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Abstract. Transform coding using the discrete cosine transform is one of the most popular techniques for image
and video compression. However, at low bit rates, the coded images suffer from severe visual distortions. An
innovative approach is proposed that deals with artifacts in JPEG compressed images. Our algorithm addresses
all three types of artifacts which are prevalent in JPEG images: blocking, and for edges blurring, and aliasing. We
enhance the quality of the image via two stages. First, we remove blocking artifacts via boundary smoothing and
guided filtering. Then, we reduce blurring and aliasing around the edges via a local edge-regeneration stage. We
compared the proposed algorithm with other modern JPEG artifact-removal algorithms. The results demonstrate
that the proposed approach is competitive, and can in many cases outperform, competing algorithms.©2014SPIE
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1 Introduction
Image and video compression continue to be in high
demand. The block discrete cosine transform1 is the most
popular and widely used method in image/video compres-
sion standards, including JPEG2 for images, MPEG3 for vid-
eos, and H.2614 for videophone/teleconference applications,
because of its compaction property and ease of implementa-
tion. For JPEG, one widely known shortcoming is that at
low bit rates, the compression can leave discontinuities of
intensities between adjacent blocks (known as blocking
artifacts). JPEG can also lead to other visual artifacts such
as degraded textures, blurring, and distortion of edges.
In general, decreasing the bit rate will increase the severity
and prevalence of these visual artifacts.

Over the past several decades, numerous algorithms have
been proposed to improve the visual quality of JPEG images
by attempting to remove the artifacts. Two approaches are
generally adopted: encoder-based methods and postprocess-
ing-based methods. The encoder-based approaches work by
making changes to the encoder, such as transform-domain
methods,5–7 interleaved block transform,8 interactive meth-
ods,9 lapped transform,10 combined transform,11 or wavelet-
based filtering.12 However, the drawback of this approach is
that the resulting compression algorithms no longer conform
to the JPEG standard.

Postprocessing attempts to improve the visual quality by
removing artifacts via processing of the image after decod-
ing. This approach does not require any modifications to the
encoder or decoder, and can thus be used on existing JPEG
images. Accordingly, most artifact-reduction algorithms
follow this latter approach. Postprocessing can roughly be
divided into spatial-domain techniques,13–20 DCT-domain
techniques,21–26 projections onto convex sets (POCS),27–31

and block-shift filtering.32–41

The spatial-domain techniques process the compressed
image based on some prior knowledge and information
about the original image, such as intensity smoothness or
block boundaries of images, to improve the image quality.
For instance, in Ref. 13, Reeve and Lim proposed a symmet-
ric two-dimensional (2-D) Gaussian spatial filtering method
to reduce the blocking artifacts. Other different methods of
spatial-domain techniques, such as those based on gradients/
thresholds and the histogram-based methods used in
Refs. 15–20, classify the blocks as either high frequency
or low frequency, and use filtering methods to remove arti-
facts and thus improve image quality.

In DCT-domain postprocessing algorithms, blocking arti-
facts are reduced by directly manipulating DCT coefficients.
For example, in Ref. 23, Zeng proposed a DCT-domain
method for blocking reduction by applying a zero-masking
to the DCT coefficients of some shifted image blocks. By
using the fact that visible boundaries between two adjacent
blocks in the coded image are primarily oriented along the
horizontal and vertical directions, Zeng generated a new data
block which is modeled as a 2-D step function contaminated
by an independently and identically distributed noise with
zero mean and a small variance. Then, by performing a DCT
on such blocks, Zeng reported that there always exist AC
components of significant energy in a few fixed positions.
Accordingly, the author zeroed out some of these AC com-
ponents and demonstrated that doing so can make blocking
artifacts much less visible. However, a loss of edge informa-
tion caused by the zero-masking scheme can be noticed in
his method. In Ref. 24, Jeon and Jeong proposed a postpro-
cessing method to reduce discontinuities of pixel values over
block boundaries by compensating for the loss of coeffi-
cients’ accuracies in the transform domain. They defined
the block boundary discontinuity as the sum of the squared
differences of pixel values along the block boundary. More
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recently, in Ref. 25, Chen et al. proposed an algorithm based
on three filtering modes in terms of the activity across block
boundaries. They considered the masking effect of the
human visual system and integrated adaptive filtering into
the deblocking process.

There are also some methods which use both spatial-
domain and DCT-domain approaches. For instance, in
Ref. 26, Singh et al. proposed an adaptive postfiltering
algorithm to remove blocking artifacts. They classify the
boundary regions between the blocks as smooth, nonsmooth,
or intermediate regions. Then, blocking artifacts in the
smooth and nonsmooth regions are removed by modifying
selected DCT coefficients while an edge preserving smooth-
ing filter is applied to the intermediate regions.

