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Abstract. We deal with the problem of blind parameter estimation
of signal-dependent noise from mono-component image data.
Multispectral or color images can be processed in a component-
wise manner. The main results obtained rest on the assumption
that the image texture and noise parameters estimation problems
are interdependent. A two-dimensional fractal Brownian motion
(fBm) model is used for locally describing image texture. A polynomial
model is assumed for the purpose of describing the signal-dependent
noise variance dependence on image intensity. Using the maximum
likelihood approach, estimates of both fBm-model and noise param-
eters are obtained. It is demonstrated that Fisher information (FI) on
noise parameters contained in an image is distributed nonuniformly
over intensity coordinates (an image intensity range). It is also
shown how to find the most informative intensities and the corre-
sponding image areas for a given noisy image. The proposed estima-
tor benefits from these detected areas to improve the estimation
accuracy of signal-dependent noise parameters. Finally, the potential
estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise
parameters is derived, providing confidence intervals of these esti-
mates for a given image. In the experiment, the proposed and existing
state-of-the-art noise variance estimators are compared for a large
image database using CRLB-based statistical efficiency criteria.
© The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JEI.22.1.013019]

1 Introduction
A challenging problem of blind estimation of inherent sensor
noise parameters [mainly its variance or standard deviation

(STD)] from image data has been extensively studied by
researchers for the last decade (see Ref. 1 and references
therein). For a given sensor, the problem is to estimate
noise parameters directly from noisy images acquired by
this sensor.2–15

Sensor noise must be detected and quantified prior to the
majority of subsequent image processing tasks. Such infor-
mation can help to properly select a suitable technique or
adjust a method parameter to a current noise level (unknown
in advance), with the final goal of making these techniques
operate well enough. For example, different image filtering
methods are needed to deal with either additive (signal-
independent) noise (see Ref. 16 and references therein) or
signal-dependent Poisson noise [typical for charge-coupled
device (CCD) sensors].17–28 A threshold that is a function of
noise standard deviation can be used with an edge detector.13

In Refs. 29 and 30, a method is proposed for estimating the
denoising bounds for nonlocal filters from a noisy image,
where noise statistics are to be known or accurately pre-
estimated from the same noisy data. Similar results for local
filters were obtained in Ref. 31, with the same requirement
for noise statistics.

A signal-independent spatially uncorrelated noise model
was the first possibility widely considered in the literature
for modeling sensor noise in a very large number of image
processing applications. In these applications, the noise is
typically assumed as a zero mean stationary Gaussian distrib-
uted random process. Such process is fully described in
terms of second-order statistics: its variance or standard
deviation and a two-dimensional (2-D) Dirac delta function
for its spatial autocorrelation function. For such noise
models, the methods designed for estimating noise standard
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deviation can be roughly divided into two groups: the meth-
ods operating in the spatial domain and those operating in the
spectral domain. Spatial methods, also called homogeneous
area (HA) methods,32 make an essential use of image homo-
geneous areas characterized by a negligible level of texture
spatial variation compared to the noise level. Spectral meth-
ods utilize a suitable orthogonal transform to better separate
image texture and noise; the former is assumed to be
smoother compared to image noise.33 They can have certain
advantages compared to spatial methods, as the latter also
can be applied to nonintensive texture, in addition to homo-
geneous areas. In Refs. 15, 34–36, the estimation of additive
noise standard deviation is performed by analyzing the
observed data in blocks of fixed size in the discrete cosine
transform (DCT) domain. Estimation using wavelet trans-
form is also possible.37,38

However, with advances in CCD-sensor technology, the
applicability of the signal-independent noise model is dimin-
ishing, and signal-dependent photonic noise is becoming
more and more dominant.14,39 Nevertheless, the level of sig-
nal-independent thermal noise remains nonnegligible. Then,
one has to deal with mixed signal-independent and signal-
dependent noise, which, in general, can also be treated as
signal-dependent. Such noise is intrinsically nonstationary,
but it can be locally approximated by stationary additive
noise, with variance being a function of image intensity.
In this case, the dependence of local variance on image inten-
sity (called noise level function, or NLF, in Ref. 10) is of
interest. If this dependence can be approximated by a poly-
nomial, then one has to estimate the parameters (coefficients)
of such a polynomial. For CCD-sensor noise, a first-order
polynomial is considered to be a proper model40 character-
ized by two parameters, later referred to as signal-indepen-
dent and signal-dependent component variances.

It is important to mention that signal-dependent noise is
significantly more restrictive compared to signal-independent
noise: homogeneous areas of sufficient size, with intensities
covering thewhole image intensity range, are needed to accu-
rately estimate noise variance as a function of image intensity.
This problemwas addressed, for example, in Ref. 10, where a
priori information on an estimated nonlinear NLFwas used to
compensate for the lack of homogeneous areas and to stabilize
the estimation process. Note that such a priori information is
not available for all sensors. In this situation, the estimation of
noise parameters (coefficients of a polynomial and signal-
independent and signal-dependent component variances)
should be performed in a blind manner, relying only on
observed noisy data. To reach high performance in such a sit-
uation, a blind noise parameter estimator should satisfy the
following requirements:1

1. To provide unbiased estimates with as little variance as
possible.

2. To perform well enough at different noise levels.
3. To be insensitive to image content; i.e., to provide

appropriate accuracy, even for textural images.

By saying “with as little variance as possible,” we mean
that there is a certain theoretical limit on the estimation accu-
racy (in terms of standard deviation) of noise parameters
from image data.15 It is desirable for an estimator to perform
close to this limit. The true image content is certainly

nonuniform and may include different texture patterns,
edges, objects of small size, etc. All these heterogeneities
should not essentially influence the performance of a
noise parameter estimator; i.e., estimated bias and standard
deviation should not increase significantly (over a theoreti-
cal limit).

Potentially, the performance of blind methods can be very
high—certainly higher than that of a human operator. The
reason is that these methods can use subtler differences
between image content and noise, which might be not visible
to the human eye. But satisfying the above requirements al-
together (and reaching a high level of estimation accuracy)
for signal-dependent noise has been a difficult problem.12

Extended versions of approaches, originally proposed
for the estimation of signal-independent noise standard
deviation, have been considered to deal with signal-
dependent noise, among them the well-known scatterplot
approach.39 Recall that a scatterplot is a collection of points,
each representing image local variance versus local mean. To
reduce the influence of outliers, a robust fit to the scatterplot
data points has typically been considered by different authors
(e.g., Refs. 8, 10, and 39). Unfortunately, robust fit in the
presence of a large percentage of abnormal local variance
estimates (obtained from heterogeneous fragments) may
appear very unstable. As a result, different fit strategies can
lead to notably different estimation results.12

To meet all the requirements discussed above, we extend
here the promising approach that we recently proposed in
Ref. 15 to estimate the standard deviation (or variance) of
signal-independent noise (assumed to be spatially uncorre-
lated). Our approach introduces two specific maps: the
image texture informative (TI) map and the noise informative
(NI) map. These two maps are complementary; i.e., for a
given image, each scanning window (SW) belongs to one
or another map. Assigning a given SW to one of these
maps is decided based on the Fisher information (FI) on
image texture parameters and noise standard deviation con-
tained in this single window. In the NI map, a large amount
of FI on the noise standard deviation is contained in each
selected SW forming this map. Such SWs contribute in solv-
ing the main task, i.e., the accurate blind estimation of noise
parameters. On the contrary, in the TI map, a large amount of
FI on image texture parameters is contained in corresponding
SWs. Such SWs are involved in solving an auxiliary task
(i.e., the estimation of image texture parameters).

