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Abstract. The Wahba problem is the task of constrained optimization seeking the matrix from
SO(3), which maximally converges (based on the least squares criterion) two sequences of unit
vectors. The solution of this task is vital for satellite attitude determination using star trackers. An
iterative method for solving the Wahba problem is proposed. Each iteration of the proposed
method is reduced to sequential rotation of the vectors and solving the system of linear algebraic
equations. Usage of the method implies that the corresponding vectors of both sequences are
located sufficiently close to each other. Two variants of the method are proposed, having linear
and quadratic convergence. The Wahba problem solution is interpreted in terms of finding the
angular velocity of a system of material points, which have certain angular momentum. Taking
into consideration the characteristics of state-of-the-art star trackers, one to two iterations are
sufficient for finding the optimal solution using the small-angle rotation method. The primary
advantage of the proposed method as compared with classical methods based on calculation of
eigenvectors and singular decomposition is the simplicity of its implementation. © The Authors.
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1 Introduction

Let us assume that matrix R belongs to a special rotation group:

R ∈ SOð3Þ ⇔ R ∈ R3×3: RTR ¼ I; detðRÞ ¼ 1; (1)

where I is a unit matrix with dimension 3. Let us assume that there are two sequences of unit
vectors v and w in three-dimensional (3-D) space

vi ∈ R3 wi ∈ R3: jvij ¼ 1; jwij ¼ 1; (2)

where i ¼ 1; : : : ; n, and n is the number of vectors in the sequence.
We shall denote the function (3) as loss function

LðRÞ ¼ 1

2

Xn
i¼1

kijwi − Rvij2; (3)

where ki are weight coefficients, such that
P

n
i¼1 ki ¼ 1.

The norm of vector x hereinafter is understood to be the Euclidean norm

jxj ¼
ffiffiffiffiffiffiffiffi
xTx

p
: (4)

It is necessary to find the matrix Ropt from SO(3) which minimizes the loss function

Ropt: LðRoptÞ ¼ Min
R∈SOð3Þ

LðRÞ. (5)

This task is called the Wahba problem in honor of Grace Wahba, who has first posed it in
Ref. 1. The geometrical meaning of the formulated task is as follows: finding such a rotation in
3-D space, which will maximally bring together the two systems of vectors.
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The Wahba problem has important applied significance because its solution is necessary in
stellar orientation systems for satellite attitude determination. Stellar orientation systems are
intended for determination of satellite attitude in the inertial (geocentric) reference system,
and presently they are the most precise among existing2 satellite orientation systems.

General functional diagram of a star tracker is shown in Fig. 1. Light from stars is passing
through the optical path of the device and is projected on a photodetector. Using special algo-
rithms,3,4 stars are segregated on the background of photodetector noise and optical distortions,
and their directional cosines are determined in the star tracker reference system.

If vectors w are interpreted as the directional cosines of stars in the inertial geocentric stellar
coordinate system and vectors v are interpreted as the directional cosines of the same stars but in
the star tracker reference system, then matrix Ropt obtained as the result of solving task (5) will
determine the attitude of the satellite with reference to the Earth (if the universal time is known).
Therefore, hereinafter we shall name Ropt as optimal orientation matrix. Coefficients ki are
chosen depending on the accuracy of determination of star coordinates on the photosensitive
matrix, which is usually proportional to the star energy.

The values of vectors v are known not accurately because of star orientation instrument errors
in the course of determining star positions. Such errors are caused by optical perversions (lens
distortion and aberration), noise, and discrete structure of photosensitive matrix. The values of
vectors w are also determined with errors due to inaccuracy of existing star catalogues.

Let vtrue and wtrue be the true (without introduced error) directional cosines of stars in the
inertial reference system and the star tracker reference system, and let Rtrue be the matrix deter-
mining the rotation, which aligns vectors vtrue and wtrue

wtrue
i ¼ Rtruevtruei : (6)

It is possible to consider that vectors v and w are

vi ¼ vtruei þ εvi wi ¼ wtrue
i þ εwi ; (7)

where εvi εwi ∼ Nð0; σÞ. If jεvj and jεwj are small, then it holds that Ropt ≈ Rtrue. In practice,
the error of star determination by instrument is substantially larger than the star catalogue
error, jεvj ≫ jεwj.

There are two approaches to solve Wahba problem (5): direct minimization of loss function
and exact analytical solution. Since the first formulation of the Wahba problem, numerous
methods for its analytical solution have been proposed.5 Many of these methods seem quite
simple, but actual computations come up against complications, e.g., finding the square root
from an ill-conditioned matrix.

On the other hand, not much attention in the literature has been devoted to the possibility of
direct minimization of the function LðRÞ. The reason is that the application of minimization
methods requires the existence of sufficiently close initial approximation and calculation of func-
tion LðRÞ values at every step. The laboriousness of calculating the values of function LðRÞ
grows with increase of the number of vectors n.

When solving the Wahba problem in connection with the task of a satellite attitude control, it
is necessary to take into consideration the special features of the application domain and the

Fig. 1 Functional diagram of a star tracker. 1—stellar sky, 2—optical system, 3—electronic mod-
ule with photodetector array, 4—computing module, and 5—star tracker.
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resultant constraints on the character of input data. Usage of these constraints allows the creation
of more efficient methods for solving the Wahba problem as compared with the generalized
problem formulation. Two such constraints on the values of input data should be noted.

