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Abstract. The processing pipeline of a digital camera converts the
RAW image acquired by the sensor to a representation of the original
scene that should be as faithful as possible. There are mainly two
modules responsible for the color-rendering accuracy of a digital cam-
era: the former is the illuminant estimation and correction module, and
the latter is the color matrix transformation aimed to adapt the color
response of the sensor to a standard color space. These two modules
together form what may be called the color correction pipeline. We
design and test new color correction pipelines that exploit different
illuminant estimation and correction algorithms that are tuned and
automatically selected on the basis of the image content. Since the
illuminant estimation is an ill-posed problem, illuminant correction
is not error-free. An adaptive color matrix transformation module is
optimized, taking into account the behavior of the first module in
order to alleviate the amplification of color errors. The proposed pipe-
lines are tested on a publicly available dataset of RAW images.
Experimental results show that exploiting the cross-talks between
the modules of the pipeline can lead to a higher color-rendition accu-
racy. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publica-
tion, including its DOI. [DOI: 10.1117/1.JEI.22.2.023014]

1 Introduction
The color rendering accuracy of a digital imaging acquis-
ition device is a key factor to the overall perceived image
quality.1–3 There are mainly two modules responsible for
the color rendering accuracy in a digital camera: the former
is the illuminant estimation and correction module, the lat-
ter is the color matrix transformation. These two modules

together form what may be called the color correction
pipeline.

The first stage of the color correction pipeline1,3 aims to
render the acquired image as closely as possible to what a
human observer would have perceived if placed in the origi-
nal scene, emulating the color constancy feature of the
human visual system (HVS), i.e., the ability of perceiving
relatively constant colors when objects are lit by different
illuminants.4 The illuminant estimation is an ill-posed prob-
lem,5 and it is one of the most delicate modules of the entire
image processing pipeline. Numerous methods exist in the
literature, and excellent reviews of them can be found in
the works of Hordley,4 Bianco et al.,6 and Gijsenij et al.7

A recent research area, which has shown promising results,
aims to improve illuminant estimation by using visual infor-
mation automatically extracted from the images. The
existing algorithms exploit both low-level,8,9 intermediate-
level,10 and high-level11,12 visual information.

The second stage of the color correction pipeline trans-
forms the image data into a standard color space. This trans-
formation, usually called color matrixing, is needed because
the spectral sensitivity functions of the sensor color channels
rarely match those of the desired output color space. This
transformation is usually performed by using a linear trans-
formation matrix, and it is optimized assuming that the illu-
minant in the scene has been successfully estimated and
compensated for Refs. 13 and 14.

Both the illuminant estimation process and the color cor-
rection matrix concur in the formation of the overall per-
ceived image quality. These two processes have always
been studied and optimized separately, thus ignoring the
interactions between them with the only exception (to the
best of our knowledge) of the authors that have investi-
gated their interactions and how to optimize them for the
overall color accuracy on datasets synthetically generated.6
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Nevertheless many factors on real systems can affect the
color fidelity, e.g., noise, limited dynamic range, and signal
degradation due to digital signal processing. This work aims
to design and test new and more robust color correction pipe-
lines. The first module exploits different illuminant estima-
tion and correction algorithms that are automatically selected
on the basis of the image content. The second module, taking
into account the behavior of the first module, makes it
possible to alleviate error propagation and improve color ren-
dition accuracy. The proposed pipelines are tested and com-
pared with state of the art solutions on a publicly available
dataset of RAW images.15 Experimental results show that
illuminant estimation algorithms exploiting visual informa-
tion extracted from the images, and taking into account the
cross-talks between the modules of the pipeline can signifi-
cantly improve color rendition accuracy.

2 Image Formation
An image acquired by a digital camera can be represented as
a function ρ mainly dependent on three physical factors: the
illuminant spectral power distribution IðλÞ, the surface spec-
tral reflectance SðλÞ, and the sensor spectral sensitivities
CðλÞ. Using this notation, the sensor responses at the
pixel with coordinates ðx; yÞ can be thus described as

ρðx; yÞ ¼
Z
ω
IðλÞSðx; y; λÞCðλÞdλ; (1)

where ω is the wavelength range of the visible light spec-
trum, ρ and CðλÞ are three-component vectors. Since the
three sensor spectral sensitivities are usually more sensitive,
respectively to the low, medium, and high wavelengths, the
three-component vector of sensor responses ρ ¼ ðρ1; ρ2; ρ3Þ
is also referred to as the sensor or camera raw RGB ¼
ðR;G; BÞ triplet. In the following, we adopt the convention
that RGB triplets are represented by column vectors.

