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Abstract. An equidistant fish-eye camera can be calibrated using a
single image of two sets of parallel lines in the scene, which is very
convenient for practical applications. The core of the calibration pro-
cedure is the fitting of center collinear circles that intersect at two van-
ishing points. A fast and accurate fitting method that can be used for
equidistant fish-eye camera calibration is presented. First, the fitting
problem is formulated as a nonlinear least square problem and
solved using Levenberg-Marquardt optimization. The objective func-
tion is also derived, as well as the Jacobian required by the
Levenberg-Marquardt algorithm. It is also demonstrated how to deter-
mine the initial estimations. Experimental results on synthetic data
have demonstrated the superiority of our method to two existing
approaches in terms of speed and accuracy. Results on real data
have also demonstrated its effectiveness for fish-eye camera calibra-
tion. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publica-
tion, including its DOI. [DOI: 10.1117/1.JEI.22.1.013004]

1 Introduction
Because of its large field of view (FOV), the fish-eye camera
has been widely used in applications such as robot navi-
gation, visual surveillance and three-dimensional (3-D)
reconstruction.1 However, fish-eye lenses often introduce a
large amount of radial distortion, which causes straight lines
in the scene mapping to conics in the image. As a result, a cal-
ibration procedure is often required for distortion correction.2

The calibration procedure typically consists of two com-
ponents, model selection and parameter estimation. In the last
decades a number of models have been developed for fish-eye
lenses, such as the polynomial model,3 the division model,4

the rational function model,5 and so on. In order to estimate
the model parameters, various methods using points, lines
and conics have also been proposed in Refs. 6 and 7.

The ideal fish-eye lenses are constructed with the aim of
complying with the equidistant projection function.8,9 It has
been demonstrated that under this model, parallel lines are

projected onto circular arcs and all the circles intersect at two
vanishing points, thus the centers of the circles are collin-
ear.10 This property is of great importance because it allows
fish-eye camera to be calibrated using single image of two
sets of parallel lines in the scene, which is very convenient
for practical applications. As a result, fitting of center collin-
ear circles lies at the core of fish-eye camera calibration.

Based on the center colinearity property, Geyer et al.11

proposed a two-step fitting approach. They first fitted the
circles separately and then refined the centers of the circles
using the colinearity constraint. However, its accuracy is lim-
ited due to the fact that the estimated center collinear circles
do not necessarily intersect at two points. Recently, Hughes
et al.10 proposed an iterative approach to solve the fitting
problem. Instead of fitting the circles separately, they utilized
the available data points to fit all the circles simultaneously.
On each iteration, they fixed one vanishing point and
updated the other one, and enforced all the circles to intersect
at the two vanishing points. Obviously this approach is more
robust against noise thus can greatly improve the accuracy.

In this paper we propose a direct approach for fitting of
center collinear circles. First we build a coordinate system
for the circles and give the objective function for nonlinear
optimization. Then we use Levenberg-Marquardt (LM) algo-
rithm12 to solve the optimization problem. The main advan-
tage of our approach is that two vanishing points are updated
simultaneously. Experimental results show that the accuracy
of our approach is the same as reported earlier,10 while its
speed is much faster.

The remainder of this paper is organized as follows.
Section 2 briefly describes the equidistant fish-eye projec-
tion. Section 3 presents three fitting approaches, including
two existing approaches and the proposed direct approach.
Section 4 gives our experimental results on both synthetic
and real data, and Sec. 5 offers our conclusion.

2 Equidistant Fish-Eye Projection
Ideal fish-eye cameras are manufactured to follow the equi-
distance mapping function such that the distance between a
projected point and the optical center of the image is
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proportional to the incident angle of the projected ray, scaled
only by the equidistance parameter f, as described by the
projection equation:13,14

rd ¼ fθ; (1)

where rd is the fish-eye radial distance of a projected point
from the center, and θ is the incident angle of a ray from the
3-D point being projected to the image plane.15 Figure 1
illustrates the equidistant projection for a simple model of
an equidistant camera system.