First, the number n of stars for determining orientation usually is not over 50 because of
optical characteristics of star trackers and distribution of stars over the celestial sphere.
Actually, not all the stars are used for recognition, but only 10 to 15 of the brightest stars, because
their coordinates have the highest accuracy.

Second, when considering the solution of the Wahba problem in connection with the task of
satellite attitude control, one should take into account the fact that the errors of vectors v and w
are small as compared with the minimal distance between two arbitrary vectors of the sequence.

arcosðvivjÞ ≫ jεvi j ≫ jεwi j
arcosðwiwjÞ ≫ jεvi j ≫ jεwi j ∀ i ¼ 1; : : : ; n j ¼ 1; : : : ; n; i ≠ j. (8)

Inequalities in Eq. (8) are fulfilled since star catalogues are compiled providing a condition
that a distance between the nearest stars by a few times exceeds permissible error εvi . If the star
position error significantly exceeds the possible one (due to proton influence, pixel defects, etc.),
then such stars will not be detected by identification algorithm, since they are rejected according
to the criterion of mutual angular distances.

Provided that Eq. (8) is fulfilled, it is possible to calculate easily and with sufficient accuracy
the initial approximation for the matrix R0 ≈ Ropt using the triangle attitude determination
(TRIAD) method.6,7 Using the initial approximation R0, it is possible to rotate vectors v so
that they are sufficiently close to vectors w:

ṽi ¼ R0vi: (9)

The result from this is that

arcosðwiṽiÞ ≈ jεvi j: (10)

Hence, when solving the Wahba problem for the task of satellite orientation, it may be
assumed that Eq. (10) applies.

2 Review of Methods for Solution of the Wahba Problem

A short but recent review of methods for solving theWahba problem is given in Ref. 8. An earlier
but detailed analysis of methods for solving the Wahba problem was made by Markley and
Mortari in Ref. 5. The basic results related to this problem were obtained in 1980s and
1990s;9–13 however, due to rapid progress in space instruments development, in particular, in
star sensors, this topic is still actively discussed during the last decade.5–7,14–21

The majority of classic methods for solution of the Wahba problem are based on the usage of
matrix B (sometimes called the attitude profile matrix6), which is formed on the basis of vectors v
and w:

B ¼ Σn
i¼1kiwivTi : (11)

One of the first analytical solutions of the Wahba problem has been proposed by Farrell and
Stuelpnagel,22 who have shown that Ropt coincides with orthogonal matrix W of polar decom-
position B ¼ WS, where S is a symmetrical matrix.

According to Farrell, matrix W may be expressed using matrix B as���Ropt − B
���
F
¼ min

A∈SOð3Þ

���A − B
���
F
; (12)

where kAkF ¼ trðATAÞ is the Frobenius norm.
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According to Ref. 22, the W matrix may be expressed through the B matrix as

Ropt ¼ W ¼ BðBTBÞ−0.5: (13)

Though Eq. (13) appears quite simple, its practical application is connected with consider-
able difficulties. During solution of the task of satellite orientation, the vectors of sequence v
corresponding to the directional vectors of the stars are located sufficiently close to each other
(usually within the cone of 10 angular degrees or smaller), due to the size of the star tracker’s
field of view (FOV). For this reason, matrix BTB is often an ill-conditioned matrix, and the
process of computing its square root, for instance, with the Denman-Beaver iteration23 is either
diverging or has large error.

MatrixW of polar decomposition may be expressed in terms of singular value decomposition
(SVD) of matrix

B ¼ UDVT (14)

as

W ¼ UVT: (15)

Equation (14) is the basis of the method proposed by Markley.11 The fast optimal attitude
matrix (FOAM) and slower optimal matrix algorithm (SOMA) methods by Markley10 are also
based on the idea of SVD of matrix B, which in the mentioned methods is reduced to solving the
system of nonlinear algebraic equations. According to the computational experiments performed
by Markley,10 determination of the optimal orientation matrix using the SVD method has higher
accuracy than the FOAM and the SOMA methods; however, the latter two methods are faster.

The most popular group of methods for solving Wahba problem are the methods (usually
called q-method or Davenport method) calculating the quaternion of the respective orientation
matrix Ropt, as the eigenvector corresponding to maximal eigenvalue λmax of matrix K:

K ¼
�
S − sI b
bT s

�
; (16)

where

s ¼ TrðBÞ; (17)

S ¼ Bþ BT; (18)

b ¼
Xn
i¼1

ki½wi; vi�: (19)

Vector b may also be expressed using components of matrix B

b ¼
2
4B23 − B32

B31 − B13

B12 − B21

3
5: (20)

Matrix K is a symmetrical matrix; therefore, efficient algorithms exist for calculation of
eigenvectors of the matrix, e.g., Jacobi method or the methods based on QR decomposition
with preliminary reduction to tridiagonal form.24 However, implementation and debugging
of such algorithms may be quite labor consuming, considering that coding often has to be per-
formed using low-level programming languages or erasable programmable logic device (EPLD).
It is necessary to keep in mind that the specified task has to be solved in real time. Besides,
the capacity of spaceborne processors is significantly constrained. Therefore, despite small
dimension of matrix K, calculation of its eigenvectors may be laborious.

To avoid straightforward calculation of eigenvectors of matrix K, Shuster and Oh9 have pro-
posed the quaternion estimator (QUEST) algorithm, which gives an explicit formula for finding
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the eigenvector corresponding to the maximal eigenvalue λmax, provided that this value is known.
The maximal eigenvalue is searched for as the root of a nonlinear algebraic equation, which the
authors propose to solve using Newton-Raphson method. However, such method of finding
eigenvalues is the least stable method, therefore, direct search of eigenvectors of matrix K
gives more accurate results.