In order to render the acquired image as close as possible
to what a human observer would perceive if placed in the
original scene, the first stage of the color correction pipeline
aims to emulate the color constancy feature of the HVS, i.e.,
the ability to perceive relatively constant colors when objects
are lit by different illuminants. The dedicated module is usu-
ally referred to as automatic white balance (AWB), which
should be able to determine from the image content the
color temperature of the ambient light and compensate for
its effects. Numerous methods exist in the literature, and
Hordley,4 Bianco et al.,6 and Gijsenij et al.7 give an excellent
review of them. Once the color temperature of the ambient
light has been estimated, the compensation for its effects is
generally based on the Von Kries hypothesis,16 which states
that color constancy is an independent regulation of the three
cone signals through three different gain coefficients. This
correction can be easily implemented on digital devices as
a diagonal matrix multiplication.

The second stage of the color correction pipeline trans-
forms the image data into a standard RGB (e.g., sRGB,
ITU-R BT.709) color space. This transformation, usually
called color matrixing, is needed because the spectral sensi-
tivity functions of the sensor color channels rarely match
those of the desired output color space. Typically this trans-
formation is a 3 × 3 matrix with nine variables to be

optimally determined, and there are both algebraic13 and
optimization-based methods14,16 to find it.

The typical color correction pipeline can be thus
described as follows:
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where RGBin are the camera raw RGB values, α is an expo-
sure compensation common gain, the diagonal matrix
diagðrawb; gawb; bawbÞ is the channel-independent gain com-
pensation of the illuminant, the full 3 × 3 matrix aði;jÞ,
ði; jÞ ¼ f1; 2; 3g2 is the color space conversion transform
from the device-dependent RGB to the sRGB color space,
γ is the gamma correction defined for the sRGB color
space, and RGBout are the output sRGB values. The expo-
nent γ is intended here, with abuse of notation, to be applied
to every element of the matrix.

The color correction pipeline is usually composed of a
fixed white balance algorithm, coupled with a color matrix
transform optimized for a single illuminant.

3 Proposed Approach
In this work, since it has previously been shown5 that within
a set of AWB algorithms, the best and the worst ones do not
exist, but they change on the basis of the image character-
istic, we consider a set of single AWB algorithms,17 and
two classification-based modules,10,8 able to identify the
best AWB algorithm to use for each image exploiting auto-
matically extracted information about the image class or
image content in terms of low-level features.

For what concerns the matrix transform module, we con-
sider together with a single matrix optimized for a single illu-
minant a module based on multiple matrices optimized for
different illuminants, and we consider matrices optimized
taking into account the AWB algorithm behavior.6

3.1 Automatic White Balance Modules
The first AWB module considered is the best single (BS)
algorithm extracted from the ones proposed by Van de
Weijer et al.17 They unified a variety of color constancy algo-
rithms in a unique framework. The different algorithms esti-
mate the color I of the illuminant by implementing
instantiations of the following equation:

Iðn; p; σÞ ¼ 1

k

�ZZ
∇nρσðx; yÞjpdxdy

�
1∕p

; (3)

where n is the order of the derivative, p is the Minkowski
norm, ρσðx; yÞ ¼ ρσðx; yÞ ⊗ Gσðx; yÞ is the convolution of
the image with a Gaussian filter Gσðx; yÞ with scale param-
eter σ, and k is a constant to be chosen so that the illuminant
color I has unit length. Varying the three variables ðn; p; σÞ,
it is possible to generate six algorithm instantiations that cor-
respond with well-known and widely used color constancy
algorithms. The six different instantiations used in this work
are reported in Table 1, together with their underlying
assumptions.
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The different AWB instances have been optimized on the
dataset proposed by Ciurea and Funt,18 and the best perform-
ing one on an independent training set is selected as the BS
algorithm.10 The optimal parameters found are reported in
Table 1.