In addition, there are typical postprocessing iterative
methods based on the theory of projection onto convex sets
(POCS)27 and a maximum a posterior probability approach.28

POCS based on recovery algorithm is a DCT-domain filtering
approach. The basic idea is to optimize the value of the quan-
tized transform coefficients, subject to some smoothness and
quantization constraints. In Ref. 31, Reeve and Lim intro-
duced a method based on the theory of POCS and proposed
a postprocessing technique to reduce blocking artifacts in
decoded images. They assumed that the input image is
highly correlated so that similar frequency characteristics are
maintained between adjacent blocks. The major drawback of
this approach is the high computational complexity.

Block-shift filtering is an adaptive filtering algorithm for
reducing image artifacts (see e.g., Refs. 40 and 41).
Some algorithms have been proposed which attempt to
reduce blockiness by using a quad-tree (QT) decomposition
and block-shift filtering. QT decomposition32–35 is a multi-
resolution image segmentation technique which can partition
an image into many homogeneous regions based on some
predefined rules. The variable block sizes generated by the
QT decomposition facilitate the later block-shift filtering
with low computational cost. In Ref. 38, Luo and Ward pro-
posed an adaptive approach which reduced blocking artifacts
in both the spatial-domain. For smooth regions, this method
took advantage of the fact that the original pixels in the same
block provide continuity. In Refs. 40 and 41, Zhai et al. pro-
posed algorithms to preserve the image’s details and reduce
the effect of quantization noise. They integrated QT decom-
position with the block-shift filtering.

Although previous algorithms can effectively suppress
blockiness, JPEG images suffer from more than just block-
ing. At low bit rates, the compressed image also suffers from
blurring and aliasing artifacts around the edges. In Refs. 12,
40, and 41, the authors have taken deblocking further, and
shown attempts to compensate for degraded textures in the
compressed image. However, this approach does not address
blurring and aliasing around the edges. Together, all of these
artifacts degrade the quality of JPEG images, and there is
no single algorithm that can remove all of these artifacts
significantly.

In this paper, we propose a technique to improve the vis-
ual quality of JPEG images via a two-stage approach. Our
algorithm removes blocking artifacts by using existing tech-
niques,38,42 and it reduces blurring and aliasing artifacts
around the edges by means of local edge regeneration. First,
we remove blocking artifacts via boundary smoothing38 and
Guided filtering.42 Then, we reduce blurring and aliasing

around the edges via a local edge-regeneration stage. The
main contribution of this work is a technique to enhance
the quality of JPEG images not only by removing blocking
artifacts, but also by reducing blurring and aliasing artifacts
around the edges and via edge regeneration.

This paper is organized as follows: In Sec. 2, we provide
details of the two stages of the proposed algorithm. In Sec. 3,
we present and discuss the results of the proposed algorithm.
General conclusions are presented in Sec. 4.

2 Algorithm
The flow chart of our proposed algorithm is shown in Fig. 1.
In our algorithm, given a JPEG image as the input, two
stages are used to enhance the quality of the image. The first
stage is designed to remove blocking artifacts. The second
stage is designed to remove blurring and aliasing artifacts
around the edges in an attempt to make the edges appear
sharper.

2.1 Deblocking
A very well-known problem with JPEG images is blocking
artifacts. This stage serves to remove blocking artifacts by
smoothing the boundaries of blocks and by using guided fil-
tering.42 The flow chart of this stage is shown in Fig. 2.
Although the technique employed for this deblocking
stage is a combination of existing tools, as we will demon-
strate later it is quite effective.

At low bit rates, there will be discontinuities between
block boundaries due to independent quantization. We first
reduce discontinuities between the neighboring blocks by
using the method presented in Ref. 38 for smooth areas.

As explained in Ref. 38, their technique for smooth areas
first identifies pairs of neighboring blocks whose shared
boundary is not due to a genuine change in the intensities
at that position. This condition is met if: (1) the two blocks
share similar horizontal/vertical frequency properties and
(2) a third block centered on the boundary is otherwise
relatively smooth. After identifying such blocks, the block-
to-block discontinuities are suppressed via DCT-based filter-
ing, i.e., via strategic blending of the DCT coefficients of the
two blocks and of the third block encompassing the boun-
dary so as to remove blockiness but not introduce artifacts
(for further details, see Ref. 38). By operating only on
blocks which satisfy the above two criteria, the technique
avoids modifying strong textures and edge regions, and thus
attempts to preserve important information, true edges, and
textures in the image.