Other important results obtained by Schuster are as follows: he was the first to consider the
problem from the statistical point of view and has shown that the loss function as a random value
is distributed by chi-square distribution law with 2n − 3 degrees of freedom:

LðRoptÞ ∼ χ2ð2n − 3Þ: (21)

Schuster also has shown that the covariance matrix P of rotational angle error equals to:

P ¼ ðI − BÞ−1: (22)

Attitude angle errors are the values ϕ ¼ ðϕ1;ϕ2;ϕ3Þ, such that

Ropt ¼ expð−½ϕ×�ÞRtrue; (23)

where ½ϕ×� is a skew-symmetric matrix determined by elements of vector ϕ.
Markley11 has shown that in case of a large number of observations, the following approxi-

mate estimate of the covariance matrix will be valid

P ¼ σ20
ζ
ðκI þ BBTÞ; (24)

where κ ¼ ð1∕2Þðλ2 − B2Þ, ζ ¼ κλ − detðBÞ, and λ ¼ trðRoptBTÞ.
The results obtained by Schuster andMarkley show that the presented estimates of theWahba

problem are consistent. However, the issue of unbiasedness of the proposed estimates remains
open. In order to determine what is the unbiased estimate for SO(3), at first it is necessary to
clarify the concepts of mathematical expectation and the average value for the elements of this
manifold. Two approaches for determination of the concept of average value for the rotation
group—Euclidean and Riemannian—are given, for example, in Refs. 25 and 26.

The approaches to solve the Wahba problem that are closest to the approach proposed in this
work were presented by Park and Kim,27 Mortari et al.,28 and Mortari.13 Authors of Ref. 27 were
solving the task of constrained minimization similar to Wahba problem for position fixing using
global positioning system. The methodology proposed by them is using the exponential relation
between Lie group SO(3) and Lie algebra soð3Þ for determining the gradient of the loss function
and for sequential search of its minimum using Newton’s method and steepest descent method.

The “energy approach algorithm”13 proposed by Mortari has a common feature with the
proposed, in this article, small-angle rotation (SAR) method: based on the closeness of vectors
v andw, it substitutes the loss function by an approximate function—an energy function. Despite
the similarity of the basic approach, the energy approach algorithm is principally different from
the SAR because it is based on a computation of eigenvalues or SVD, while the SAR algorithm is
based on solving the system of algebraic equations.

3 SAR Method for Wahba Problem Solution

3.1 Basic Definitions

Let soð3Þ be the set of skew-symmetric matrices

soð3Þ ¼ fA ∈ R3×3: Aþ AT ¼ 0g: (25)
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The exponent of a square matrix A is the square matrix equaling the sum of infinite series

expðAÞ ¼
X∞
k¼0

Ak

k!
. (26)

The properties of the matrix exponent are verified easily

expðATÞ ¼ exp ðAÞT; (27)

expðAÞ expð−AÞ ¼ I; (28)

det½expðAÞ� > 0: (29)

In that case, if matrix M ∈ soð3Þ, then according to Eqs. (27) and (28)

exp ðMÞT expðMÞ ¼ expð−MÞ expðMÞ ¼ I: (30)

Taking into consideration Eq. (29), this means that expðMÞ ∈ SOð3Þ. That is, the exponent of
a skew-symmetric matrix is a rotation matrix

∀ M ∈ soð3Þ ⇒ expðMÞ ∈ SOð3Þ: (31)

This remarkable fact has deep connection with the theory of Lie groups and algebra.29

For vector x ¼ ðx1; x2; x3Þ, we shall denote, hereinafter, as ½x×� the skew-symmetric matrix:

½x×� ¼
 

0 x3 −x2
−x3 0 x1
x2 −x1 0

!
: (32)

Let ½a;b� be the operation of cross product, then the following relations hold true

½a; b� ¼ ½a×�b ¼ −½b×�a: (33)

3.2 SAR Algorithm of the First Order (Angular Momentum Method)

Let us assume that a system of vectors v and w exists, satisfying condition (10) specified
in Sec. 1. As already mentioned in Sec. 1, after determining the approximate attitude using
TRIAD method,6,7 using transformations (9), it is possible to achieve the fulfillment of condition
(10).

Let ω ¼ ðω1;ω2;ω3Þ be the rotation vector of the coordinate system. Then by reason of
expression (31), it is possible to replace LðRÞ ¼ L½expðωÞ� ¼ LðωÞ, and in this case, the func-
tion L may be represented in the form

LðωÞ ¼
Xn
i¼1

kijwi − expð½ω×�Þvij2: (34)

As mentioned in Sec. 1, the rotation angle ωopt

ωopt: Ropt ¼ expð½ωopt×�Þ (35)

is small. Therefore, it is possible to limit the expansion into series (26) by the first several terms.

LðωÞ ≈ f1ðωÞ ¼ 0.5
Xn
i¼1

kijwi − ðIþ ½ω×�Þvij2; (36)

in this case
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f1ðωÞ ¼ constþ
Xn
i¼1

kið−wT
i ½ω×�vi þ 0.5vTi ½ω×�2viÞ: (37)

Taking into account Eq. (33)

f1ðωÞ ¼ constþ
Xn
i¼1

kið½wi; vi�Tωþ 0.5ωT ½v×�2ωÞ; (38)

where constmeans a constant independent fromω. Thus, the task of constrained minimization of
the loss function LðωÞmay be reduced to the task of unconstrained minimization of the quadratic
form f1ðωÞ.