Due to the radial distortion introduced by fish-eye lenses,
straight lines in the scene will map to conics in the image. It
has been proved that under this model, parallel lines are pro-
jected onto circular arcs and all the circles intersect at two
vanishing points,10 as shown in Fig. 2. It has also been dem-
onstrated that if the parameters of two sets of circles are
known, all the intrinsic parameters required for fish-eye cam-
era calibration can be determined.10 As a result, estimating the
parameters of the circles lies at the core of equidistant fish-eye
camera calibration. In the next section, we will present three
fitting approaches for parameters estimation, including two
existing approaches and the proposed direct approach.

3 Fitting of Center Collinear Circles
Fitting of single circle using a set of data points is a well-
investigated nonlinear least square problem.16 However, little
attention has been paid to multiple circles fitting. In this
paper, we will focus on the fitting of center collinear circles,
i.e., a set of circles whose centers are collinear, as illustrated
in Fig. 3. The most important property of center collinear
circles is that all of them intersect at two points. Thus fitting
of the circles is always coupled with the estimation of the
positions of the two points. In this section, we will first
briefly describe two existing methods in the literature, and
then introduce the proposed fitting approach.

3.1 Two-Step Approach
Geyer et al.11 proposed a two-step approach to estimate the
parameters of center collinear circles for catadioptric camera
calibration. The approach is briefly described as follows.

1. Separating the data points into several sets of points.
Fitting one circle to each set of points.

2. Fitting a line to the centers of all the circles. Updating
the centers by projecting them onto this line.

This approach first estimates the parameters of each circle
separately, and then enforces the centers of the circles to be
collinear. Note that it does not update the radii of the circles,
and therefore, it cannot guarantee that all the circles intersect
at two points.

3.2 Iterative Approach
Recently, Hughes et al. proposed an iterative approach to
alternately update one point by fixing the other.10 This
approach consists of the following steps.

1. Separating the data points into several sets of points.
Fitting one circle to each set of points.

2. Calculating the intersect points of the circles and deter-
mining the initial positions of the two points.

3. Fixing one point and updating the other using LM
optimization.

4. Repeating step (3) until convergence is observed or the
maximum number of iterations is reached.

It is obvious that when the algorithm terminates, we could
obtain the positions of the two points as well as the param-
eters of the circles. Note that this approach enforces the
circles to intersect at two points, thus it is expected to be
more accurate than the two-step approach. However, since
each time the approach updates only one point, it would
take a number of iterations for convergence.

3.3 Direct Approach
In this subsection, we present a direct approach for fitting of
center collinear circles. We first build a coordinate system to
facilitate derivations, and then give the equations of the
center collinear circles using the vanishing points constraint.
Next we propose to solve the fitting problem using LM
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Fig. 2 Projection of parallel lines in an equidistant fish-eye camera
system.
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Fig. 3 The coordinate system for the proposed direct approach.
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optimization, and give the objective function as well as its
Jacobian. Finally we discuss some issues related to its
implementation.

Assume the center collinear circles intersect at two van-
ishing points v1 and v2. After translation T ¼ Tðx; yÞ and
rotation R ¼ RðθÞ, we define the midpoint of line segment
v1v2 as the origin, and the line determined by v1 and v2 as
the X-axis, as shown in Fig. 3. In this coordinate system, the
center of the circle Ci is ð0; biÞ, and the coordinates of v1 and
v2 are ð−a; 0Þ and ða; 0Þ, respectively. The equation of circle
Ci can be expressed as

x2 þ ðy − biÞ2 ¼ r2i ; (2)

where the radius

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2i

q
: (3)

In order to fit N circles, we should estimate N þ 4 param-
eters, i.e., x, y, θ, a, b1; · · · ; bN .

After translation and rotation, a data point p is trans-
formed from ðm; nÞ to ðm 0; n 0Þ, which satisfies

�
m 0

n 0

�
¼ RðP − TÞ ¼

�
cos θ − sin θ

sin θ cos θ

��
m − x

n − y

�

¼
� ðm − xÞ cos θ − ðn − yÞ sin θ
ðm − xÞ sin θ þ ðn − yÞ cos θ

�
. (4)