Note that both tasks are not mutually exclusive since
texture parameters for NI SWs and noise parameters for TI
SWs remain unknown, due to mutual masking of texture
and noise. Therefore, the core of our approach is to use
bothmapssimultaneously inan iterativemanner.Noiseparam-
eters are estimated from NI SWs and then are applied to
improve the estimation accuracy of texture parameters from
neighboring TI SWs. The latter parameters, in turn, are used
to improve the estimation accuracy of noise parameters.

To implement this scheme, we carry out the maximum
likelihood (ML) estimation of a parametrical 2-D fractal
Brownian motion (fBm) model, selected for describing
locally the texture of a 2-D noisy image SW. The FI on the
estimated parameter vector (including fBm-model parame-
ters and noise standard deviation) can then be derived. To
obtain the final estimation of noise standard deviation from
the NI map, two alternatives, either fBm- or DCT-based
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estimators (NIþ fBm, NIþ DCT), are proposed. The first
one performs direct parametrical ML estimation of noise
standard deviation from NI SWs, with a texture correlation
matrix defined according to the fBm model and parameters
derived from neighboring TI SWs. The second one applies
DCT transform to NI SWs and uses only a fixed and limited
number of high-frequency DCT coefficients to estimate
noise standard deviation.

Now, under signal-dependent noise hypothesis, the main
difficulty is to take into account the variation of noise standard
deviation with regard to image intensity (due to the signal-de-
pendent noise component),while still resorting to imageNI/TI
maps. For this purpose, we analyze how image NI SWs are
distributed over the intensity range. This distribution allows
the finding of narrow intensity intervals where noise variance
can be accurately estimated and the discarding of noninforma-
tive intensities (those without any NI SW detected). Final
estimates of noise signal-independent/dependent component
variances are obtained by linear fit applied to these accurate
variance estimates localized with regard to intensity. The
whole procedure ensures the absence of outliers among
local estimates of noise variance. Therefore, robust fit proce-
dures that can be unstable are no longer needed.

This paper is organized as follows. Section 2 briefly intro-
duces the fBm model and then recalls NIþ fBm and NIþ
DCT signal-independent noise variance estimators that we
previously proposed. Later in this section, the signal-depen-
dent noise parameter estimation problem is introduced from
an informational point of view, including FI distribution over
the available intensity range for a given image. In Sec. 3,
NIþ fBm and NIþ DCT estimators are extended for sig-
nal-dependent noise and the potential accuracy of such
noise parameter estimates is provided. In Sec. 4, the perfor-
mance of NIþ fBm and NIþ DCT estimators is compara-
tively assessed against two other modern methods in a large
image database and real noise from a CCD sensor. Finally, in
the last section, conclusions are offered.

2 Signal-Dependent Noise Parameters Estimation
from Noise and TI Maps

2.1 FBm Model for Describing Texture Locally
To describe image texture locally, we propose to use the fBm
model BHðt; sÞ. Fractal analysis based on mathematical fBm
processes has been suggested as a useful technique for char-
acterizing real-life images, as they can describe quite com-
plicated textures or shapes of natural scenes with a minimal
parameter set.41

By definition, BHðt; sÞ, H ∈ ½0;1�, is a Gaussian process
[the original coordinates are at the point (0,0): BHð0; 0Þ ¼ 0]
with the correlation function:42

hBHðt; sÞ · BHðt1; s1Þi

¼ 0.5σ2x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2

p
2H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ s21

q
2H

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t1Þ2 þ ðs − s1Þ2

q
2H
�
: (1)

In spatial terms, the Hurst exponent H describes fBm-
texture roughness (H → 0 for rough texture, H → 1 for
smooth),43 and σx describes fBm amplitude.

By yðt; sÞ, t ¼ 1: : : Nc, and s ¼ 1: : : Nr, we denote a sin-
gle-component image with Nc columns and Nr rows (for
multi-component or color images, the approach proposed
here should be applied component-wise). Suppose that the
image yðt; sÞ is affected by signal-dependent noise according
to the following model:

yðt; sÞ ¼ xðt; sÞ þ n½t; s; xðt; sÞ�; (2)

where xðt; sÞ is the original noise-free image, n½t; s; xðt; sÞ� is
an ergodic Gaussian noise with zero mean, signal-dependent
variance σ2n½xðt; sÞ� and a 2-D Dirac delta function for its spa-
tial autocorrelation function. For a general case, for signal-
dependent noise variance σ2nðIÞ, we assume a polynomial
model with degree np: σ2nðI; cÞ ¼ c ⋅ ½1; I; I2; : : : ; Inp �, where
I is true image intensity and c ¼ ðc0; c1; : : : ; cnpÞ is a coef-
ficient vector of size ðnp þ 1Þ × 1.

However, in the section of this paper that describes the
experiment, we concentrate on a reduced-order noise
model for recent CCD sensors. In this case, the noise
n½t; s; xðt; sÞ� is supposed to be the sum of two components:
n½t; s; xðt; sÞ� ¼ nSIðt; sÞ þ nSD½t; s; xðt; sÞ�. The first one,
nSIðt; sÞ, is signal-independent with variance σ2n:SI, and the
second one, nSD½t; s; xðt; sÞ�, is signal-dependent with vari-
ance σ2n:SD ⋅ I (Poisson-like noise). This corresponds to a pol-
ynomial model of the first order (np ¼ 1) and, thus the
coefficient vector simply reduces to c ¼ ðσ2n:SI; σ2n:SDÞ:

σ2nðIÞ ¼ ðσ2n:SI; σ2n:SDÞ ⋅ ½1; I� ¼ σ2n:SI þ σ2n:SD ⋅ I: (3)

2.2 Structure of NIþ fBm and NIþ DCT Signal-
Independent Noise Variance Estimators

At this point, let’s briefly recall the main ideas suggested in
the NIþ fBm and NIþ DCT signal-independent noise vari-
ance estimators (σ2n:SD ¼ 0) proposed by the authors in
Ref. 15. Their generalized structure is recalled in Fig. 1.
This structure used the fBm model and both image NI
and TI maps. In the estimation process, a processed sample
corresponds to a noisy textural fragment or SWof the image.
The sample is described by a statistical parametrical model.
The model parameters vector includes both texture parame-
ters (fBm-model parameters) and signal-independent noise
variance σ2n:SI. After initialization (stage 1), NI/TI maps
and noise standard deviation are simply assumed to be
equal to initial guesses or current refined estimates in
stage 2. At this stage, texture parameters are estimated for
each TI SW first. Then, these estimates act as texture param-
eter estimates in neighboring NI SWs. This stage results in
estimates of the parameter vectors for all SWs for further use
in stage 3.