The necessary condition for achieving the extreme point by a function is equality of its
gradient to zero. Due to symmetric property of matrix ½v×�2, gradient f1ðωÞ equals to

∇f1ðωÞ ¼
Xn
i¼1

ki½wi; vi�T þ
�Xn

i¼1

ki½vi×�2
�
ω: (39)

The search for ω satisfying the equality ∇f1ðωÞ ¼ 0 is reduced to solve the system of
algebraic equations

Aω ¼ b; (40)

where

A ¼
Xn
i¼1

ki½vi×�2 (41)

and b is determined in Eq. (19).
It is easy to note that matrix A coincides with the inertia tensor of material points determined

by vectors vi and having masses ki. Hence, the solution of Eq. (40) has a vivid physical inter-
pretation—it is necessary to find such angular velocity ω for which the inertia momentum of a
rigid system of material points defined by vectors v and having masses ki will equal to the inertia
momentum of the same system, if unit velocity wi is applied to each material point. At that,
f1ðωÞ function may be regarded as the value of kinetic energy of the system of material points.

Considering the mentioned mechanical interpretation, the SAR method of the first order may
be also called the “angular momentum method.”

It is worth mentioning that Mortari in Ref. 13 also approximated the loss function by a
function that he regarded as the kinetic energy function-energy of n compressed springs
with coefficients of rigidity ki. In all the rest, Mortari’s approach has nothing common with
the solution proposed here.

3.3 SAR Algorithm of the Second Order

It is logical to expect from a solution of the Wahba problem that in case of permutation of
the sequences of vectors v and w, the sought-for rotation matrix A would have to be inversed.
For the SAR, it means that the SAR vector ω changes its sign. However, for the SAR of the first
order, in case of permutation of v and w, the SAR vector, in general case, changes not only its
sign but also the absolute value as well. The reason is that matrix A (41) depends only upon
vectors v but does not depend upon vectors w.

A modification of the SAR method invariant to permutation of vectors and giving the more
accurate estimate of ω than Eq. (40) is presented in this section.

Let us transform the loss function L into the gain function, as was done in Ref. 6:

gðωÞ ¼ 1 − LðωÞ: (42)

Thus, the task of minimizing the loss function was transformed into the task of maximizing
the function gðωÞ. Using uncomplicated transformations, it is possible to demonstrate that
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gðωÞ ¼
Xn
i¼1

kivTi expð½ω×�Þwi: (43)

Replacing the exponent by the first three terms of relevant series, it is possible to obtain the
approximation of the function gðωÞ ≈ f2ðωÞ

gðωÞ ≈ f2ðωÞ ¼
Xn
i¼1

kivTi

�
iþ ½ω×� þ ½ω×�2

2

�
wi (44)

or

f2ðωÞ ¼ constþ
�Xn

i¼1

ki½wi; vi�T
�
ωþ 0.5ωT

�Xn
i¼1

ki½vi×�½wi×�
�
ω. (45)

In that case

∇f2ðωÞ ¼
Xn
i¼1

ki½wi; vi�T þ 0.5

�Xn
i¼1

kið½vi×�½wi×� þ ½wi×�T ½vi×�TÞ
�
ω: (46)

Finding ω satisfying the equality ∇f2ðωÞ ¼ 0 is reduced to solving the system of algebraic
equations

Aω ¼ b; (47)

where

A ¼ 0.5
Xn
i¼1

kið½vi×�½wi×� þ ½wi×�T ½vi×�TÞ: (48)

Let us assume vi ¼ ðv1i ; v2i ; v3i Þ and wi ¼ ðw1
i ;w

2
i ;w

3
i Þ, then matrix A looks as follows:

A ¼ 1

2

Xn
i¼1

ki

2
4−2ðv3iw3

i þ v2iw
2
i Þ v1iw

2
i þ v2iw

1
i v1iw

3
i þ v3iw

1
i

v1iw
2
i þ v2iw

1
i −2ðv3iw3

i þ v1iw
1
i Þ v2iw

3
i þ v3iw

2
i

v1iw
3
i þ v3iw

1
i v2iw

3
i þ v3iw

2
i −2ðv2iw2

i þ v1iw
1
i Þ

3
5. (49)

Matrix A is connected with attitude profile matrix B by the following equation:

A ¼ 0.5S − sI; (50)

where scalar s and matrix S are expressed through attitude profile matrix B, as shown in Eqs. (17)
and (18).

3.4 Matrix Corresponds to the Small-Rotation Vector

When the SAR vector ω is found, the sought-for approximation of matrix Ropt is obtained as

Ropt ¼ expð½ω×�Þ: (51)

There are many methods for calculating matrix exponent,30 but for the case of a skew-
symmetric matrix, the simplest way is to use the Rodriguez formula:29

expðωÞ ¼ Iþ sinðΘÞ½μ×� þ ½1 − cosðΘÞ�½μ×�2; (52)

where Θ ¼ jωj, μ ¼ ω∕Θ.
Instead of using the matrix form for setting the rotation in R3, it is preferable to use the

quaternion presentation, which is more convenient as it requires less memory space and allows
reduction of the number of operations necessary for vector rotation. Calculation of the orienta-
tion quaternion corresponding to rotation ω is easier than calculation of the corresponding
matrix:
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Q ¼ ½cosðΘÞ; sinðΘÞμ�: (53)

Though usage of quaternions is more convenient from the computational point of view than
usage of matrices, we shall continue using the matrix notations in this work for the sake of
convenience of theoretical calculations. If required, the matrix notations may be easily substi-
tuted by quaternion analogs.