If there are Ni data points pi;1; : : : ; pi;Ni
belonging to circle

Ci, and the distance between the k-th transformed point p 0
i;k

and its corresponding center is

di;k ¼ kp 0
i;k − Cik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm 0

i;kÞ2 þ ðn 0
i;k − biÞ2

q
; (5)

then the fitting error of the points belonging to circle Ci is
given by

fi ¼
XNi

k¼1

ðdi;k − riÞ2

¼
XNi

k¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm 0

i;kÞ2 þ ðn 0
i;k − biÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2i

q �
2

; (6)

and the fitting error of all the data points is

F ¼
XN
i¼1

fi ¼
XN
i¼1

XNi

k¼1

ðdi;k − riÞ2. (7)

Substituting Eqs. (4) and (6) into Eq. (7), we get

F ¼
XN
i¼1

XNi

k¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi;k − xÞ2 þ ðni;k − yÞ2 þ b2i − 2biðmi;k − xÞ sin θ − 2biðni;k − yÞ cos θ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2i

q �
2

: (8)

Thus the fitting problem is formulated as a nonlinear least
square problem whose objective is finding the minima of
Eq. (8).

LM algorithm12 is very efficient for the above optimiza-
tion problem. In order to apply LM algorithm, we should
derive the first partial derivative of the objective function,
i.e., the Jacobian.17 After some mathematical manipulation,
we get the Jacobian

∂fi
∂x

¼ −ðm − xÞ þ bi sin θ
d

∂fi
∂y

¼ −ðn − yÞ þ bi cos θ
d

∂fi
∂θ

¼ bi
d
½−ðm − xÞ cos θ þ ðn − yÞ sin θ�

∂fi
∂a

¼ −
a
ri

∂fi
∂bj

¼
�

bi−ðm−xÞ sin θ−ðn−yÞ cos θ
d − bi

ri
if i ¼ j

0 otherwise

(9)

Setting the initial estimation properly is very crucial for
LM optimization. Since the fitting error increases with the
radius of circle, we propose to first fit each circle separately,
and then use the intersect points of two smallest circles as the

initial estimation of the vanishing points. The initial values
used for LM optimization then can be determined by the two
vanishing points and the parameters of the circles. After con-
vergence of LM algorithm, we can compute the parameters
of the circles. The complete approach is given as follows:

1. Separating the data points into several sets of points.
Fitting one circle to each set of points.

2. Finding two smallest circles and calculating the inter-
sect points of them.

3. Calculating the initial estimation of the parameters x,
y, θ, a, b1; · · · ; bN .

4. Updating the parameters using LM optimization until
convergence.

5. Calculating the parameters of the circles using the
optimization result.

Note that our method is also an iterative approach because
LM algorithm is used for parameter estimation and LM algo-
rithm often requires a number of iterations. However, in the
iterative approach presented in Sec. 3.2, the vanishing points
are estimated sequentially, while in our approach they are esti-
mated simultaneously. Thus our approach is expected to be
faster than the iterative approach. In addition, our approach
also enforces the circles to intersect at two points, thus it is
expected to be more accurate than the two-step approach.
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4 Experimental Results
We have evaluated our method on both synthetic and real
data and have compared it with those proposed.10,11 We
use speed and accuracy as performance indicators for com-
parison. The platform is a PC with Intel CPU i5-2400
3.10 GHz and 8 G RAM. The software environment is
Windows 7 Ultimate and Visual Studio 2005. All the testing
programs are written in C++ language.

4.1 Synthetic Data
In order to stimulate the fish-eye camera calibration, we gen-
erate eight center collinear circles (denoted as C1 to C8), and
use only arcs of them for parameter estimation, as shown in
Fig. 4. The resolution of the synthetic image is 640 × 480,
and the parameters of the circles are listed in Table 1.

On each arc we randomly choose 100 points. Gaussian
noise with zero-mean and σ standard deviation is added to
the points. The noise levels σ are 0, 1, 2, 3, 4, 5, respectively.
For each noise level, we perform 100 independent trials, and
the mean values and standard deviations of these recovered
parameters are computed over each run. The errors compared
to the ground truth are defined as

errorCx
¼ 1

T

XT
t¼1

jCx − C�
x;tj;

errorCy
¼ 1

T

XT
t¼1

jCy − C�
y;tj; errorr ¼

1

T

XT
t¼1

jr − r�t j
r

:

where Cx; Cy and r are the ground truth, C�
x;t, C�

y;t, and r�t are
the estimated parameters of t-th trail, and T is the number of
trails. Although the fitting error increases with the noise
level, the comparison results of the three approaches are
similar for different noise levels. For the sake of brevity,
we only provide the fitting results when σ ¼ 3, as shown in
Tables 2–4. The three fitting approaches described in Sec. 3
are indicated by subscripts t, i and d, respectively.