In stage 3, those SWs that can be efficiently used for esti-
mating either noise or texture parameters are identified. We
propose to perform this task by considering the correspond-
ing FI on involved parameters or, equivalently the Cramér-
Rao Lower Bound (CRLB), to each SW. By setting a proper
threshold on CRLB, it becomes possible to find a subset of
NI/TI SWs that provide noise/texture parameters estimates
with a predefined accuracy. Finally, in stage 4, the noise stan-
dard deviation is estimated for each NI SW using either a
fBm-model-based ML estimator (NIþ fBm) or DCT
(NIþ DCT). Note that by using only NI SWs ensures
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that all individual noise standard deviation estimates in stage
4 achieve a predefined accuracy and that there are no outliers
among them. As a result, a simple nonrobust estimation pro-
cedure (for example, weighted mean) is sufficient in stage 4
to obtain the final estimate σ̂2n:SI.

2.3 FI Distribution over Images
When solving the estimation problem for signal-independent
noise, the total amount of FI on noise standard deviation con-
tained in all noise-informative SWs determines the potential
performance of an estimator (in terms of its variance).15 For
signal-dependent noise, when noise standard deviation is a
function of true image intensity, the distribution of FI
over the image intensity range becomes of major importance.
Specifically, if all noise-informative SWs have the same
intensity mean I0, only the value of σnðI0Þ can be estim-
ated. This allows estimating the pure Poisson-like
(σ2nðIÞ ¼ σ2n:SDI) or multiplicative (σ2nðIÞ ¼ σ2μI2) signal-de-
pendent noise standard deviation by σ̂n:SD ¼ σ̂nðI0Þ∕

ffiffiffiffi
I0

p
and σ̂μ ¼ σ̂nðI0Þ∕I0, respectively (with accuracy that does
not depend on I0). If a mixture of signal-independent
noise and either Poisson-like or multiplicative noise is
assumed, the best accuracy can be achieved when FI is dis-
tributed equally between two intensities, Imin and Imax, with
Imax − Imin being as large as possible. When no a priori
information about σnðIÞ is available, then FI uniformly dis-
tributed over all image intensity ranges is the best option.

Unfortunately, for a particular image, this distribution
cannot be modified. What can be done, in practice, is to
establish the actual distribution for a given image and to
obtain the corresponding accuracy of noise parameter vector
c estimation, taking into account available a priori informa-
tion. This problem will be addressed next, andNIþ fBm and
NIþ DCT estimators will be extended to estimate the
σnðI; cÞ function.

The corresponding FI about the parameter vector
θ ¼ ðσx; H; σnÞ on texture parameters ðσx; HÞ and noise
standard deviation ðσnÞwas introduced in Ref. 15 for a single
SW (NSW ¼ 1) as

Iθ ¼
�

IfBm ITfBm:σn
IfBm:σn Iσnσn

�
;

where

IfBm ¼
�
Iσxσx IσxH
IσxH IHH

�

is information on fBm-model parameters, Iσnσn is informa-
tion on signal-independent noise standard deviation, and
IfBm:σn ¼ ðIσxσn IHσnÞ is mutual information.

Assume that noise-informative SWs have been detected,
and assign mean intensity Īi to the ith NI SW. For the subset
NSW ≥ 1 of these windows with Īi ∈ ½I − ΔI∕2; I þ ΔI∕2�,
we assume a signal-independent noise model with standard
deviation σn ¼ σnðIÞ. Then, joint FI matrix IθðI;ΔIÞ on
extended parameter vector θ ¼ ðσx.1; H1; σx.2; H2; : : : ;
σx:NSW

; HNSW
; σnÞ can be obtained in a similar way:

IθðI;ΔIÞ ¼

0
BB@

IfBm.1 : : : 0 IfBm:σn.1

: : : : : : : : : : : :
0 : : : IfBm:NSW

IfBm:σn:NSW

ITfBm:σn.1
: : : ITfBm:σn:NSW

Iσnσn:NSW

1
CCA;

(4)

where Iσnσn:NSW
¼ PNSW

j¼1 Iσnσn:j. From the matrix IθðI;ΔIÞ,
CRLB on σn can be found to be the corresponding element
of the inverse matrix IθðI;ΔIÞ−1 (marked by “n” in the lower
index below):

σ2σnðI;ΔIÞ ¼ IθðI;ΔIÞ−1n : (5)

Using σ2σnðI;ΔIÞ, we define CRLB per unit intensity
range ½I − 0.5; I þ 0.5� as

Δσ2σnðIÞ ¼ ΔI ⋅ σ2σnðI;ΔIÞ; (6)

and relative CRLB per unit intensity range as

Δσ2σn:relðIÞ ¼ Δσ2σnðIÞ∕σnðIÞ ¼ ΔI ⋅ σ2σn:relðI;ΔIÞ; (7)

where σσn:relðI;ΔIÞ ¼ σσnðI;ΔIÞ∕σnðIÞ.
To get better insight on the meaning of variables defined

above, the possible shape of Δσ2σn:relðIÞ and its relation to the
image content are illustrated in Fig. 2. Figure 2(a) displays
the green component of image 3 from the NED2012 color
images database (Noise Estimation Database), later referred

Fig. 1 Structure of NIþ fBm and NIþ DCT SI noise variance estimators.
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to as the test image. We created the NED2012 database espe-
cially for testing the noise parameter estimator. It is described
in detail in Sec. 4.1, later in this article.

The Δσ2σn:relðIÞ function has been calculated for the test
image, and it is displayed in Fig. 2(b). In this experiment,
we fix ΔI ¼ 1 to calculate Δσ2σn:relðIÞ. A way to calculate
ΔI automatically will be described in Sec. 3.1. Intensities
of the test image cover range approximately from 0 to
1,200. In Fig. 2(b), four image intensity intervals with the
lowest Δσ2σn:relðIÞ can be seen, with image intensities around
10 (1), 200 (2), 400 (3), and 800 (4).

Objects in the test image with intensities falling within
intervals 1–4 are marked in Fig. 2(a) with the corresponding
numbers. Interval 1 corresponds to the nonintensive dark tree
texture, intervals 2 and 3 relate to homogeneous house fronts,
and interval 4 relate to cloudy sky. One can see that
Δσ2σn:relðIÞ indicates image areas that provide accurate
noise standard deviation estimation and their localization
with regard to image intensity.