After reducing the discontinuities between block bounda-
ries, we apply a guided filter42 on the image to reduce
the blocking artifacts. According to the authors in Ref. 42,
the guided filter utilizes the structures in the image and

Input image 
 (X) Deblocking Edge regeneration Output image 

Fig. 1 Flow chart of our proposed algorithm.
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block boundaries

Input image 
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artifacts
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Fig. 2 Flow chart of the deblocking stage.
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has a fast linear-time algorithm. The guided filter preserves
the image’s edges during deblocking. Unlike other edge-pre-
serving filters (e.g., the bilateral filter), the guided filtering is
computationally efficient [OðNÞ, linear time], and it does not
introduce gradient-reversal artifacts found via the bilateral
filter.

If we apply the guided filter without smoothing the boun-
daries, the image may still have blocking artifacts around
the boundaries of 8 × 8 blocks [see Fig. 5(b)]. We assist
the guided filtering by explicitly toning-down the block
boundaries in the first stage of our deblocking scheme.
We have found this first stage to be a simple, yet effective
technique of boosting the ability of the guided filtering to
remove blocking artifacts.

The guided filter has two parameters: ϵ and α. The param-
eter ϵ is a regularization parameter and α specifies the local
window radius. Increasing ϵ and α generally results in more
smoothing. Decreasing these parameters generally results in
images which might still contain visible blocking artifacts.
Following the same technique used in Ref. 40, we select

the ϵ parameter of the guided filter based on the JPEG quality
factor. To determine this relationship between ϵ and quality
factor (Q), we tested our algorithm on images from the
LIVE database43 (29 original images). We compressed
images using JPEG quality factors from 1 to 100 and
recorded the ϵ that offered best structure similarity (SSIM)44

as the optimal ϵ for each image at that setting. The measured
optimal ϵ values were then plotted against the corresponding
Q values, and these data were then fitted with the following
power function:

ϵ ¼ 0.0067Q−0.7891 − 0.0003.

Note that Q is available at the decoder because the quan-
tization table used in JPEG is a Q-scaled version of a pre-
defined quantization table.

We also choose α empirically ðα ¼ 4Þ, which generally
yields good results across a wide variety of images.
However, the selection of this value is not critical, the results
are very close when α is chosen within a �20% range.

Fig. 3 Flow chart of edge-regeneration stage.

(a) (b)

Fig. 4 Illustration of the edge regeneration process for a particular edge pixel Z ði ; jÞ. (a) If d right > d left or
dabove > dbelow. (b) If d right < d left or dabove < dbelow.
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Figure 5, provided later in the paper, will show results of
the deblocking stage [see Figs. 5(a)–5(c)].

2.2 Edge Regeneration
Besides blocking artifacts, it is well known that JPEG causes
aliasing and blurring artifacts that occur around the edges
within the image. In this second and final stages, we use
local area information in an attempt to regenerate the edges
and thus remove these edge artifacts. The flow chart of this
stage is shown in Fig. 3. Let Z denotes the output result of
the deblocking stage.

To improve the distorted edges, we use the fact that the
blurring and aliasing artifacts are located around the edges;
thus, further away from the edges, the quality improves. Our
edge-regeneration algorithm operates by regenerating edge
pixels as well as pixels that are located slightly farther
away from the edges.

In this stage, we first use Canny edge detection45 to detect
the strong edges [see Fig. 5(d)]. In order to compute the
strong edges, we use the adaptive threshold parameters γT
and βT for low threshold and high threshold of the Canny
edge detection, respectively, where T indicates the threshold
of the image computed by applying Otsu’s method46 to the
gradient magnitude image used during Canny edge detec-
tion. Because we focus on improving the strong edges, so
we chose γ ¼ 1.5 and β ¼ 2.5, and the kernel size parameter
is set to 4 for the Canny edge detector. As we will demon-
strate, these parameters generally yield excellent results
across a variety of images and bit rates. However, the selec-
tion of these values is not critical. The results are very close
when the values are chosen within a �20% range.

Let denote an edge pixel value which is detected by
Canny and is located at the positions i and j. We determine

which area around the edges is more similar to the edges
pixel by applying the following equation:

Zði; jÞdleft ¼
�
�
�
�
Zði; jÞ − Zði; j − 1Þ þ Zði; j − 2Þ

2

�
�
�
�
;

dright ¼
�
�
�
�
Zði; jÞ − Zði; jþ 1Þ þ Zði; jþ 2Þ

2

�
�
�
�
: (1)

In Eq. (1), we chose to compare the edge pixel against the
average of the two pixel values to the left and right. In this
equation, dleft represents the difference between the edge
pixel Zði; jÞ and the average of the two pixels horizontally
to the left. Also, dright represents the difference between the
edge pixel Zði; jÞ and the average of the two pixels horizon-
tally to the right. The smaller of the two measurements, dleft
and dright, signifies the side which is more similar to the edge
pixel. By computing dleft and dright, we measure the similarity
of two sides of the edge pixel to the pixel on the edge.