The second AWB module considered is the class based
(CB) algorithm extracted from Ref. 10. It adopts a classifi-
cation step to assign each image to indoor, outdoor, or
ambiguous classes. The classifier, which is described
below, is trained on general purpose, low-level features auto-
matically extracted from the images: color histogram, edge
direction histogram, statistics on the wavelet coefficients,
and color moments (see Ref. 10 for a more detailed descrip-
tion of them). A different AWB algorithm is associated to
each of the three possible classes: on the basis of the clas-
sification result, only the corresponding AWB algorithm
selected is applied. The strategy for the selection and the tun-
ing of the most appropriate algorithm (or combination of
algorithms) for each class is fully described.10 The block dia-
gram of the CB algorithm is reported in Fig. 1.

The third module considered is the feature based (FB)
algorithm extracted from Ref. 8. It is based on five indepen-
dent AWB algorithms and a classification step that automati-
cally selects which AWB algorithm to use for each image. It
is also possible to use the output of the classifier as weights
to combine the estimations of the different algorithms con-
sidered.5,19 The classifier is trained on low-level features
automatically extracted from the images. The feature set
includes the general purpose features used for the CB algo-
rithm and some features specifically designed. These fea-
tures are the number of different colors, the percentage of
color components that are clipped to the highest and lowest
value that can be represented in the image color space, the
magnitudes of the edges, and a cast index representing the

extent of the presence of a color cast in the image (inspired
by the work done in Ref. 20). See Ref. 8 for a detailed
description of the features. The block diagram of the FB
algorithm is reported in Fig. 2.

The CB and FB AWB modules share the same classifica-
tion strategy. They use tree classifiers constructed according
to the CART methodology.21 Briefly, tree classifiers are clas-
sifiers produced by recursively partitioning the predictors
space, each split being formed by conditions related to
the predictors values. In tree terminology, subsets are called
nodes: the predictors space is the root node, terminal subsets
are terminal nodes, and so on. Once a tree has been con-
structed, a class is assigned to each of the terminal nodes,
and when a new case is processed by the tree, its predicted
class is the class associated with the terminal node into which
the case finally moves on the basis of its predictors values.
The construction process is based on training sets of cases of
known class. Tree classifiers compare well with other con-
solidated classifiers. Many simulation studies have shown
their accuracy to be very good, often close to the achievable
optimum.21 Moreover, they provide a clear understanding of
the conditions that drive the classification process. Finally,
they imply no distributional assumptions for the predictors
and can handle both quantitative and qualitative predictors
in a natural way. Since in high dimensional and complex
problems, as is the case here, it is practically impossible
to obtain in one step good results in terms of accuracy, no
matter how powerful the chosen class of classifiers is, we
decided to perform the classification by also using what is
called a “perturbing and combining” method.22,23 Methods
of this kind, which generate in various ways multiple ver-
sions of a base classifier and use these to derive an aggregate
classifier, have proved successful in improving accuracy. We

Table 1 Color constancy algorithms that can be generated as instantiations of Eq. (3), together with their underlying hypothesis.

Name (n, p, σ) Optimized (n, p, σ) Assumption

Gray World (GW) (0, 1, 0) (0, 1, 0) Average reflectance in the scene is achromatic

White Point (WP) (0, ∞, 0) (0, ∞, 0) Maximum reflectance in the scene is achromatic

Shades of Gray (SG) (0, p, 0) (0, 1.06, 0) p’th Minkowski norm of the scene is achromatic

General Gray World (GGW) (0, p, σ) (0, 1.08, 0.83) p’th Minkowski norm of the scene after local
smoothing is achromatic

Gray Edge (GE1) (1, p, σ) (1, 1.10, 1.08) p’th Minkowski norm of the first order derivative
in the scene is achromatic

Second Order
Gray Edge (GE2)

(2, p, σ) (2, 1.55, 1.83) p’th Minkowski norm of the second order derivative
in the scene is achromatic

Fig. 1 Block diagram of the class based (CB) algorithm. Fig. 2 Block diagram of the feature based (FB) algorithm.
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used bagging (bootstrap aggregating), since it is particularly
effective when the classifiers are unstable, as trees are; that is,
when small perturbations in the training sets, or in the con-
struction process of the classifiers, may result in significant
changes in the resulting prediction. With bagging the multi-
ple versions of the base classifier are formed by making boot-
strap replicates of the training set and using them as new
training sets. The aggregation is made by majority vote.
In any particular bootstrap replicate, each element of the
training set may appear repeated, or not at all, since the rep-
licates are obtained by resampling with replacement. To pro-
vide a measure of confidence in the classification results and,
still, greater accuracy, we applied an ambiguity rejection
rule24 to the bagged classifier: the classification obtained
by means of the majority vote is rejected if the percentage
of trees that contribute to it is lower than a given threshold.
In this way only those results to which the classifier assigns a
given confidence, as set by the threshold, are accepted.