4 Evaluation of Solution Accuracy

It is necessary to determine the criteria for evaluation of the accuracy of the obtained solution.
Different approaches to this issue are possible.

In technical applications, the error of star trackers is measured most often by three Euler
angles by which matrix R1 must be additionally rotated in order to be aligned with matrix
R2. Euler angles set the sequential rotation around axes OX, OY, OZ and are commonly
used in mechanics and computer graphics and are called roll, pitch, and yaw.

For star sensors, axis OZ traditionally coincides with the optical axis of the device; therefore,
the largest orientation errors are achieved for the third angle yaw (rotation around line of sight),
whereas the roll and pitch errors are usually equaling to each other.

Euler angles are convenient for practical usage. Usually, a satellite is always facing the Earth
with one of its sides (where scanning equipment or radio transmitter is located). The location of
the star tracker within the satellite is known; therefore, the orientation error measured in Euler
angles determines the error of directing the satellite on the Earth.

However, Euler angles are extremely inconvenient for theoretical evaluations, as they are not
invariant to the change of coordinate system. Besides, it is desirable to express the combined
error by one number rather than by three numbers.

For evaluation of a difference of rotation matrices, usually two metrics are used-Riemannian
and Euclidean. In the first case, the set of rotation matrices SO(3) is regarded as Riemannian
metric manifold with metric25

dRðR1;R2Þ ¼
1ffiffiffi
2

p k logðRT
1R2ÞkF: (54)

The Euclidean metric is based on the Frobenius norm

dEðR1;R2Þ ¼
1ffiffiffi
2

p kR1 − R2kF: (55)

The value dR varies between 0 and π, whereas dE varies between 0 and 2. The set of all
rotation matrices SOð3Þ is homeomorphic to a 3-D sphere in four-dimensional space, and each
matrix may be interpreted as a point on this sphere. In such an interpretation, dR may be
regarded as angle, whereas dE may be regarded as chord between respective points on the
sphere.

The Riemannian distance dðR1;R2Þ defines the minimal absolute value of the angle by which
the coordinate system R1 must be rotated around an arbitrary axis in order to align it with the
coordinate system R2.

If the rotation is performed around one and the same axis for the angles φ1 and φ2, then for
the matrices R1ðφ1Þ andR2ðφ2Þ, the value of Riemannian metric dRðR1;R2Þ equals to jφ1 − φ2j,
naturally complying with our perception of orientation error.

Considering that accuracy in optics and in astronomy is usually measured by angular minutes
(or angular seconds), the value d determining accuracy will be expressed hereinafter in angular
minutes.

It is worth mentioning that in case of close matrices, Euclidean metric and Riemannian metric
are close to each other
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dEðR1;R2Þ ≈ dRðR1;R2Þ: (56)

Based on geometrical interpretation of metrics, relation (56) means equality of arc length and
chord length for small angles. As star trackers are high-precision instruments with accuracy of
the order of angular seconds, it may be assumed that relation (56) holds for them. In order to
highlight this fact, hereinafter, we shall denote the metric dR simply as d.

5 Step-by-Step Form of the Algorithm

Input data for the algorithm are:

R0—initial approximation of orientation matrix;
w, v—sequences of unit 3-D vectors of dimensionality n;
ε—required accuracy of solution (in radians).

Output data:

R—optimal orientation matrix.

Intermediate data:

Rω—orientation matrix.

All matrices and vectors have the dimension equal to 3.
The general scheme of the SAR is as follows. Gain function gðωÞ is approximated by

quadratic form f2ðωÞ. By solving the system of linear Eq. (42), the minimum of function
f2ðωÞ is found. When the respective rotation angles ω are found which minimize the func-
tion f2ðωÞ, the rotation matrix R is calculated on its basis. Vectors v are rotated by matrix R
and approach to w.

These operations are repeated until rotation angle ω becomes negligible in the framework of
the task being solved.

The steps of iterative algorithm for solving Wahba problem using the SAR method:

1. Determining the initial approximation R0 using TRIAD method.
2. Rω ¼ R ¼ R0.
3. vi ¼ Rωvi, i ¼ 1; : : : ; n.
4. Determining, on the basis of formula (42), the parameters of the system of linear

algebraic equations A and b using data w and v.
5. Solving the system of linear algebraic equations Aω ¼ b.
6. According to formula (52), obtaining rotation matrix Rω from vector ω.
7. R ¼ RωR.
8. If the condition kRωk2F < ε2 is satisfied, then go to step 9, else to step 3.
9. End of algorithm.

If the rotation is set by quaternion, the algorithm will be similar.
All the steps of the SAR algorithm are sufficiently simple for coding including low-level

programming languages. The most source-consuming among these steps are extraction of square
root and solving system of linear equations. Binary arithmetic has fast and effective methods for
calculating square root. Implementation of Gauss method is also rather simple even using low-
level programming languages. Moreover, solution of 3-D system may be easily implemented
directly using Cramer formula (for such dimensions, it has a negligible influence on execution
time and accuracy). At the same time, finding eigen numbers, even by means of the simplest
Jacobi method, requires nontrivial logic which is not simple for implementation using assembler
or EPLD without saying about more complicated methods.24 Methods of singular matrix decom-
position are also complicated for implementation.