After computing dleft and dright, if dleft < dright, this signi-
fies that the left side of the edge pixel is more similar to the
edge pixel than the right side. We would then use the side
which is similar to the edge pixel to remake the edge pixel
and its neighbors. Next, we use the pixels on the side which
is different from the edge to reduce the artifacts around
the edge.

To illustrate this process, Fig. 4(a) shows the 9 × 9 matrix
centered around the edge pixel Zði; jÞ. This matrix was
designed around the fact that edge artifacts reduce in pixels
further away from the edge.

In the following equation, we take the benefit of the area
which is similar to the edge pixel to improve the edge pixel:

For ði 0; j 0Þ ¼ ðiþ 1; j − 1Þ; ði; j − 1Þ; ðiþ 1; jÞ [see the
green blocks in Fig. 4(a)]:

Fig. 5 Deblocking and edge regeneration results. (a) Input image PSNR ¼ 30.40. (b) Result of guided
filter without reducing discontinuities between the neighboring blocks. (c) Result after deblocking algo-
rithm [applying Eqs. (1)–(4) and guided filter]. (d) Edge map of Lena by using Canny edge detection on
(c). (e) Image after proposed edge regeneration, PSNR ¼ 30.56 dB. (f) Shoulder, hat, and cheek of Lena
before (left side) and after (right side) applying proposed algorithm.
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Zði 0; j 0Þ

¼ Zði 0 þ 1; j 0Þ þZði 0; j 0 − 1ÞþZði 0 þ 1; j 0 − 1Þþ 4Zði 0; j 0Þ
7

:

(2)

For the edge pixel itself:

Zði; jÞ ¼ Zðiþ 1; j− 1Þ þZði; j− 1Þ þZðiþ 1; jÞ þZði; jÞ
4

:

(3)

For ði 0; j 0Þ ¼ ði; j − 3Þ; ði; j − 2Þ; ðiþ 1; j − 3Þ; ðiþ 1;
j − 2Þ; ðiþ 2; j − 2Þ; ðiþ 2; j − 1Þ; ðiþ 2; jÞ; ðiþ 3; j − 1Þ;
ðiþ 3; jÞ [see the red blocks in Fig. 4(a)]:

Zði 0; j 0Þ

¼ Zði 0 þ 1; j 0Þ þZði 0; j 0 − 1ÞþZði 0 þ 1; j 0 − 1Þþ 4Zði 0; j 0Þ
7

:

(4)

In Eqs. (2)–(4), the algorithm begins by improving the
pixels near the center pixel. Equation (2) describes the regen-
eration of the pixels neighboring the center block, as iden-
tified by the green blocks in Fig. 4(a). In this equation, we
use the average of three neighboring pixels along with the
pixel itself to regenerate the selected pixel. The algorithm
then uses these improved pixel values to enhance the center
block. Specifically, Eq. (3) uses the average of regenerated
pixels as well as the previous value of the edge pixel to
regenerate the edge pixel. Finally, Eq. (4) describes how
to enhance the quality of other pixels on the similar side,
but slightly further away [red blocks in Fig. 4(a)].

The next step is to reduce aliasing and blurring artifacts on
the other side. By using the following equation, we regen-
erate pixels which are slightly further away from the edge
pixel to reduce the artifacts around the edges:

For ði 0;j0Þ¼ ði−3;jÞ;ði−2;jÞ;ði−2;jþ1Þ;ði−1;jÞ;
ði−1;jþ1Þ;ði−1;jþ2Þ;ði;jþ1Þ;ði;jþ2Þ;ði;jþ3Þ [see
the gray blocks in Fig. 4(a)]:

Zði 0; j 0Þ ¼ Zði 0 − 1; j 0Þ þ Zði 0; j 0 þ 1Þ þ Zði 0 − 1; j 0 þ 1Þ
3

:

(5)

For ði 0; j 0Þ ¼ ði − 3; jþ 1Þ; ði − 3; jþ 2Þ; ði − 3; jþ 3Þ;
ði − 2; jþ 3Þ; ði − 2; jþ 2Þ; ði − 1; jþ 3Þ [see the brown
blocks in Fig. 4(a)]:

Zði 0; j 0Þ

¼ Zði 0 − 1; j 0ÞþZði 0; j 0 þ 1ÞþZði 0 − 1; j 0 þ 1Þþ 4Zði 0; j 0Þ
7

:

(6)

In Eqs. (5) and (6), by using the average of the pixels on
the side which is different from the edge pixel, we regenerate
pixels around the edge and reduce the aliasing and blurring to
make the edge appear sharper. First, by using Eq. (5), we
regenerate neighboring pixels [gray blocks in Fig. 4(a)].
Next, by using Eq. (6), we regenerate selected pixels [brown
blocks in Fig. 4(a)] to make the area around the edge more
smooth.