3.2 Color Matrix Transform Modules
The color matrix transform modules considered are extracted
from the strategies proposed by the authors in Ref. 6. In the
following a more compact version of Eq. (2) is used:

RGBout ¼ ðαAIW · RGBinÞγ; (4)

where α, IW and A, respectively represent the exposure com-
pensation gain, the diagonal matrix for the illuminant com-
pensation and the color matrix transformation.

The first color matrix transform module considered is
named Single ILLuminant (SILL) since it is based on a sin-
gle matrix transform optimized for a single illuminant. Given
a set of n different patches whose sRGB values r are known,
and the corresponding camera raw values c measured by the
sensor when the patches are lit by the chosen illuminant,
what is usually done is to find the matrix M that satisfies

M ¼ arg

�
min

A∈R3×3

Xn
k¼1

Eðrk; ðαAIWckÞγÞ
�
; (5)

where Eð·Þ is the chosen error metric, and the subscript k
indicates the triplet in the k’th column of the matrix, i.e.,
it indicates the tri-chromatic values of the k’th patch. In
this work, the error metric E adopted is the average ΔE94

colorimetric error between the reference and calculated
sRGB values mapped in the CIEL*a*b* color space. The
values of α and IW have been previously computed in
order to perfectly expose the scene and compensate for
the illuminant. Given the importance of neutral tones in
the color reproduction, the 9 deg of freedom of the color
matrix transformation are usually reduced to six by a
white point preserving constraint, i.e., a neutral color in
the device-dependent color space should be mapped to a neu-
tral color in the device independent color space. This can be
easily obtained by constraining each row to sum to one.

The second color matrix transform module considered is
named multiple illuminant (MILL). It differs from the first
module since it is based on multiple matrix transforms,
with each one optimized for a different illuminant by using
Eq. (5). Therefore for each image a different matrix transform
is used. First of all the AWB algorithm is applied to estimate
the illuminant compensation gains, then the two training

illuminants ILLi and ILLj with the most similar gains are
identified, and the matrix transform is calculated as follows:

M ¼ αMILLi
þ ð1 − αÞMILLj

; (6)

where

α ¼ Dðgains; gainsjÞ
Dðgains; gainsiÞ þDðgains; gainsjÞ

; (7)

and D is the angular error between the gains considered,
i.e.,

D ¼ arccos

�
gainsT1 · gains2

kgains1k · kgains2k
�
: (8)

The reference illuminants could be a set of predefined
standard illuminants (as done in Ref. 6), or it could be
found by clustering the ground truth illuminants of the
images in the training set. Then, for each centroid of the clus-
ters found, the best color correction matrix is computed. The
latter approach is here adopted as described in Sec. 5.

The third color matrix transform module considered is
named SILL with white balance error buffer (SILLWEB).
It is based on a single matrix transform optimized for a single
illuminant, taking into account the behavior of the AWB
module used. Suppose the best gain coefficients g0 ¼
½r0; g0; b0� have already been determined and reshaped in
the diagonal transformG0 to compensate the considered illu-
minant; we then generate a set g ¼ fg1; : : : ; gsg of s gain
coefficients with different distances from g0, measured using
the ΔE94 error metric. These can be used to simulate errors
that may occur in the AWB process and are paired with a
weights distribution u ¼ fu0; : : : ; usg that reflects the fre-
quency of the considered errors. The optimization problem
can be thus formulated as

M ¼ arg

�
min

A∈R3×3

Xs

j¼0

uj

�Xn
k¼1

Eðrk; ðαjAGjckÞγÞ
��

subject to
X3
j¼1

Aði;jÞ ¼ 1; ∀ i ∈ f1; 2; 3g;
(9)

whereGj, j ¼ f0; : : : ; sg are the diagonal matrices obtained,
respectively, by reshaping the gain coefficients fg0; : : : ; gsg.