The first-order SAR algorithm was implemented in software of 329K star tracker,31 which
successfully operates on board the data relay satellite Luch-5A since December 2011 and on
board the satellite Luch-5B since November 2012. Implementation of the algorithm using digital
signal processor (DSP) has shown that it is simple for coding and program debugging.
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6 Simulation Results

6.1 Convergence of the Method

The SAR of the first order and the second order is obtained using approximation of matrix expo-
nent by its decomposition into exponential series up to the first and the second power, respec-
tively [Eqs. (36) and (44)]. Thus, approximation by means of loss functions f1ðωÞ and f2ðωÞ
has, respectively, an error of orders ω and ω2. Since minimum of functions f1ðωÞ and f2ðωÞ is
seeking exactly at each step according to formulae (40) and (47), so the final error of function
LðωÞ minimum will also have order of ω and ω2.

In order to test the accuracy and convergence of the proposed method, its modeling in
MATLAB system has been performed. Data of Tables 1–4 are obtained by means of averaging
not less than 100,000 experiments.

Simulation was performed as follows. Rotation matrix Rtrue was set in random manner. n unit
vectors wi were uniformly placed in a random manner in the FOV (spherical square 2W) of the
star sensor. Some errors were added in coordinates of each vector to x and y components of each
vector. Vectors vi ¼ Rtruewi þ ε were determined with subsequent normalization vi ¼ vi∕jvij,
where ε ∼ Nð0; σÞ—normally distributed random values. In this case, it was not allowed that star
angular distances to be less than 10 SD σ of the added error. Such restriction is quite reasonable
since the adjacent stars are not included usually at the guide star catalogues.

Using the SAR and singular decomposition method, estimates of the matrix Ropt were
obtained for the sequence w and v: Ropt1 Ropt2. According to formula (49), the errors
Δ1 ¼ dðRopt1;RtrueÞ and Δ2 ¼ dðRopt2;RtrueÞ were calculated.

Table 1 Average error of estimate Ropt using the singular decomposition method and the small-
angle rotation (SAR) method of the first order in angular minutes.

Method Step zero First step Second step Third step Fourth step Fifth step

Singular value
decomposition (SVD), Δ1

26.2657745

SAR, Δ2 99.3452572 26.2961055 26.2657045 26.2657761 26.2657744 26.2657745

Difference, Δ 73.1 0.0303 −6.99 × 10−5 1.65 × 10−6 3.83 × 10−8 3.77 × 10−10

Table 2 Value of loss function LðRÞ for the estimate using the singular decomposition method and
the SAR method of the first order in angular minutes.

Method Step zero First step Second step Third step Fourth step Fifth step

SVD, Δ1 2.9383489

SAR, Δ2 4.523 2.9395197 2.9383489 2.9383489 2.9383489 2.9383489

Difference, Δ 1.58 0.00117 2.37 × 10−8 1.22 × 10−11 7.99 × 10−15 −2.6 × 10−15

Table 3 Average error of estimate Ropt using the singular decomposition method and the SAR
method of the second order in angular minutes.

Method Step zero First step Second step Third step Fourth step

SVD, Δ1 26.0686937

SAR, Δ2 98.7480572 26.0750189 26.0686937 26.0686937 26.0686937

Difference, Δ 72.68 0.0063252 −5.5 × 10−10 1.83 × 10−12 1.78 × 10−12
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The mentioned sequence of operations was performed for two SAR methods: the first and
second order.

The values Δ1 and Δ2 and their difference Δ ¼ Δ2 − Δ1 for the SAR methods of the first and
second order are given in Tables 1 and 3. The values of square root from the loss function L are
given in Tables 2 and 4.

The following parameters were used during modeling: the side of the square FOV 2W ¼ 20

angular degrees, number of stars n ¼ 15, SD σ ¼ 10.0 arc min. It should be noted that the SD
value used during the simulation is much larger than actual values. This was done in order to
increase the number of steps executed by the algorithm before reaching the optimal point.
Solution by TRIAD method was used as the initial approximation.

As may be seen from Tables 1–4, the singular decomposition method provides more accurate
estimate than the SAR though the difference becomes negligibly small after several iterations.
Since the exact value Ropt is not known, the estimate Ropt may be approximated (with the accu-
racy of singular decomposition by method32) by the estimate Ropt of the SVD method. In this
case, the third row of the table may be interpreted as the error of the SAR method.

In order to better understand the convergence behavior of the SAR, Figs. 2 and 3 show the
dependence of the difference between accuracies of the methods from the number of iterations
(in logarithmic scale). Every line in Figs. 2 and 3 corresponds to a single experiment (differing
from Tables 1–4 whose data are obtained by means of averaging).

The simulation results confirm the conclusion about the method’s convergence rate. As may
be seen from Fig. 2 and Table 1, SAR of the first order has linear convergence. Based on Fig. 3
and Table 3, the conclusion may be made that SAR of the second order has super-linear con-
vergence. Graphs in Fig. 3 have form which differs from parabola because the difference
between the SAR and the SVD method is stabilized starting from the third step. This is caused
by the error of number representation with the type “double” and the error of the singular decom-
position algorithm implemented by LAPACK software package.32

Table 4 Value of loss function LðRÞ for the estimate using the singular decomposition method and
the SAR method of the second order in angular minutes.

