitative information about the capillary blood flows within
tissue beds. However, with the rapid development of swept laser
sources that has pushed the OCT imaging speed up to a few
MHz A-scan rate,8,9 it is hopeful that the standard OCTA scan-
ning protocol would be amendable in near the future to provide
quantitative information of capillary blood flows.

We have attempted to use the proposed ED-based quantifi-
cation algorithm to investigate the capillary blood flow response
to an ischemic brain injury. It is the first time that the eigenvec-
tors of an ensemble scan were utilized to estimate the MF and
the BF of the dynamic OCT signals due to the moving RBCs in
the capillary vessel. The MF and BF are two important param-
eters that would provide an ability to characterize the capillary
blood flow heterogeneity within the cortical tissue in rodents.
Although the results are promising and, more importantly, the
relationship between MF and velocity is found to be linear,
the exact relation between MF and velocity has not yet been
explored. Other than the flow speed, other factors may be
involved in this relationship, for example, the actual size, shape,
and orientation of RBCs, as well as the OCT beam spot size.

The rigorous investigation of this relation is, however, beyond
the scope of the current study.

Although we have demonstrated the ED-based quantification
algorithm in the estimation of MF and BF of the capillary
blood flows within tissue beds, a number of limitations exist.
The number of eigenvalues is dependent on the ensemble
number of the repeated scans. It is known that the more the
repeated scans, the more eigenvalues and eigenvectors there
would be and, therefore, the more frequency bands would
be available for analysis. According to Fig. 3, the frequency
estimation tends to be saturated in the last few of eigenvectors.
Considering the spectrum distribution of eigenvalues (Fig. 2)
and the frequency distribution associated with the eigenvalues
(Fig. 3), only the first 15 eigenvalues actually contribute to the
efficient frequency estimations. Further study would be neces-
sary to optimize the number of repeated scans required for the
accurate estimation of the MF and BF of the dynamic OCT sig-
nals due to the moving RBCs. Another limitation is that the M-B
scanning protocol is not compatible with the current commercial
OCTA systems that use the standard B-M scanning protocol.
This limitation is likely mitigated using an MHz swept laser
source in the OCTA system, which however is a long way from
a commercially viable system. Therefore, unless an M-mode
scanning protocol is used, it seems that it is almost impossible
to utilize the B-M mode scanning protocol available in commer-
cial systems to realize the velocimetry of capillary blood flows.

6 Conclusion
We have demonstrated a useful method for the velocity estima-
tion of capillary blood flows with OCTA scans. The method uti-
lized a model-based ED statistical approach that is capable of
extracting the dynamic complex OCT signals due to the moving
RBCs, upon which the frequencies of eigenvalues that are
related to the RBC moving velocity are statistically estimated.
We have shown that the ED-based analyses are capable of
providing three important parameters about the dynamic flow
signal, including the power of the spectrum, the MF, and the
bandwidth of the frequency of the blood flow, each correspond-
ing to the OCTA intensity signal, velocity, and the velocity
bandwidth of blood flow. We have demonstrated the linear rela-
tionship between the estimated MF and the flow velocity using
a purposely designed microfluidic phantoms and explored the
usefulness of the proposed ED-based algorithm in the quantita-
tive investigation of capillary flow responses to an ischemic
stroke model. Further directions for this development include
the systematic investigation of the relationship between the MF
and the actual flow speed, and the systematic exploration of the
utility of the proposed method in neuroscience, ophthalmology,
and dermatology, where tissue injury and therapeutic treatment
are known to have vascular involvements.
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