3 NI� FBm and NI� DCT Estimators for
Signal-Dependent Noise Parameters

3.1 Preliminaries of the Proposed Estimators of
Polynomial SD Noise Variance

While designing the signal-dependent noise parameter esti-
mator, we assume piecewise-constant approximation to the
σ2nðIÞ function:
σ2nðIÞ ¼ σ2n:k; I ∈ Ik ¼ ½Imin :k; Imax :k�; k ¼ 1: : : K; (8)

where Ik1 ∩ Ik2 ¼ ∅, k1 ≠ k2, Imin :k ≥ Imin and
Imax :k ≤ Imax, ½Imin; Imax� is the available image intensity
range.

As utilizing NI SWs along with either fBm-based or
DCT-based noise standard deviation estimators (NIþ fBm
or NIþ DCT) was proved to be efficient in Ref. 15 for
signal-independent noise, we propose here to apply these
two estimators to estimate σ2n:k in each NI SWs subset,
with mean intensity falling within a given interval
½Imin :k; Imax :k�.

Before using Eq. (8), the set of intervals Ik should be
properly selected. This can be done by taking into account
the relationship between Ik and Δσ2σn:relðIÞ. Indeed, for non-
informative image intensities with high Δσ2σn:relðIÞ, the inter-
val ΔIk ¼ Imax :k − Imin :k has to be increased to provide

sufficiently accurate noise standard deviation estimates.
Conversely, for informative image intensities with low
Δσ2σn:relðIÞ (areas 1–4 in Fig. 2), the same accuracy can be
achieved for smaller ΔIk. It is natural to estimate noise
standard deviation with a predefined accuracy σ2σnðI;ΔIÞ ¼
σ2n:rel:max for each considered intensity interval Ik; i.e., to
require

σ2σn:relðĪk;ΔIkÞ ≤ σ2n:rel:max; (9)

where Īk ¼ ðImax :k þ Imin :kÞ∕2 is the center of interval Ik.
Eq. (9) is an extension of the thresholding procedure used
in Ref. 15 to select a given SWas NI in the signal-independent
noise case. Whereas this original constraint requires the sig-
nal-independent noise standard deviation to be estimated with
a predefined accuracy from a single NI SW, Eq. (9) requires
the same standard deviation estimation, but from the subset of
NI SWs with mean intensities within the interval Ik.

According to Eq. (6), for an arbitrary intensity Īk ¼ I,
equality in Eq. (9) holds for

ΔIk ¼ ΔI ¼ Δσ2σn:relðIÞ∕σ2n:rel:max: (10)

Therefore, ΔIðIÞ is just a scaled-down version of
Δσ2σn:relðIÞ. In the example considered in Fig. 2, we set
σn:rel:max ¼ 0.1. For this value, ΔIðIÞ varies from 1 to 10
in informative intensity intervals 1–4 and exceeds 200 in
noninformative intervals [shown by the peaks in
Fig. 2(a)]. It follows that for informative intensities, noise
variance can be accurately estimated from very narrow inten-
sity intervals, enabling fine NLF analysis.

Based on Eq. (10), the set of intervals Ik is obtained by the
following procedure:

1. Find Ī that minimizes Δσ2σn:relðIÞ: Ī ¼
argmin
Imin<Ī<Imax

½Δσ2σn:relðIÞ�;

2. Calculate ΔI by substituting Ī to (10);
3. Save the first interval I1 ¼ ½Ī − ΔI∕2; Ī þ ΔI∕2�, and

set K ¼ 1.
4. Find a new pair ðĪ;ΔIÞ such that

Ī ¼ argmin
Imin<Ī<Imax

½Δσ2σn:relðIÞ� is subject to constraints

½Ī − ΔI∕2; Ī þ ΔI∕2� ∩ Ik ¼ ∅, k ¼ 1: : : K. Again,
ΔI is given by Eq. (10) for I ¼ Ī.

Fig. 2 (a) Green component of image #3 from the NED2012 database; (b) relative CRLB per unit intensity range, Δσ2σn :relðIÞ, versus intensity for
image #3 from the NED2012 database (test image) degraded with signal-dependent noise.
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5. Add a new interval to the list of intervals found at pre-
vious iterations. Increase K by unit.

6. Repeat this process until no new pair ðĪ;ΔIÞ can be
found, and then terminate.

For each interval Ik, σ̂2n:k is estimated using either the
NIþ fBm or theNIþ DCT estimator (under signal-indepen-
dent hypothesis). At the same time, σσn:relðĪk;ΔIkÞ is calcu-
lated for future use. The output of the proposed signal-
dependent noise estimator is the set of noise standard
deviation estimates σ̂2n:k obtained for each interval Ik and
the corresponding set of mean intensities Īk.

Now, the maximum likelihood estimation (MLE) of coef-
ficients vector c is obtained by

ĉ ¼ A−1b; (11)

where A is the Vandermonde matrix with elements Aij ¼P
kĪ

iþj
k ∕σ2

σ2n:k
, bi ¼

P
kσ

2
n:kĪ

i
k∕σ2σ2n:k , and σσ2n·k ¼ 2σ2nðĪkÞ ·

σσn·relðĪk;ΔIkÞ is the potential accuracy of the estimation
of σ2n:k. The correlation matrix of the estimate ĉ has the fol-
lowing form:

σ2
c ¼ hðĉ − c0Þðĉ − c0ÞTi ¼ A−1; (12)

where c0 is the true value of c vector.

3.2 Proposed Estimators of Polynomial SD Noise
Variance

Note that the signal-dependent noise variance estimate
σ2nðI; ĉÞ obtained by Eq. (11) requires availability of the
values of Δσ2σn:relðIÞ and σσ2n:k , that are based on true noise
variance σ2nðI; c0Þ. Therefore, the signal-dependent noise
variance estimation procedure should operate iteratively as
described below. The structure of the proposed estimator
for texture parameters and signal-dependent noise standard
deviation is summarized in Fig. 3. In the following, we pro-
vide a description of this estimator and illustrate its behavior
based on the test image [Fig. 2(a)] for np ¼ 1. True param-
eter vector c0 ¼ ð5.0834; 0.1352Þ is obtained for this image
in the experiment via a calibration procedure (see Sec. 4.1 of
this article for details).

In the first stage, noise is assumed to be signal-
independent and an initial guess σ̂n:SI:IG is calculated as

specified in Ref. 15. It is equal to the minimum of sample
standard deviation estimates over all image nonoverlapping
SWs. For the test image, the value σ̂2n:SI:IG ≈ 170.60 was
obtained. The initial guess for the vector c assumes the initial
value ĉIG ¼ ðσ̂2n:SI:IG; 0Þ.