Method Step zero First step Second step Third step Fourth step

SVD, Δ1 2.9331031

SAR, Δ2 4.5330924 2.9331278 2.9331031 2.9331031 2.9331031

Difference, Δ 1.6 2.5 × 10−5 2.2 × 10−15 −4.4 × 10−16 −4.4 × 10−16

Fig. 2 Dependence of the difference between accuracies of the small-angle rotation (SAR)
method of the first order and the singular value decomposition (SVD) method Δ ¼ jΔ1 − Δ2j.
OX axis, number of iterations of SAR method. OY axis, difference between accuracies of the
two methods in angular minutes (logarithmic scale).
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At any rate, experimental data are indicative of the fact that the second-order method is by
far more effective than that of the first order; therefore, the former is more expedient to be used
for calculations. Given this, its computational complexity is just very little higher than that of
the first order method. A matrix calculation for the second-order method will require more
multiplication operations than it will for the first-order method. Otherwise, computational com-
plexity of the algorithms is identical.

Simulation shows that if the error of initial approximation of orientation is of the order of 1
angular minute, then after one iteration of the SAR, the achieved resulting accuracy is of the
order of 10−5 angular minute, abundantly meeting the requirements to the errors of state-of-the-
art star trackers. In case of necessity, two iterations of the method may be performed. Performing
more than three iterations of the SAR makes no sense because in this case, the accuracy of the
method exceeds the accuracy of data presentation using the type double.

6.2 Method Stability against Single Errors

An important issue in star tracker attitude estimation is the presence of inaccurate data.
Radiation, pixel failures, etc., can cause one or more of the star vectors to have noise values
that are significantly larger than others. Methods such as the SVD method and Davenport’s
q-method are very robust to this, while faster methods such as QUEST have more problems
dealing with this.

Simulation was performed to verify stability of the SAR against errors of such kind. The
errors of 60 arc sec, i.e., significantly larger than usual errors for stars, were added to directing
vectors of two stars from 15. Since SAR accuracy significantly depends on accuracy of initial
approximation, the most interesting for simulation is the case when two vectors having maxi-
mum errors are chosen to estimate initial approximation. The simulation data are presented in
Table 5. The data of Table 5 were obtained by means of averaging not less than 50,000
experiments.

Fig. 3 Dependence of the difference between accuracies of the SAR method of the second order
and the SVD method Δ ¼ jΔ1 − Δ2j. OX axis, number of iterations of SAR method. OY axis, differ-
ence between accuracies of the two methods in angular minutes (logarithmic scale).

Table 5 Comparison of SVD and SAR algorithms’ stability against single errors (errors of SD ¼
60 arc sec are added to the first two vectors).

σ (arc sec) 1 5 10 15

SVD (arc sec) 55.66742 57.10473 61.02592 67.56212

SAR, 1 step 55.69210 57.10473 61.02592 67.56212

SAR1–SVD 1.3 × 10−6 −1.9 × 10−9 −3.5 × 10−9 8.0 × 10−10

SAR, 2 steps 55.66742 57.10473 61.02592 67.56212

SAR2–SVD −1.4 × 10−10 −1.9 × 10−9 −3.6 × 10−9 8.7 × 10−10
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Taking into account the characteristics of modern star trackers (with the FOV of angular
radius W ≈ 10 deg ), SD for star position error is not able to exceed 1 arc min since else it
will not be identified by the star identification algorithm according to criterion of mutual angular
distances. Proceeding from this estimation, errors of 60 arc sec were added to the first two stars’
positions at the simulation. The SD σ of errors for other stars is presented in Table 5 along with
the simulation results.

The given Table 5 shows that the SAR algorithm is stable against random single errors and
possesses, concerning this criterion, properties close to SVD algorithm. The difference in accu-
racy for SVD and SAR methods is comparable with the data presentation error.

7 Computational Aspects

7.1 Time of Algorithm’s Execution

The purpose of this section is to compare the computational complications of the SAR algorithm
and the classical algorithms of solving the Wahba problem based either on SVD or on calculation
of eigenvectors.

The components requiring the most computational efforts at each iteration of the SAR are
rotation of n vectors with subsequent computation of matrix A and evaluation of rotation vector
ω . From the computational point of view, these tasks are reduced to sequential multiplication of
n vectors by square matrix or quaternions and subsequent solution of the system of linear alge-
braic equations.

Although finding the eigenvectors is similar to solving the system of linear equations and is
formally characterized by asymptotic33 complexity Oðm3Þ, the actual number of operations
required for finding the eigenvectors is much higher. The reason is that the Jacobi method, sim-
ilar to the methods of matrix reduction to standard forms and QR decomposition,24 requires
numerous calculations of square root. Besides, the methods of finding the eigenvectors are iter-
ative, i.e., require numerous recalculations until the desired accuracy is achieved. On the other
hand, solving a system of linear equations requires a finite number of steps.

According to Ref. 33, the following statement is valid.
Statement: The Gauss method for a system of equations with dimensionality m requires

m
3
ðm2 þ 3 m − 1Þ; (57)

multiplication and division operations.

Based on Eq. (57), solution of the system of equations with dimensionality 3 × 3 using the
Gauss method requires only 17 multiplication operations.

It is obvious that computational complexity of all the algorithms mentioned in the review is
OðnÞ depending on the number of stars, since these algorithms are related to calculating attitude
profile matrix B [Eq. (11)]. Moreover, besides the calculation of the matrix B rotation of n vec-
tors is required for SAR algorithm. Due to additional computational consumption for the vectors’
rotation, SAR algorithm has linear coefficient, which is larger than SVD and q-method have.