From Tables 2–4, we can see that the fitting results are
almost the same for the iterative and the direct approaches,
and both of them are much more robust and accurate than the
two-step approach. The error and standard derivation of the
two-step approach are around 5 to 10 times larger than those
of the other two approaches. Thus we can conclude that in
terms of fitting accuracy both the iterative and the direct
approaches are superior to the two-step approach.

Another observation from Tables 2–4 is that for all the
three approaches, the error and standard derivation increase
with the radius of the circle, which is consistent with pre-
vious studies.18,19 The reason is that for a larger circle, the
arc in the image corresponds to a smaller angle. As a result,
the accuracy decreases due to a larger amount of occlusion
of the circle. On the other hand, because the iterative and
the direct approaches use all the data points for parameters
estimation, the adverse effect of noise and occlusion can be
greatly reduced by the vanishing points constraint. Hence
these two approaches are more robust and accurate than the
two-step approach.

The time requirements of the three approaches are
reported in Table 5. It can be observed that the two-step
approach is the fastest one, which only requires less than
16 ms on average when σ ¼ 3. The other two approaches
are much slower. The time required by the iterative and the
direct approaches are about 700 and 30 times more than that
of the two-step approach, respectively. It is reasonable
because nonlinear optimization is adopted by the direct
approach using all the data points and the center collinear
constraint, which costs much more time than just estimating
the parameters of each circle separately. The iterative
approach often requires several tens of iterations for conver-
gence (as listed in Table 6), and there is also a nonlinear opti-
mization step on each iteration. As a result, the iterative
approach is the most time-consuming of all. Our method is
more than 20 times faster than the iterative approach, and its
average running time is less than half a second, which makes
it very promising for practical calibration procedures.

4.2 Real Data
In this expirment, we take an image using a fish-eye camera
with FOVabout 170 deg. A chess board is placed in front of
the camera for calibration. The size of each block in the chess
board is 15 × 15 mm2, and the resolution of the image isFig. 4 The synthetic image of center collinear circles.

Table 1 Parameters of the synthetic circles.

C1 C2 C3 C4 C5 C6 C7 C8

(Cx ; Cy ) (31.55, 0) (107.61, 0) (240, 0) (600, 0) (−462;0) (−194.44; 0) (−79.80;0) (−10.16;0)

r 321.55 337.61 400 680 562 374.44 329.80 320.16

Note: (Cx ;Cy ) is the center of the circle. The center of the image (320, 240) is regarded as the origin. r is the radius of the circle.
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640 × 480, as depicted in Fig. 5. Curve extracting is accom-
plished by a software package developed by our lab. On both
horizontal and vertical directions, only six arcs with the larg-
est lengths are selected for parameters estimation. After the
fitting of center collinear circles, we can obtain the positions
of horizontal vanishing points vx1 and vx2 and the vertical
vanishing points vy1 and vy2. If the line joins vx1 and vx2
is denoted as lx, and that joins vy1 and vy2 is denoted as
ly, then the optical center can be determined as the intersect
point of lx and ly, and the focal lengths on horizontal and
vertical directions are given by

fx ¼
jvx1 − vx2j

π
(10)

and

fy ¼
jvy1 − vy2j

π
. (11)

Then we can use Eq. (1) for distortion correction. The details
about distortion correction are available.15

Due to lack of the ground truth of parameters of the fish-
eye camera, we just check the undistorted image to evaluate
the calibration results and the proposed approach. The undis-
torted image is shown in Fig. 6. As can be seen in this figure,
straight lines in the scene now map to straight lines in the
image. We then extract the 8 × 8 corners of the chess board20

and compute the reconstruction error. The average difference

Table 2 Fitting results of Cx when σ ¼ 3.