Texture and noise parameter estimates and NI and TI
maps are updated in stage 2. In this stage, we fix noise
parameters to be equal to either an initial guess ĉi¼1 ¼ ĉIG
or the previously estimated value ĉi ¼ ĉi−1 (here, i defines
the iteration index). The signal-dependent noise variance
for each SW (both NI and TI) is calculated according to
the retained polynomial noise model (a mixture of signal-in-
dependent and Poisson-like signal-dependent noises in this
case) as σ2nðI; ĉiÞ, substituting true image intensity by mean
intensity over current SW. Then, fBm-model parameters for
TI and NI SWs are estimated, and discrimination between
texture/NI SWs can be refined as specified in Ref. 15.

Next, in stage 3, a current value of relative CRLB per unit
image intensity (ΔI ¼ 1) Δσ2σn:relðIÞ and the corresponding
set of intervals Ik are calculated as described above. For illus-
tration purposes, the Δσ2σn:relðIÞ obtained in the first iteration
is shown in Fig. 4(a) as a straight black line.

The set of intervals Ik allows the estimating of σ2n:k values
using either the fBm- or DCT-based estimator and refining
the ĉ estimate according to Eq. (11). The σ̂2n:k estimates and
σ2nðI; ĉiÞ function are both shown in Fig. 4(a) for the first
iteration of the algorithm as black dots and a solid black
line, respectively.

The estimate σ2nðI; ĉiÞ is iteratively refined by repeating
stages 2–4 until convergence. The convergence of the algo-
rithm can be observed from the comparison of Fig. 4(a) with
4(b), where the first and the final (fifth) iteration estimates of
Δσ2σn:relðIÞ, σ̂2n:k, and σ2nðI; ĉiÞ for the test image are shown.
Note that for each iteration, Fig. 4 shows σ2nðI; ĉiÞ estimates
at the beginning of the iteration (signal-independent noise for
the first iteration), not at the end. It can be seen that σ2n:k esti-
mates are concentrated at intensities where Δσ2σn:relðIÞ takes
on minimal values. Noise variance estimate σ2nðI; ĉiÞ for I
from 600 to 1200 does not change significantly with itera-
tions. Conversely, for I from 0 to 300 that corresponds to
areas (1) and (2) in Fig. 2(b), the noise variance estimate
decreases from about 170 [the first iteration, Fig. 4(a)] to
about 5 [the last iteration, Fig. 4(b)], and the number of
σ̂2n:k estimates decreases significantly (a smaller number of
SWs is considered NI by the algorithm).

Fig. 3 Generalized scheme of proposed NIþ fBm and NIþ DCT estimators for image texture and signal-dependent noise parameters.
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Now let us comment on the algorithm behavior for the
textured area of the test image with an intensity close to
60 (dark trees in the lower-right part of the test image).
With iterations, noise variance estimates are decreasing for
this area. Consequently, the signal-to-noise ratio (measured
locally) is constantly increasing. As a result, this area pro-
gressively becomes less and less noise informative [this is
reflected by the increase of Δσ2σn:relðIÞ function clearly
seen in Fig. 4]. Finally, in iteration 5 [Fig. 4(b)], this area
is excluded from the noise variance estimation process (it
becomes related to the TI map).

The results obtained at final iteration confirm that, given a
degraded image, Δσ2σn:relðIÞ indicates that image areas that
can provide accurate noise variance estimation and their
localization with regard to image intensity. It can be clearly
seen that the estimated curve σ2nðI; ĉÞ is very close to noise
variance σ2nðI; c0Þ obtained by the calibration procedure. For
the considered test image, there are enough NI intensities to

provide a high estimation accuracy of signal-dependent noise
variance. For images with not enough NI (homogeneous)
areas for estimating noise parameters, σ2nðI; ĉÞ may become
inaccurate. Based on our experiments, we have found that
this extreme case can always be detected by checking the
accuracy of ĉ at the current iteration or the entries of the
σ2
c matrix [see Eq. (12) for details].

4 Experimental Results Using the NED2012
Database

This section deals with the application of the two designed
estimators, NIþ fBm and NIþ DCT, of signal-dependent
noise parameters to the NED2012 database of images that
have been corrupted by signal-dependent noise. Estimator
performance is analyzed and compared to that of the recently
developed Automatic Scatterplot Reference Points Fitting
with Restrictions (ASRPFR) method (discussed in Ref. 12)
and the ClipPoisGaus_stdEst2D method published in Ref. 9.

Fig. 4 Illustration of the signal-dependent noise estimation process by using the algorithm in Fig. 3 for the test image.

Journal of Electronic Imaging 013019-7 Jan–Mar 2013/Vol. 22(1)

Uss et al.: Image informative maps for component-wise estimating parameters. . .



The primary goal of this study is to determine the
potential accuracy of signal-dependent noise parameter
estimation (variance of signal-independent and -dependent
components) from real images of different types, and to
compare the performance of existing estimators to this
bound.

4.1 Image Database for Testing Signal-Dependent
Noise Estimation Algorithms: NED2012

A key item in testing noise variance estimators is the avail-
ability of images with known noise parameters. Artificial
noise-free images with synthetic noise raise questions about
the applicability of the obtained results to the real images
corrupted by real noise. Another possibility lies in using
real-life images with a low level of noise, with synthetic
noise added for test purposes. In this area, the TID200844

database has been extensively used.45 However, we have
identified four drawbacks of TID2008 that prevent us from
exploiting it in our study:

1. Restricted image size. Indeed, the size of the images in
the TID2008 database is 512 × 384 pixels. This corre-
sponds to ≈0.2 Mpx. However, modern digital cam-
eras typically have more than 10 Mpx sensors.

2. Images from the TID2008 database are in 8-bit repre-
sentation, while 12 or 14 bits is typical currently for
images stored in raw format (for both digital cameras
and remote sensing acquisition systems).

3. TID2008 images are subject to the demosaicing pro-
cedure to convert them from a color filter array (CFA)
to RGB representation. Demosaicing unfortunately
affects the spectral properties of both image texture
(due to smoothing) and inherent noise (because it
becomes spatially correlated). It is highly preferable
to deal with CFA representation to assess data directly
from a camera sensor.

4. TID2008 images contain inherent noise that, strictly
speaking, does not allow to consider them as noise-
free.15 This noise variance cannot be accurately esti-
mated due to issues 1 and 3. Automatic analysis
shows that its variance is about 4,15 but manual analy-
sis shows it can locally reach 4 to 10. Such values are
critical for our situation, as the standard deviation of
the estimation error of additive noise variance pro-
vided by the NIþ DCT estimator (as we will show
next) can be as low as 0.2.

To overcome these drawbacks, we have decided to base
our study on 12-bit raw images from the Nikon D80 DSLR
camera with a 10.2-Mpx CCD sensor. No extra noise was
generated; we only dealt with the parameter estimation for
noise that was originally present in D80 images. Our
main assumption is that the noise parameters remain the
same with time and camera operational conditions.
Absence of noise spatial correlation is also assumed. Our
experiments have shown no violation of these assumptions
at the attained level of accuracy.