The fourth color matrix transform module considered is
named MILL with white balance error buffer (MILLWEB).
It differs from the third module since it is based on multiple
matrix transforms, with each one optimized for a different
taking illuminant using Eq. (9). For each image a different
matrix transform is used. First the AWB algorithm is applied
to estimate the illuminant compensation gains, then the two
training illuminants ILLi and ILLj with the most similar
gains are identified, and the matrix transform is calculated
as in Eqs. (6) and (7).

All the matrices for the different color matrix transform
modules are found by optimization using the pattern search
method (PSM). PSMs are a class of direct search methods
for nonlinear optimization.25 PSMs are simple to implement
and do not require any explicit estimate of derivatives.
Furthermore, global convergence can be established under
certain regularity assumptions of the function to minimize.26
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The general form of a PSM is reported in Table 2, where f
is the function to be minimized, k is the iteration number, xk
is the current best solution, Dk is the set of search directions,
and Δk is a step-length parameter.

4 Experimental Setup
The aim of this section is to investigate how the proposed
methods can be combined in order to design a new color cor-
rection pipeline. In particular, we investigate the color accu-
racy improvement that the illuminant estimation algorithms
of Sec. 3 and the color space conversion strategies of Sec. 4
can give when they are used individually and combined
properly.

4.1 Image Dataset and Evaluation Procedure
To test the performance of the investigated processing pipe-
lines, a standard dataset of RAW camera images having a
known color target is used.15 This dataset is captured
using a high-quality digital SLR camera in RAW format
and is therefore free of any color correction. This dataset was
originally available in sRGB-format, but Shi and Funt27

reprocessed the raw data to obtain linear images with a
higher dynamic range (12 bits as opposed to standard 8 bits).
The dataset consists of a total of 568 images. The Macbeth
ColorChecker (MCC) chart is included in every scene
acquired, and this allows us to estimate accurately the actual
illuminant of each acquired image.27 Some examples from
the image dataset are shown in Fig. 3. The spatial coordinates

of the MCC in each image of the dataset have been automati-
cally detected28 and manually refined.

The flowchart of the evaluation procedure adopted is
given in Fig. 4, where it can be seen that the only step in
which the MCC chart is cropped is the illuminant estimation
one.

The investigated illuminant estimation algorithms described
in Sec. 3 have been individually applied to the images of the
dataset, excluding the MCC chart regions that have been pre-
viously cropped. Given these estimations, the illuminant cor-
rections are then performed on the whole images (therefore
also including the MCC chart).

The color matrix transformations found according to the
computational strategies described in Sec. 4 are then applied
to the whole, white balanced images. For each processed
image, the MCC chart is then extracted, and the average
RGB values of the central area of each patch are calculated.
The color rendition accuracy of the pipeline is measured in
terms of average ΔE94 error between the CIEL*a*b* color
coordinates of the color corrected MCC patches, and their
theoretical CIEL*a*b* values that are computed using stan-
dard equations from their theoretical RGB values.

5 Pipeline Training and Testing
In this section the color correction pipelines composed of the
combination of the modules for the illuminant estimation

Fig. 3 Typical examples of the images belonging to the RAW dataset
used.

Fig. 4 Pipeline evaluation: the Macbeth ColorChecker (MCC) is local-
ized and masked; the illuminant is estimated on the image with the
masked MCC, and the unmasked image is illuminant-corrected on
the basis of this estimate; the color correction matrix is then applied
to this image, the RGB coordinates of the MCC are extracted and
compared with the MCC theoretical ones.

Table 2 Pseudo-code of the general form of a pattern search method
(PSM).

WHILE Δk > thresh and k < maximum iteration number

FOR each dk ∈ Dk

xþ ¼ xk þ Δkdk

IF

∃dk ∈ Dk∶f ðxþÞ < f ðxk Þ

THEN

xkþ1 ¼ xþ

Δkþ1 ¼ αkΔk with αk > 1

ELSE

xkþ1 ¼ xk

Δkþ1 ¼ βkΔk with βk < 1

ENDIF

ENDFOR

k ¼ k þ 1

ENDWHILE
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algorithms of Sec. 3 and the color matrix transform modules
of Sec. 4 are tested. Globally, 20 different pipelines have
been tested; they are generated as an exhaustive combination
of the modules proposed. The acronyms of the proposed
strategies are generated using the scheme reported in Fig. 5.