C1 C2 C3 C4 C5 C6 C7 C8

GT 31.55 107.61 240 600 −462 −194.44 −79.80 −10.16

meant 33.46 108.84 240.29 611.15 −462.04 −194.54 −81.28 −10.35

meani 31.10 107.11 240.34 601.35 −461.62 −195.56 −79.53 −10.41

meand 31.09 107.10 240.32 601.27 −461.64 −195.56 −79.53 −10.41

stdt 6.20 6.81 11.40 37.41 24.38 9.23 7.31 7.20

stdi 0.69 0.93 1.63 5.88 4.33 1.64 0.90 0.71

stdd 0.69 0.93 1.63 5.88 4.33 1.64 0.90 0.71

errort 5.40 5.48 9.57 31.42 20.59 7.21 6.01 6.14

errori 0.63 0.83 1.26 4.69 3.29 1.59 0.73 0.57

errord 0.64 0.83 1.25 4.65 3.29 1.59 0.73 0.57

Table 3 Fitting results of Cy when σ ¼ 3.

C1 C2 C3 C4 C5 C6 C7 C8

GT 0 0 0 0 0 0 0 0

meant 0.013 −0.086 −0.253 −0.769 0.684 0.324 0.172 0.072

meani 0.003 −0.008 −0.028 −0.080 0.075 0.036 0.019 0.009

meand 0.003 −0.008 −0.028 −0.080 0.075 0.036 0.019 0.009

stdt 0.91 1.04 1.39 2.68 1.91 1.09 0.90 0.89

stdi 0.16 0.19 0.27 0.55 0.41 0.22 0.17 0.16

stdd 0.16 0.19 0.27 0.55 0.41 0.22 0.16 0.16

errort 0.74 0.85 1.14 2.19 1.56 0.88 0.73 0.72

errori 0.13 0.15 0.21 0.42 0.33 0.18 0.14 0.13

errord 0.13 0.15 0.21 0.42 0.33 0.18 0.14 0.13
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between the position of each corner and their true position is
1.631 pixel. Because the resolution of each block in the un-
distorted image is 63.267 × 63.267, the reconstruction error
can be computed as 1.631∕63.267 × 15 ¼ 0.387 mm. Thus
we conclude that our method is effective for fish-eye camera
calibration.

5 Conclusions
In this paper we propose a novel method for fitting of center
collinear circles for fish-eye camera calibration. We formu-
late the fitting problem as a nonlinear least square problem
and solve it using LM optimization. Experimental results on
synthetic data show that the proposed method is much more
accurate than the two-step approach, and it requires much
less time than the iterative approach while keeping the fitting

Table 4 Fitting results of r when σ ¼ 3.

C1 C2 C3 C4 C5 C6 C7 C8

GT 321.55 337.61 400 680 562 374.44 329.80 320.16

meant 323.73 338.87 400.29 690.83 562.18 374.34 331.33 320.21

meani 321.58 337.54 400.31 681.31 561.66 375.03 329.77 320.23

meand 321.57 337.53 400.29 681.22 561.67 375.03 329.77 320.22

stdt 4.94 5.49 9.83 35.97 22.90 7.89 5.92 5.64

stdi 0.59 0.79 1.48 5.74 4.19 1.45 0.78 0.56

stdd 0.59 0.79 1.47 5.73 4.19 1.45 0.78 0.56

errort 1.34e-2 1.30e-2 2.04e-2 4.43e-2 3.43e-2 1.65e-2 1.48e-2 1.48e-2

errori 1.39e-3 1.82e-3 2.83e-3 6.75e-3 5.67e-3 3.24e-3 1.81e-3 1.35e-3

errord 1.39e-3 1.82e-3 2.82e-3 6.70e-3 5.67e-3 3.24e-3 1.81e-3 1.34e-3

Table 5 The average time (ms) required by the three approaches.

σ 0 1 2 3 4 5

Two-step approach 8.27 11.55 13.01 14.35 14.88 15.73

Iterative approach 5490 7440 8845 9563 11364 11467

Direct approach 285.7 349.5 386.6 403.9 424.4 438.4

Table 6 The average iterations required by the iterative approach for
convergence.

σ 0 1 2 3 4 5

Avg. Iters 21.53 24.19 29.03 31.25 36.76 37.01

Fig. 5 An image captured using a fish-eye camera.

Fig. 6 The image after distortion correction.
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performance unspoiled. Results on real data demonstrate its
effectiveness for fish-eye camera calibration. Hence we can
conclude that the proposed method is very promising for
practical applications.
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