To accurately estimate true noise parameters of Nikon
D80 sensor for ISO100, we have used the following semi-
automatic calibration procedure:

1. A series of 17 images of a white sheet of paper was
taken in raw Nikon electronic file format. For these
images, we had a fixed International Standardization
Organization (ISO) value (equal to 100), as well as
other camera settings (using a manual regime), except
for shutter speed. By selecting different shutter speeds,
a full image intensity range (in 12 bits) was covered.
To suppress image texture (due to paper surface),
strongly defocused images were collected. Then paper
texture was smoothed, leaving sensor noise unaffected.

2. This series of images was partitioned into non
overlapping 8 × 8 SWs. A 2-D DCT transform was
then applied to each window. The highest 16 coeffi-
cients (with indices from 5 to 8 for both dimensions)
from each window were stored for further processing.
By relying on these high-frequency coefficients, we
additionally diminished the influence of image texture.
For each such group of 16 coefficients, we calculated
the image mean intensity in the corresponding SW.

3. The available intensity range from 0 to 4098 (12 bits)
was divided into narrow intervals. DCT coefficients
were grouped according to their corresponding mean
intensities. In this manner, for each kth intensity inter-
val, NDCT:k DCT coefficients were collected. The sam-
ple variance of these NDCT:k coefficients, σ̂2n:k, was an
estimate of the signal-dependent noise variance in k‘th
intensity interval.

4. The coefficient vector c was obtained by Eq. (11),
with σ̂σ2n:k ¼ 2σ̂2n:k∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NDCT:k

p
.

Visual analysis of noise variance dependence on image
intensity shows notable deviation from the theoretic linear
shape (first-order polynomial), especially for the blue com-
ponent (Fig. 5). To take this into account, the order of the
approximation polynomial was set to np ¼ 2. The obtained
estimates are given in Table 1 (we call them calibration
lines). The noise parameters obtained via the calibration pro-
cedure will be marked with index “0” below.

It can be seen that the green channel is the least noisy
one, followed by the red and blue channels. Quadratic terms
for all channels are nonzero. These values are statistically
significant (more than 0.704 · 10−5∕0.04924 · 10−5 or
14.3 sigma) and cannot be neglected. They probably appear
due to the internal regulations of the camera.

For testing the two proposed estimators, we selected 25
D80 images taken from the same camera during a two-year
interval and organized them into the NED2012 database. The
database includes images with different content. Some of
them have large homogeneous areas (e.g., sky), while others
are quite textural, and defocused areas are present (Fig. 6).
All images are presented as a CFA array of 2611×
3900 pixels in size. Red, green, and blue channel data
were extracted from the CFA array by subsampling.
Images have different ISO values (from 100 to 320), different
shutter speeds (from 1∕1250 s to 1∕30 s), different apertures
(from f/4 to f/14) and different focal lengths (from 18 mm to
135 mm). From this set of parameters, it is the ISO parameter
that directly affects noise parameters for both signal-inde-
pendent and -dependent components. In order to compensate
for this influence and convert all images to the reference
ISO100, we have simply normalized each image by a factor
of 100/ISO before processing.
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We will first prove that estimation results obtained by the
NIþ DCT method agree with the calibration data shown
above. For this goal, we applied the NIþ DCT method to
all images from the NED2012 database simultaneously by
processing 1,500 SWs of 9 × 9 pixels randomly selected
from each NED2012 image (a total of 1; 500 × 25 ¼
37; 500windows). In this manner, very high estimation accu-
racy of the c0, c1, and c2 coefficients can be reached.
Estimation results for all three channels are shown in
Table 1 (the NIþ DCT line). Figure 7 illustrates these results
for the blue channel.

One can clearly see that there is no statistically significant
difference between estimates of noise parameters obtained
for two different datasets (the NED2012 database and the
set of 17 calibration images) by the calibration procedure
and the NIþ DCT method (they differ by less than 4σ). It
is worth noting that the accuracy provided by the
NIþ DCT method is only slightly worse than the one
obtained by the calibration procedure. In this test, the NIþ
DCT method shows its potential ability to deal with signal-
dependent noise that is more complex than mixtures of addi-
tive and Poisson/multiplicative noises.

In the next experiment, we restricted ourselves to the case
of a mixture of signal-independent and Poisson-like signal-
dependent noises. The overall noise variance is thus signal-
dependent: σ2nðIÞ ¼ σ2n:SI þ I ⋅ σ2n:SD. As was shown above,

the noise in the Nikon D80 images does not strictly follow
this linear model. Therefore, in order to nullify quadratic
term c2 before estimation, we normalized the image intensity
in each SW ISW by

ISW ¼ ĪSW þ ðISW − ĪSWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0 þ c1ĪSW
c0 þ c1ĪSW þ c2Ī2SW

;

s
(13)

where ĪSW is the mean of ISW and c0, c1, and c2 are taken
from Table 1. After such normalization, noise parameters
become as specified in Table 1, with c2 ¼ 0.

4.2 Accuracy Analysis of Signal-Dependent Noise
Parameter Estimation

The considered set of four estimators, NIþ fBm, NIþ DCT,
ASRPFR, and ClipPoisGaus_stdEst2D, were applied to each
of the 25 images of the NED2012 database in a component-
wise manner (red, green, and blue components were proc-
essed independently). A SW of 9 × 9 pixels in size was
selected for both NIþ DCT and NIþ fBm. The choice of
this particular SW size is justified in this subsection. For
each component, the two noise variance components σ̂2n:SI
and σ̂2n:SD were estimated. Overall, 25 estimates were
obtained for each channel. Their empirical probability den-
sity functions (pdfs), pdf (σ̂2n:SI) and pdf (σ̂

2
n:SD), are shown in

Fig. 5 Nikon D80 noise variance dependence on image intensity for red, green, and blue channels.

Table 1 Sensor noise parameters for the Nikon D80 digital SLR camera (statistical error at one sigma level is specified)

Component c0 (σ2n:SI) c1 (σ2n:SD) c2

Red (calibration) 7.6876� 0.0373 0.1460� 7.03 × 10−4 0.696 × 10−5 � 0.0485 × 10−5

Red (NIþ DCT) 8.5707� 0.1145 0.1412� 10.04 × 10−4 1.012 × 10−5 � 0.1300 × 10−5

Green (calibration) 5.0834� 0.0473 0.1352� 7.03 × 10−4 0.704 × 10−5 � 0.0492 × 10−5

Green (NIþ DCT) 6.4340� 0.4337 0.1270� 16.45 × 10−4 0.759 × 10−5 � 0.1030 × 10−5

Blue (calibration) 12.3381� 0.0799 0.1709� 10.46 × 10−4 2.387 × 10−5 � 0.0755 × 10−5

Blue (NIþ DCT) 13.0143� 0.2064 0.1702� 12.48 × 10−4 2.601 × 10−5 � 0.1110 × 10−5
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Figs. 8 and 9, respectively. The main statistical characteris-
tics of these estimates [mean Mð⋅Þ, bias and standard
deviation STDð⋅Þ] are given in Table 2. The bias measure
is calculated as bias ¼ 100%½MðâÞ − a0�∕a0, where a0 is
the true value of a.