The first part indicates the typology of AWB used
(BS ¼ Best Single: the BS AWB algorithm among the gen-
eral purpose ones considered in Ref. 10 is used; CB ¼
Class-Based: the algorithm described in Ref. 10, based on

an indoor-outdoor classification is used; FB ¼ Feature-
Based: the algorithm described in Ref. 8 is used, which is
based on five independent AWB algorithms and a classifica-
tion step that automatically selects which AWB algorithm to
use for each image). The second part indicates the number
and type of the color correction matrix used (SILL ¼
single illuminant: single matrix optimized for a fixed single
illuminant, MILL ¼ multiple illuminant: multiple matrices
each optimized for a different single illuminant). The third
part indicates if the strategy implements color correction
matrices able to compensate for AWB errors (WEB ¼
White balance Error Buffer) or not (0). The last part indicates
if a real classifier has been used in the AWB module (0) or
manual classification (ideal). The symbol 0 is reported in the
scheme but is intended as the null character and thus omitted
in the acronyms generated.

Since the considered modules need a training phase, 30%
of the images in the dataset were randomly selected and used

Fig. 5 Composition rules for the generation of the acronyms of the
strategies compared.

Table 3 Color correction pipeline accuracy comparison.

Pipeline Average ΔE94 Improvement Average maximum ΔE94 Improvement

BS-SILL 7.5309 -.–% 20.5952 -.–%

CB-SILLideal 7.3875 1.90% 20.4129 0.89%

CB-SILL 7.5541 −0.31% 20.5338 0.30%

FB-SILLideal 6.5324 13.26% 17.9495 12.85%

FB-SILL 7.3684 2.16% 18.9716 7.88%

BS-MILL 6.9636 7.53% 19.9529 3.12%

CB-MILLideal 6.5930 12.45% 17.8758 13.20%

CB-MILL 6.8954 8.43% 18.4612 10.36%

FB-MILLideal 5.9695 20.73% 16.8695 18.09%

FB-MILL 6.7199 10.77% 18.8840 8.31%

BS-SILLWEB 6.8079 9.60% 18.4964 10.19%

CB-SILLWEBideal 6.3627 15.51% 17.5217 14.92%

CB-SILLWEB 6.6753 11.36% 18.0941 12.14%

FB-SILLWEBideal 5.8362 22.50% 15.8122 23.22%

FB-SILLWEB 6.4811 13.94% 18.5985 9.69%

BS-MILLWEB 6.4654 14.15% 17.6920 14.09%

CB-MILLWideal 6.2949 16.41% 16.8606 18.13%

CB-MILLWEB 6.4058 14.94% 17.2316 16.33%

FB-MILLWEBideal 5.3232 29.32% 14.3284 30.43%

FB-MILLWEB 6.1368 18.51% 16.6687 19.07%
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as training set; the remaining 70% were used as test set. For
the strategies that are based on multiple color correction
matrices, these are computed by first clustering the ground
truth illuminants of the images in the training set into seven
different clusters using a k-means algorithm.29 Then, for each
centroid of the clusters found, the best color correction
matrix is calculated.

6 Experimental Results
The average over the test images of the average ΔE94 colori-
metric errors obtained by the tested pipelines on the MCCs are
computed and reported in Table 3. The average of the maxi-
mum ΔE94 colorimetric error are also reported. For both the
error statistics the percentage improvement over the baseline
method, i.e., BS-SILL pipeline, are reported. The results of the
pipelines tested are clustered into four different groups
depending on the color correction strategy adopted.

To understand if the differences in performance among
the pipelines considered are statistically significant, we
have used the Wilcoxon signed-rank test.30 This statistical
test permits comparison of the whole error distributions with-
out limiting to punctual statistics. Furthermore, it is well
suited because it does not make any assumptions about
the underlying error distributions, and it is easy to find,
using for example the Lilliefors test,31 that the assumption
about the normality of the error distributions does not always
hold. Let X and Y be random variables representing the ΔE94

errors obtained on the MCCs of all test images by two differ-
ent pipelines. Let μX and μY be the median values of such
random variables. The Wilcoxon signed-rank test can be
used to test the null hypothesisH0∶μX ¼ μY against the alter-
native hypothesis H1∶μX ≠ μY . We can test H0 againstH1 at
a given significance level α. We reject H0 and accept H1 if
the probability of observing the error differences we obtained

Table 4 Wilcoxon signed rank test results on the error distributions obtained by the different pipelines. A “+” sign in the (i , j)-position means that the
error distribution obtained with the pipeline i has been considered statistically better than that obtained with the pipeline j , a “−” sign that it has been
considered statistically worse, and an “=” sign that they have been considered statistically equivalent.