Equations (2)–(6) are applied to all edge pixels identified
by the Canny edge detection algorithm. However, the algo-
rithm will not regenerate an edge pixel until it is the center
pixel in Fig. 4(a). For example, if the pixel directly below
Zði; jÞ in Fig. 4(a) is identified as an edge pixel, it will
be used only for calculating the result of Eq. (2); however,
Eq. (2) will not be applied to that pixel. Only Eq. (3) is used
in regenerating pixels identified as edge pixels by the Canny
edge detector algorithm.

In Eq. (1), after calculating dleft and dright, if dright < dleft,
this signifies that the right side of the edge pixel is more sim-
ilar to the edge pixel than the left side. In this condition, the
equations are similar to Eqs. (2)–(6), except that i is replaced
with j and j is replaced with i, resulting in a 180 deg rotation
in the image plane of the regeneration pattern about Zði; jÞ
[see Fig. 4(b)]. We chose the basic structure for Eqs. (2)–(6)
due to its relative simplicity and its ability to operate effec-
tively on all edge orientations.

If dleft ¼ dright, it means that the edge is horizontal. As a
result, we use the following equation to compute the side
which is similar to the edge pixel:

dabove ¼
�
�
�
�
Zði; jÞ − Zði − 1; jÞ þ Zði − 2; jÞ

2

�
�
�
�
;

dbelow ¼
�
�
�
�
Zði; jÞ − Zðiþ 1; jÞ þ Zðiþ 2; jÞ

2

�
�
�
�
: (7)

In Eq. (7), dabove represents the difference between the
edge pixel Zði; jÞ and the average of the two pixels vertically
above. Also, ddown represents the difference between the
edge pixel Zði; jÞ and the average of the two pixels vertically
below. If dabove > dbelow, this signifies that the region below
the edge pixel is more similar to the edge pixel than the
region above. Therefore, we use Eqs. (2)–(6) for the pixels
which are shown in Fig. 4(a). On the other hand, if
dabove < dbelow, it means that the region above is more similar

Fig. 6 Close-up results for part of Lena’s shoulder. (a) Before edge regeneration. (b) The result of Canny
edge detection on (b). (c) The result after edge regeneration.
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Fig. 7 Eleven 512 × 512 test images. For the first row images, from left to right: Lena, baboon, Barbara,
peppers, plane, and bridge. For the second row images, from left to right: Zelda, redwood, actor, fruit, and
Native American.

Fig. 8 Subjective quality comparison of Lena compressed at 0.24 bpp. (a) The result of Ref. 12,
PSNR ¼ 30.99 dB. (b) The result of Ref. 41, PSNR ¼ 31.23. (c) The result of our proposed algorithm,
PSNR ¼ 30.56 dB. (d), (e), and (f) a close-up of Lena for the results shown in (a), (b), and (c), respec-
tively. (g), (h), (i) a close-up of Lena for the results shown in (d), (e), and (f), respectively.

Fig. 9 Close-up of Lena compressed at 0.24 bpp. (a) Result of Ref. 38, (b) result of Ref. 12, (c) result of
Ref. 40, (d) result of Ref. 41, and (e) result of our proposed algorithm.

Journal of Electronic Imaging 013018-6 Jan–Feb 2014 • Vol. 23(1)

Golestaneh and Chandler: Algorithm for JPEG artifact reduction via local edge regeneration



to the edge pixel than the region below. In this case, we use
Eqs. (2)–(6) after changing i with j and j with i.

Equations (1)–(6)areapplied toall theedgepixelswhichare
detected by the Canny edge detector. The edge-regeneration
stage operates on edges of all orientations. As long as a
pixel is an edge pixel (as detected by theCanny edge detector),
then the edge regenerator is applied at that pixel. The context

structure shown in Fig. 4 is meant to illustrate only which sur-
rounding pixels are used during the regeneration. So the algo-
rithm will operate on edges of all orientation, but which
surroundingpixels ituses toperformtheregeneration is limited
to the two choices shown in Fig. 4.Note that if the surrounding
pixels are also part of the edge, those pixels are not used to
regenerate the current edge.