Preliminary conclusions can be drawn from these
results. Among these four estimators, ASRPFR and
ClipPoisGaus_stdEst2D provide worse performance than
the NIþ fBm and NIþ DCT with regard to both signal-
independent and -dependent components. The main factor
that degraded the performance of the ASRPFR and

ClipPoisGaus_stdEst2D estimators is the significant number
of outliers. However, they form a pronounced mode in the
vicinity of the true value of signal-independent and -depen-
dent noise component variances anyway. Therefore, we have
decided to characterize the performance of these estimators
by calling on extra robust measures. Specifically, median is
used instead of mean value, and median absolute deviation
(MAD) instead of standard deviation.

Estimates of signal-independent noise component vari-
ance are biased for all four estimators. The absolute value of
the bias is the smallest for the NIþ DCT and NIþ fBm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig. 6 Images of the NED2012 database.

Fig. 7 Comparison of NIþ DCT and calibration noise variance estimates for the blue channel of the NED2012 database.
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methods (i.e., less than 6%). It increases to more than 30%
for the ASRPFR method and to more than 12% for the
ClipPoisGaus_stdEst2D. The estimates of the signal-depen-
dent noise component variance are practically unbiased for
the NIþ DCT method, negatively biased by about 6% for
the NI+fBm method, and exhibit a positive bias less than
25% for the ASRPFR and ClipPoisGaus_stdEst2D methods.

It is worth highlighting that the NIþ DCT method pro-
vides the best estimation accuracy on both signal-indepen-
dent and -dependent components. More precisely, with
regard to the standard deviation of the noise variance esti-
mates (specified in Table 2), it outperforms the NIþ fBm
method by approximately 1.25 to 2.6 times, the ASRPFR
method by 3.6 to 10 times, and by an even greater degree
for the ClipPoisGaus_stdEst2D. We explain the reduced
performance of the NIþ fBm estimator with regard to the
NIþ DCT one by the sensitivity of the former to errors

on Hurst exponent estimation. A second possible reason
could be deviations of real image texture from the assumed
fBm-model.

It is important to mention here that both ASRPFR and
ClipPoisGaus_stdEst2D have been applied to NED2012
images without normalization [Eq. (13)] for quadratic
term c2 compensation. The reason for this is that such nor-
malization operates at the SW level and depends on image
partitioning during processing. We had no opportunity to
modify the original implementation of ASRPFR and
ClipPoisGaus_stdEst2D to take this into account. There-
fore, in an additional experiment, we quantified the noncom-
pensated c2 term influence on NIþ DCT (Table 2).
Overall, it led to negative bias of signal-independent compo-
nent variance and positive bias of signal-dependent
component variance. For red and green channels, this
additional bias was negligible and does not exceed 5% in

Fig. 8 Experimental pdfs of signal-independent noise component variance σ̂2n:SI estimates by (a) NIþ fBm, (b) NIþ DCT, (c) ASRPFR, and
(d) ClipPoisGaus_stdEst2D. Calibration variances σ2n:SI.0 are marked by vertical dot-dashed lines.
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magnitude. For the blue channel, this bias was more
significant, with a magnitude of about 15%. We thus believe
this is evidence that the noncompensated c2 term can-
not explain the decreased performance of ASRPFR and
ClipPoisGaus_stdEst2D.

In Fig. 10, we detail the signal-independent and -depen-
dent noise variance estimates obtained with the best NIþ
DCT estimator on each component (red, green, and blue)
of all images from the NED2012 database. For most of
the images, very accurate estimates were obtained. For
these images, the potential estimation accuracy on the sig-
nal-independent noise component variance is about 0.2–1,
and it is about 0.8 − 2.2 · 10−3 on the signal-independent
noise component variance. But for some of the images,
namely 13, 15, 16, 22, and 23, an increased estimation
error was observed. This is reflected by a corresponding

increase in the potential estimation accuracy for signal-inde-
pendent and -dependent noise components to about 2 and
8 × 10−3, respectively.

Let us now assess the efficiency of the analyzed estima-
tors with regard to the diagonal terms ðσ2σn:SI ; σ2σn:SDÞ of the
correlation matrix σ2

c of coefficient vector c defined above
by Eq. (12). For this purpose, two normalized errors, one
for σ̂2n:SI and another one for σ̂2n:SD, respectively, are to be
considered:

σ̂2n:SI:norm ¼ ðσ̂2n:SI − σ2n:SI.0Þ∕σσn:SI and

σ̂2n:SD:norm ¼ ðσ̂2n:SD − σ2n:SD.0Þ∕σσn:SD :

Note that for an efficient estimator, both σ̂2n:SI:norm
and σ̂2n:SD:norm should be distributed close to the normal dis-
tribution Nð0; 1Þ. The statistical efficiency of the analyzed

Fig. 9 Experimental pdfs of signal-dependent noise component variance σ̂2n:SD estimates by (a) NIþ fBm, (b) NIþ DCT, (c) ASRPFR, and
(d) ClipPoisGaus_stdEst2D. Calibration variances σ2n:SD.0 are marked by vertical dot-dashed lines.
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Table 2 Mean value Mð·Þ, bias and standard deviation STDð·Þ of noise variance estimates on the NED2012 database.

(a) Signal-independent component

Estimator Component σ2n:SI.0 M�σ̂2n:SI� Bias, % STD�σ̂2n:SI�

NIþ fBm (N ¼ 9 Red 7.94 7.60 −4.32 2.69

Green 5.06 5.06 −0.04 8.99

Blue 11.36 11.70 2.99 5.42

NIþ DCT (N ¼ 9) Red 7.94 8.08 1.80 1.33

Green 5.06 5.16 1.88 3.46

Blue 11.36 12.05 6.14 3.02

NIþ DCT (without quadratic
term correction)

Red 7.94 7.84 −1.22 1.33

Green 5.06 4.97 −1.60 3.91

Blue 11.36 10.99 −3.17 2.24

ASRPFR Red 7.94 10.51 (median) 32.37 7.53 (MAD)

Green 5.06 31.11 (median) 514.77 31.11 (MAD)

Blue 11.36 25.52 (median) 124.72 14.09 (MAD)

ClipPoisGaus_stdEst2D Red 7.94 10.60 (median) 37.83 13.09 (MAD)

Green 5.06 11.51 (median) 126.35 59.10 (MAD)

Blue 11.36 13.83 (median) 12.13 10.62 (MAD)

(b) Signal-dependent component

Estimator Component σ2n:SD.0 M�σ̂2n:SD� Bias, % STD�σ̂2n:SD�

NIþ fBm (N ¼ 9) Red 0.142 0.133 −6.855 0.016

Green 0.134 0.124 −7.869 0.017

Blue 0.174 0.162 −6.937 0.015

NIþ DCT (N ¼ 9) Red 0.142 0.143 0.834 0.008

Green 0.134 0.134 −1.748 0.014

Blue 0.174 0.173 −1.164 0.010

NIþ DCT (without quadratic
term correction)