ID Pipeline 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Score

1 BS-SILL = − = − − − − − − − − − − − − − − − − − 0

2 CB-SILLideal + = + − = − − − − − − − − − − − − − − − 2

3 CB-SILL = − = − − − − − − − − − − − − − − − − − 0

4 FB-SILLideal + + + = + + = + − + + − + − − − − − − − 9

5 FB-SILL + = + − = − − − − − − − − − − − − − − − 2

6 BS-MILL + + + − + = − − − − − − − − − − − − − − 4

7 CB-MILLideal + + + = + + = + − + + − + − − − − − − − 9

8 CB-MILL + + + − + − − = − − + − − − − − − − − − 5

9 FB-MILLideal + + + + + + + + = + + + + − + + + + − + 17

10 FB-MILL + + + − + + − + − = + − − − − − − − − − 7

11 BS-SILLWEB + + + − + + − + − − = − − − − − − − − − 6

12 CB-SILLWEBideal + + + + + + + + − + + = + − + + − = − − 13

13 CB-SILLWEB + + + − + + − + − + + − = − − − − − − − 8

14 FB-SILLWEBideal + + + + + + + + + + + + + = + + + + − + 18

15 FB-SILLWEB + + + + + + + + − + + − + − = = − − − − 11

16 BS- MILLWEB + + + + + + + + − + + − + − = = − − − − 11

17 CB-MILLWEBideal + + + + + + + + − + + + + − + + = + − − 15

18 CB-MILLWEB + + + + + + + + − + + = + − + + − = − − 13

19 FB-MILLWEBideal + + + + + + + + + + + + + + + + + + = + 19

20 FB-MILLWEB + + + + + + + + − + + + + − + + + + − = 16
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is less than or equal to α. We have used the alternative
hypothesis H1∶μX < μY with a significance level α ¼ 0.05.
Comparing the error distributions of each pipeline with all
the others gives the results reported in Table 4. A “+”
sign in the ði; jÞ position of the table means that the error
distribution obtained with the pipeline i has been considered
statistically better than that obtained with the pipeline j; a
“−” sign that it has been considered statistically worse,
and a “=“ sign that they have been considered statistically
equivalent.

It is possible to note in Table 3 that in all the groups of
pipelines proposed (groups that share the same color correc-
tion matrix strategy, i.e., SILL, MILL, SILLWEB, and
MILLWEB), the use of the FB AWB leads to a higher
color-rendition accuracy with respect to the use of the CB
AWB and of the BS AWB. It is interesting to notice that sig-
nificant improvements in the color rendition accuracy can be
achieved even if the classifiers used for the feature and CB
AWB strategies are not optimal.

Analyzing the behavior of the pipelines sharing the same
AWB strategy, it is possible to notice that the results of Ref. 6
are also confirmed. In fact, the multiple illuminant color cor-
rection (MILL) performs better than the single illuminant
one (SILL). The single illuminant color correction, which
is optimized taking into account the statistics of how the
AWB algorithm tends to make errors (SILLWEB), performs
better than the multiple illuminant color correction (MILL).
Finally, the multiple illuminant color correction with white
balance error buffer (MILLWEB) performs better than the
corresponding single illuminant instantiation (SILLWEB).

For what concerns the best pipeline proposed, which is
the FB-MILLWEB, it can be observed that when using the
ideal classifier, 48% of improvement (from 0% to 14.15%
with respect to the benchmarking pipeline) is due to the use
of the MILLWEB color correction matrix approach and the
remaining 52% (from 14.15% to 29.32% with respect to the
benchmarking pipeline) to the FB AWB approach. When
using the real classifier the remaining part to the FB
AWB approach. This can be considered a lower bound of
the pipeline performance, since, as already explained before,
the classifier used is not optimal for the image database used.

In Fig. 6 the workflow of the best performing pipeline
proposed, i.e., the FB-MILLWEB, is reported. The low-
level features considered are extracted from the RAW image
and fed to the classifier, which as output gives the weights to
use for the linear combination of the five simple AWB algo-
rithms considered. The AWB correction gains given by the
five simple AWB algorithms considered are then combined
to give the AWB correction gains to use. The image is then
corrected with these gains to obtain an AWB corrected
image. The correction gains are used to identify the two
training illuminants most similar to the estimated one. The
two color correction matrices computed for the two identi-
fied illuminants are retrieved and combined accordingly to
the illuminant similarity. The image is finally color corrected
using this color correction matrix.