Fig. 10 Subjective quality comparison of the images Barbara, baboon, and peppers compressed at qual-
ity factor Q ¼ 10. (a), (b), and (c) JPEG compressed images, PSNR ¼ 26.33, 23.43, and 30.72 dB. (d),
(e), and (f) the result of Ref. 12, PSNR ¼ 26.02, 23.53, and 30.91 dB. (g), (h), and (i) the result of Ref. 40,
PSNR ¼ 26.03, 23.67, and 30.90 dB. (j), (k), and (l) the results of our proposed algorithm,
PSNR ¼ 26.44, 23.68, and 31.28 dB. (m), (n), and (o) the two left images are close-up of the results
from Refs. 40, 12 and right image is a close-up of the result from our proposed algorithm.
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Figure 5(e) shows the result of this stage. Additionally, in
Fig. 5(f), we provide close-up results for the edges around
the shoulder, hat, and cheek of Lena to demonstrate that
this stage can significantly improve strong edges regardless
of the edge orientations. Specifically, as shown in Fig. 5(f),
our proposed method improves the quality of edges without
considering the orientations of the edges. A further close-up
for part of Lena’s shoulder is shown in Fig. 6. Further results
are provided in Sec. 3.

3 Results
In this section, we evaluate the performance of our proposed
algorithm and compare it to competing algorithms, both in
terms of qualitative results and in terms of quantitative
results. For these evaluations, we have used the 11 standard
images shown in Fig. 7.

3.1 Qualitative Results
We compared our proposed algorithm with Refs. 12, 38, 40,
and 41. As mentioned in Sec. 2, all of these are modern,

state-of-the-art postprocessing-based methods designed
specifically for the use with JPEG images. Reference 12,
by Liew and Yan, is a method based on a noniterative
wavelet-based deblocking algorithm. Reference 38, by Luo
and Ward, is an adaptive approach in both the spatial-domain
and DCT-domain to reduce the block-to-block discontinu-
ities. Reference 40, by Zhai et al., is a deblocking method
for JPEG images via postfiltering in shifted windows of image
blocks. Reference 41, by Zhai et al., employs a QT decom-
position with block-shift filtering to reduce JPEG artifacts.

The visual results of our proposed algorithm on four
images (Lena, peppers, Barbara, and baboon) are provided
in Figs. 8–10 and are compared against the aforementioned
algorithms. We chose Lena, Barbara, peppers, and baboon
because the results of Refs. 12, 38, 40, and 41 on these
images have been published in the respective papers. Note
that the results for Ref. 12 were obtained from the authors,
the results for Refs. 38 and 40 were generated by reimple-
menting their algorithms, and the results of Ref. 41 were
obtained from their paper.

Figures 8(a) and 8(b) depict the results of Refs. 12 and 41
on Lena. For ease of examination, close-ups of Figs. 8(a)
and 8(b) are provided in Figs. 8(d) and 8(e). The result of
our proposed algorithm is shown in Fig. 8(c), and its close-
up is provided in Fig. 8(f). Notice that whereas the results of
Refs. 12 and 41 still exhibit aliasing and blurring (e.g., along
the hat of Lena), these artifacts are better reduced by the pro-
posed algorithm. Overall, the proposed algorithm has notice-
ably reduced the appearance of blocking and for edges
blurring and aliasing. Figures 8(g), 8(h), and 8(i) show
further close-ups of the results of the algorithms on the band
in Lena’s hat. Notice that the results from the proposed
algorithm [Fig. 8(i)] exhibits the least ringing and the sharp-
est edge.

A portion of the shoulder in Lena is shown in Fig. 9. We
chose this portion because of the smooth regions on the skin
of the shoulder, as well as the strong edges of the shoulder
rim. Our proposed algorithm yields superior distortion sup-
pression performance in this region in comparison to others.

In Fig. 10, we compare our results for Barbara, baboon,
and peppers with original JPEG compression and also the
results of Refs. 40 and 12. Figures 10(a), 10(b), and 10(c)
show the JPEG results of Barbara, baboon, and peppers.
In Figs. 10(d) and 10(g), although Refs. 40 and 12 reduced
many blocking artifacts, some noticeable blocking still
remains. The result of our proposed algorithm in Fig. 10(j)
shows that our algorithm removed blocking artifacts as
well as removed aliasing and blurring around the edges.
Figures 10(e) and 10(h) show the results of Refs. 40 and 12
for baboon. In Fig. 10(k), the edges along the nose of
the baboon look sharper and better in comparison with
Figs. 10(h) and 10(b). Also, Fig. 10(k) has less blocking
artifacts compared to Fig. 10(e). In Fig. 10(l), the edges of
peppers do not have ringing artifacts as compared to
Figs. 10(c), 10(f), and 10(i). Figures 10(m), 10(n), and 10(o)
provide close-ups of the aforementioned results from our
proposed algorithm against Refs. 12 and 40. Figure 11 pro-
vides more visual comparison results of our algorithm to
Refs. 12 and 40. Additional examples are available in the
online supplement to this paper located at http://vision
.okstate.edu/jpgregen/jpgregen.htm.