Red 0.142 0.149 4.550 0.010

Green 0.134 0.140 4.421 0.015

Blue 0.174 0.199 12.360 0.013

ASRPFR Red 0.142 0.153 (median) 7.429 0.031 (MAD)

Green 0.134 0.138 (median) 2.831 0.079 (MAD)

Blue 0.174 0.216 (median) 24.135 0.047 (MAD)

ClipPoisGaus_stdEst2D Red 0.142 0.148 (median) 1.100 0.052 (MAD)

Green 0.134 0.138 (median) 2.135 0.170 (MAD)

Blue 0.174 0.195 (median) 14.210 0.062 (MAD)

Bold values indicates values with the lowest bias magnitude and STD.
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estimators with regard to these bounds can be estim-
ated as

ê ¼ 100% ⋅ Ne∕
XNe

i¼1

σ̂2norm:XX:i; (14)

where XX is the noise component label (either SI or SD), and
the sum for each estimator is calculated in Eq. (14) over all
Ne ¼ 75 available estimates.

Figure 11 displays σ̂2n:SI:norm and σ̂2n:SD:norm pdfs, respec-
tively, for the best NIþ DCT method (with N ¼ 9). The
theoretical pdf Nð0; 1Þ is added for comparison purposes.
Efficiencies ê for both noise components are shown in
Table 3 for four different window sizes: N ¼ 7, 9, 11,
and 13.

As is shown, the NIþ DCT estimator exhibits rather high
efficiency for different SW sizes, with a value of about 10 for
both noise components. Note that for the NIþ fBm estima-
tor, the corresponding efficiency (not included in Table 3) is
about 2%, and it is less than 0.1% for both the ASRPFR and
ClipPoisGaus_stdEst2D estimators. More detailed analysis
shows that the performance of the NIþ DCT estimator is
highest for N ¼ 9 and 11. It is slightly degrading for
N ¼ 13 and the degradation is much more significant for
N ¼ 7. This can be explained by the influence of two factors
compensating each other. On one side, the accuracy of tex-
ture parameter estimation reduces for smaller sized SWs.
This factor is responsible for the decline in performance
for N ¼ 7. On the other hand, the image texture becomes
more heterogeneous for larger windows, making the fBm
model less adequate. This factor is responsible for the slight

Fig. 10 (a) Signal-independent and (b) signal-dependent noise component variance according to image index iNED estimated by the NIþ DCT on
red, green, and blue components of each image from the NED2012 database. The true noise parameters are shown as dashed horizontal lines.

Fig. 11 Empirical pdfs of the normalized estimates of signal-independent and signal-dependent noise components variances by the NIþ DCT
estimator N ¼ 9. The theoretical pdf Nð0; 1Þ is shown as a dashed black curve.
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decrease in performance for N ¼ 13. Taking into account
that the processing time is increasing fast with the SW
size, we suggest N ¼ 9 as the best setting.

It is important to note that even for the NIþ DCT esti-
mator, there exists an essential gap between the current
level of accuracy and potential accuracy σ2

c. This gap can
be attributed equally to inherent shortcomings of the
NIþ DCT estimator and to the bound σ2

c itself. For example,
the latter does not properly take into account errors associ-
ated with Hurst exponent interpolation from TI map to NI
map. Further research needs to be undertaken to reduce
this gap and to better assess the potential of blind noise
parameter estimation.

5 Conclusions
The problem of parameter estimation of signal-dependent
noise has been considered in this paper. It has been
shown that distribution of FI with regard to noise standard
deviation over the available image intensity range is mainly
responsible for the accuracy of signal-dependent noise para-
meter estimation. This is in contrast to signal-independent
noise, for which estimation accuracy is defined by overall
FI. This feature has been utilized to extend the NIþ fBm
and NIþ DCT estimators previously proposed by the
authors to the case of signal-dependent noise.

The performance of the NIþ fBm and NIþ DCT estima-
tors has been assessed using the newly developed NED2012
database, with real noise originating from the CCD sensor.
True values of noise parameters in images from the
NED2012 database have been found via the calibration
procedure.

For images from the NED2012 database, the proposed
NIþ DCT and NIþ fBm estimators are shown to notably
outperform the recently published ASRPFR and
ClipPoisGaus_stdEst2D estimators. Between these two

estimators, NIþ DCT is considerably more effective than
NIþ fBm in terms of bias and variance of noise parameter
estimates.

Overall estimation accuracy of signal-dependent noise
parameters for images of the NED2012 database is high: esti-
mates are slightly biased most of the time, with a bias value
of less than 2% and a standard deviation of about 10% to
25% with regard to true noise parameter value. However,
for some images with complex content, component-wise
processing fails to provide sufficiently accurate results.

The distinctive feature of our approach is its ability to cal-
culate the potential estimation accuracy of signal-dependent
noise parameters for a given noisy image. We have found
that there exists an essential gap between the obtained accu-
racy with the best NIþ DCT estimator and the potential
estimation accuracy thus provided (NIþ DCT statistical effi-
ciency is about 10%). Such a gap indicates the necessity of
further research in this area to design more efficient estima-
tors and to obtain a more accurate lower bound on the per-
formance of such estimators.

In general, the proposed estimation algorithms (preferably
the NIþ DCT estimator) can be used for blind evaluation of
an arbitrary polynomial dependency of the noise standard
deviation on image intensity. Such experiments for sec-
ond-order polynomials have been successfully carried out.
In all cases, the potential estimation accuracy of polynomial
coefficients can be obtained.
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Table 3 Statistical characteristics of normalized estimates for the NED2012 database (tree channels).

Estimator Channel Bias, % STD�σ̂2n:SI� ê Bias, % STD�σ̂2n:SD� ê

NI� DCT Signal-independent component Signal-dependent component

N ¼ 7 Red 1.8226 2.1190 4.830 −0.2957 0.01165 9.616

Green 12.7193 10.1187 −3.0567 0.01519

Blue 6.6091 7.1383 −1.1580 0.00924

N ¼ 9 Red 1.8001 1.3248 12.776 0.8340 0.00819 10.684

Green 1.8789 3.4571 −1.7484 0.01390

Blue 6.1437 3.0243 −1.1636 0.00996

N ¼ 11 Red 2.9757 1.2321 10.059 0.30335 0.00922 12.102

Green −0.3485 2.7681 −0.8891 0.00520

Blue 4.1750 3.8377 −0.7179 0.00959

N ¼ 13 Red 3.5368 1.3822 8.6679 0.7286 0.00968 8.2842

Green 4.8016 2.6671 −1.1074 0.01014

Blue 5.2800 1.8090 −0.8701 0.00964

Bold values indicates values with the lowest bias magnitude and STD.
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