In Fig. 7 it is shown the image on which the best pipeline
proposed, i.e., FB-MILLWEB, makes the larger color error.
For sake of comparison, the results obtained with BS-SILL
(a); FB-SILL (b); FB-SILLWEB (c); and FB-MILLWEB (d)
pipelines are also shown. Finally in Fig. 7(e) the best achiev-
able results is reported, which is computed using the

achromatic patches of the MCC to estimate the ideal
AWB gains, and the color space transformation has been
optimized specifically for this image. Taking into account
that the image reproduction may have altered the image con-
tent, making the differences between the different pipelines
not clearly appreciable, we report in Fig. 8 the error distri-
bution between the ideal color-corrected image [Fig. 7(e)]
and the output of the tested pipelines. The images reported
in Fig. 7(a)–7(d) are therefore converted in CIEL*a*b* color
coordinates and the ΔE94 colorimetric error is computed for
every pixel of each image with respect to the ideal image.
The histograms of the colorimetric errors are, respectively
reported in Fig. 8(a)–8(d). To compare the color error distri-
butions of the pipelines considered on this image, we use the
Wilcoxon signed-rank test. The output of the test is reported
in Table 5. It is possible to notice that even in the worst case

Fig. 6 Workflow of the pipeline composed of the feature-based (FB)
automatic white balance (AWB) and the multiple illuminant color
matrixing with white balance error buffer (FB-MILLWEB).

Fig. 7 Worst case example. The results obtained by different pipe-
lines are reported: BS-SILL (a); FB-SILL (b); FB-SILLWEB (c); FB-
MILLWEB (d); and ideal correction (e).
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example, the FB-MILLWEB pipeline, which is the best on
the whole dataset, is still the best one.

7 Conclusion
Digital camera sensors are not perfect and do not encode col-
ors the same way in which the human eye does. A processing
pipeline is thus needed to convert the RAW image acquired
by the camera to a representation of the original scene that
should be as faithful as possible. In this work we have
designed and tested new color correction pipelines, which
exploit the cross-talks between its modules in order to lead
to a higher color rendition accuracy. The effectiveness of the
proposed pipelines is shown on a publicly available dataset
of RAW images. The experimental results show that in all the
groups of pipelines proposed (groups that share the same
color correction matrix strategy, i.e., SILL, MILL, SILLWEB,
and MILLWEB), the use of the FB AWB leads to a higher
color-rendition accuracy when compared with the use of the
CB AWB and of the BS AWB. It is interesting to note that
significant improvements in the color-rendition accuracy can
be achieved even if the classifiers used for the feature and CB
AWB strategies are not optimal. Analyzing the behavior of
the pipelines sharing the same AWB strategy, it is possible to
note that the results of Ref. 6 are also confirmed. In fact the
multiple illuminant color correction (MILL) performs better

than the single illuminant one (SILL). The single illuminant
color correction, which is optimized taking into account the
statistics of how the AWB algorithm tends to make errors
(SILLWEB), performs better than the multiple illuminant
color correction (MILL). Finally, the multiple illuminant
color correction with white balance error buffer (MILLWEB)
performs better than the corresponding single illuminant
instantiation (SILLWEB).

The present work makes it also possible to identify some
open issues that must be addressed in the future. Illuminant
estimation algorithms are generally based on the simplifying
assumption that the spectral distribution of a light source is
uniform across scenes. However, in reality, this assumption
is often violated due to the presence of multiple light
sources.32 Some multiple illuminant estimation algorithms
have been proposed;33 however, they assume very simple
setups, or a knowledge of the number and color of the
illuminants.34

Once the scene illuminant has been estimated, the scene is
usually corrected in the RGB device dependent color space
using the diagonal Von Kries model.16 Several studies have
investigated the use of different color spaces for the illumi-
nant correction35,36 as well as nondiagonal models.37 A dif-
ferent approach could be to use chromatic adaptation
transforms38,39 to correct the scene illuminant.

As suggested by a reviewer, the use of larger color cor-
rection matrices should be investigated, taking into account
not only color rendition accuracy, but also noise amplifica-
tion in particular on dark colors.
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