Fig. 11 Subjective visual quality comparison of the images Cactus
and Aerial city compressed at quality factors Q ¼ 10, 20, and 30.
(a) and (m) compressed at Q ¼ 10. (e) and (q) compressed at
Q ¼ 20. (i) and (u) compressed at Q ¼ 30. (b), (f), (j), (n), (r), and
(v) the result of Ref. 38. (c), (g), (k), (o), (s), and (w) the result of
Ref. 40. (d), (h), (l), (p), (t), and (x) the results of our proposed
algorithm.
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3.2 Quantitative Results
PSNR and SSIM44 are two different, but widely accepted,
methods for numerically representing image quality. Table 1
shows PSNR results of our proposed algorithm, as well as
the results from Refs. 12, 38, 40, and 41. Table 2 shows a
similar comparison using SSIM. Both Tables 1 and 2 show
that the proposed algorithm gives competitive scores for both
PSNR and SSIM.

To compare the algorithms’ performances, we selected six
images from Fig. 7 which represent a range of image content
with different properties, such as textures and edges. In

Table 1, we provide PSNR for these six images at four differ-
ent ranges of bit rates, providing a total of 24 scores. Out of
the 24 scores for PSNR, our algorithm had the best perfor-
mance 13 times and the second best performance four times.

Table 2 shows SSIM results for the algorithms. In terms of
SSIM, our proposed algorithm outperforms the results of
Refs. 12, 38, and 40, and has comparable performance to
Ref. 41. In this comparison, the proposed algorithm is a
top performer as many times as any other existing state-
of-the-art algorithm. However, it is important to note that nei-
ther PSNR nor SSIM are perfect measures of visual quality.

Table 1 Comparison of PSNR (dB) for various postprocessing techniques applied to different JPEG images. In this table, the bold numbers
represent the best performing results and italicized numbers represent the second best performing results.

Images Bitrate (bpp) JPEG Ref. 12 Ref. 38 Ref. 40 Ref. 41 Proposed

Lena 0.17 27.32 28.13 27.53 28.46 28.31 28.33

0.24 30.40 30.99 30.31 31.07 31.23 30.56

0.31 31.93 32.42 31.59 32.55 32.57 32.61

0.36 32.95 33.34 32.43 33.40 33.39 33.41

Baboon 0.26 21.52 21.79 21.57 21.96 21.98 22.06

0.46 23.43 23.53 23.30 23.67 23.62 23.68

0.62 24.50 24.56 24.29 24.73 24.59 24.61

0.76 25.26 25.29 24.97 25.43 25.31 25.24

Bridge 0.23 23.06 23.42 23.08 23.45 23.43 23.34

0.41 25.13 25.34 24.90 25.32 25.48 24.98

0.56 26.25 26.40 25.88 26.40 26.51 26.49

0.69 27.01 27.11 26.54 27.14 27.10 27.14

Barbara 0.23 24.50 24.38 23.99 24.85 24.87 24.91

0.35 26.33 26.02 25.66 26.03 26.07 26.44

0.45 27.64 27.33 26.90 27.75 27.28 27.64

0.54 28.78 28.47 27.95 28.80 28.41 28.51

Peppers 0.21 28.19 28.27 27.56 28.61 28.26 29.08

0.31 30.72 30.91 30.13 30.90 30.90 31.28

0.38 31.85 32.14 31.36 32.18 32.13 32.29

0.46 32.71 32.91 32.10 32.98 32.85 32.99

Plane 0.18 26.54 27.14 26.68 27.23 27.29 27.02

0.28 30.16 30.61 29.64 30.18 30.43 29.71

0.36 31.94 32.19 31.06 31.82 31.95 32.51

0.43 32.97 33.23 31.99 33.03 33.01 33.40

Journal of Electronic Imaging 013018-9 Jan–Feb 2014 • Vol. 23(1)

Golestaneh and Chandler: Algorithm for JPEG artifact reduction via local edge regeneration



For example, Refs. 12, 40, and 41 all have higher PSNR on
Lena at 0.24 bpp. However, as shown previously in Figs. 8
and 9, the proposed algorithm yields better visual results.

3.3 Analysis of Computation Time
To determine the effects of image size on our algorithm’s
runtime, we used the original images in the categorical
image quality (CSIQ)47 database (30 images) and generated
different sizes of the images (256 × 256, 512 × 512,
768 × 768, and 1024 × 1024). To determine the effects of
quality factor on our algorithm’s runtime, for each size, we

Table 2 Comparison of SSIM for various postprocessing techniques applied to different JPEG images. In this table, the bold numbers represent
the best performing results and italicized numbers represent the second best performing results.

Images Bitrate (bpp) JPEG Ref. 12 Ref. 38 Ref. 40 Ref. 41 Proposed

Lena 0.17 0.736 0.784 0.751 0.790 0.791 0.794

0.24 0.817 0.844 0.820 0.843 0.852 0.846

0.31 0.852 0.871 0.848 0.868 0.877 0.872

0.36 0.873 0.884 0.836 0.884 0.891 0.886

Baboon 0.26 0.539 0.531 0.532 0.526 0.535 0.539

0.46 0.681 0.666 0.666 0.660 0.682 0.673

0.62 0.745 0.731 0.728 0.731 0.750 0.732

0.76 0.783 0.771 0.765 0.774 0.789 0.776

Bridge 0.23 0.571 0.572 0.561 0.563 0.569 0.573

0.41 0.711 0.703 0.693 0.694 0.710 0.702

0.56 0.775 0.765 0.754 0.768 0.780 0.782

0.69 0.809 0.799 0.788 0.800 0.820 0.803

Barbara 0.23 0.686 0.709 0.672 0.711 0.709 0.719

0.35 0.787 0.790 0.769 0.795 0.801 0.795

0.45 0.832 0.834 0.816 0.839 0.844 0.845

0.54 0.863 0.863 0.847 0.869 0.872 0.873

Peppers 0.21 0.707 0.773 0.735 0.780 0.778 0.757

0.31 0.771 0.828 0.794 0.820 0.826 0.792

0.38 0.794 0.845 0.821 0.842 0.847 0.806

0.46 0.813 0.854 0.836 0.854 0.859 0.819

Plane 0.18 0.775 0.820 0.778 0.810 0.815 0.821

0.28 0.853 0.876 0.865 0.865 0.874 0.878

0.36 0.889 0.899 0.873 0.891 0.898 0.907

0.43 0.902 0.912 0.891 0.907 0.913 0.916

Table 3 Average runtime (in s) of our proposed algorithm on different
image sizes for each stage and totally.

256 × 256 512 × 512 768 × 768 1024 × 1024

Deblocking 0.409 1.734 3.855 6.512

Edge
regeneration

0.566 1.957 4.054 7.085

Total runtime 0.975 3.691 7.909 13.597
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used quality factors of 10, 30, and 50 to generate low-,
medium-, and high-quality images, respectively. The test was
performed on a modern desktop computer (AMD Phenom II
×4 965 Processor at 3.39 GHz, 4 GB RAM, Windows 7 Pro
64 bit, MATLAB 7.8.0), and the processing time was
obtained by using MATLAB’s time analysis tools.

Table 3 and Fig. 12 show the average runtime of our
algorithm in seconds for each stage separately as well as

the total runtime. Figure 13 shows the average execution
time of our algorithm for images of different sizes of differ-
ent qualities.

As shown in Table 3 and Fig. 12, the runtime of the algo-
rithm increases approximately linearly with the number of
pixels. As Fig. 13 shows, our proposed algorithm has con-
sistent runtimes performance regardless of the image quality
factor for each size.

Fig. 12 Average runtime (in s) of our proposed algorithm for each stage as well as the total runtime of the
algorithm on different image sizes.

Fig. 13 Average runtime (in s) of our proposed algorithm on different qualities for each image size.
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3.4 Limitations and Areas for Future Work
Although the proposed algorithm generally works quite
effectively at improving quality, there are limitations of
the approach. As with most algorithms for artifact removal,
the proposed approach is not quite effective for images coded
at extremely low bit rates (<0.15 bpp). Generally, such low-
rate images tend to have severe blocking artifacts and suffer
from severe aliasing around the edges (particularly, diagonal
edges), see Fig. 14.

To handle these types of failures, we would need either a
better edge detector to detect strong edges accurately
and/or some prior information about the map of the image’s
edges. Nonetheless, as shown in Fig. 14, the proposed
algorithm does indeed make the images appear more natural,
despite the fact that the overall quality is not significantly
improved.

The proposed algorithm is also currently limited to
processing only the grayscale information in an image; thus,
artifacts induced via quantization of the DCT components
of the chrominance channels are not addressed. Further
improvements in performance could possibly be realized
by designing artifact-removal techniques for such color
artifacts.

4 Conclusions
In this paper, we proposed a new method to enhance the
visual quality of JPEG images. Our algorithm address the
three types of artifacts which are prevalent in JPEG images:
blocking, and for edges blurring, and aliasing. Our proposed
algorithm first reduces blocking artifacts by smoothing
boundaries of blocks and via guided filtering, and it then
improves the edges of the image by performing local
edge regeneration. We demonstrated the performance of the
proposed algorithm against several well-known JPEG arti-
fact-removal methods. The results show that our algorithm
is competitive, and in many cases outperforms, competing

methods. We have made our codes and images available
to the research community. A MATLAB implementation of
the proposed method and the images used in this paper are
available at http://vision.okstate.edu/jpgregen/jpgregen.htm.
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