It is also obvious that time of the algorithm operation linearly depends on quantity of
iterations.

To compare algorithmic complexity of the proposed algorithms with state-of-the-art algo-
rithms, evaluation of their execution time in PC was performed. SVD, q-method, QUEST,
and SAR of the second order for one and two iterations were chosen for the comparison.
The algorithms were implemented using MATLAB 7/0 and a computer with the processor
Intel Core Duo 2.00 GHz. Time of the algorithms’ execution versus number of stars and the
number of iterations are presented in Figs. 4 and 5.

Interpretive program MATLAB is known for its slow operation, so the absolute values of
execution time should be regarded very accurately. Real time of algorithm’s execution depends
significantly on the method of its implementation using one or another processor. For compari-
son, time of SAR algorithm’s execution at a single iteration for 10 to 15 stars using 40-MHz DSP
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processor is equal to 10 μs approximately. For modern space class DSP, this time will be tens of
milliseconds.

It is seen from Fig. 4 that the methods SVD, q-method, and QUEST have the same linear
coefficient of increase depending on the number of stars. The SAR method has larger linear
coefficient comparing with SVD, the q-method, and QUEST and therefore its execution
time will rise a greater extent at increasing number of stars. However, as was mentioned
above, not all stars are used for recognition but usually only 10 to 15 of the brightest stars
because their coordinates have the highest accuracy.

The fact, that SAR algorithms’ execution time rises a greater extent at increasing number of
stars comparing with SVD, q-method, and QUEST is a fundamental property of the algorithms.
At the same time, the constant constituent of the algorithm’s execution time (the graph value for
two stars) may significantly vary depending on implementation of the algorithm using one or
another processor.

The SAR algorithm’s execution time versus quantity of the method iterations is presented in
Fig. 5. The number of stars in FOV is 10. Execution time for the algorithms SVD, the q-method,
and QUEST (shown by horizontal lines) is given for comparison. As should be expected, the

Fig. 4 Time of the second order SAR algorithms’ execution versus number of stars. The digits
denote characteristics of the following algorithms: 1—quaternion estimator (QUEST), 2—q-
method, 3—SVD, 4—SAR one iteration, and 5—SAR two iterations.

Fig. 5 Time of the second order SAR algorithm’s execution versus number of iterations. The digits
denote characteristics of the following algorithms: 1—SAR, 2—SVD, 3—q-method (Davenport),
and 4—QUEST.
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dependence has linear form. For quantity of iterations more than two, time of algorithms’ exe-
cution for SAR is essentially larger than for SVD, q-method, and QUEST. However, as was
mentioned in the preceding section, to meet current accuracy requirements, the method’s
one or two iterations are quite sufficient.

7.2 Conditionality of the Equation System Solution

Unlike the mentioned methods of finding the eigenvectors, solving a system of linear equations
using the Gauss method does not require the calculation of square root, and that is the advantage
of the SAR. However, employing other method of solution than the Gauss method may neces-
sitate calculation of square root. For example, since matrix A is a symmetric matrix, the search
for system may be solved using the Cholesky method, which, in general case, is more stable than
the Gauss method.

To compare stability of the Gauss method and the Cholesky method, a computational experi-
ment was performed. Both methods were programmed in C++ language using Visual Studio
2010. Numbers were represented with double precision. For device FOVangular radius ranging
from 1 to 10 deg, matrices A were generated, and SAR vectors ω were calculated by the Gauss
method and the Cholesky method. The computational experiment showed that the difference
between solutions obtained by the two methods is within 10−12 arc min, which is substantially
smaller then the accuracy requirements raised to the present-day star trackers. Therefore, appli-
cation of the Gauss method instead of the Cholesky method in the context of the task being
solved is quite reasonable.

The largest difference in the accuracy of the Gauss method and the Cholesky method was
observed for the smallest FOV. The reason is that the closer the stars (and the corresponding
vectors) are located to each other, the more degenerated the task of finding the minimum of LðωÞ
function. The following fact holds that the smaller the FOVof the star tracker, the more elongated
function L is.

The problem of degeneracy of the search task is illustrated in Fig. 6 showing the dependence
of the loss function L from parameters ω2 and ω3. In order to enable the presentation of the
dependence in 3-D space, it is supposed that ω1 value is known precisely. Figure 6 distinctly
shows that diagram L is elongated in shape, and its level lines are similar to ellipses. In opti-
mization theory,34 such functions are named as “ravine functions.”

If L function is approximated by a quadratic form, as was done in Eqs. (36) and (44), then the
ratio of maximum and minimum singular values of matrix A of the quadratic form may serve
as the measure of elongation of L. If matrix A is positively defined, then the square root of
the above mentioned ratio is the ratio of the lengths of maximum and minimum semiaxes of

Fig. 6 Dependence of loss function L from parameters ω2 and ω3.
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the ellipsoid determined by the corresponding quadratic form. The ratio of maximum and mini-
mum singular values is the matrix condition number condðAÞ for Euclidean norm. Therefore,
the size of the device FOV is connected with the elongation of L function, which, in its turn, is
connected with the condition number of matrix A and, respectively, with accuracy of finding ω.

Based on the mathematic simulation, a following observation was made, in case of dispo-
sition of stars in a circular FOVof angular radiusW, the condition number of matrix A is propor-
tional to squared cotangent of the FOV angular radius W of the star tracker.

The author did not find the proof of this fact, but its truth is confirmed by simulation results
for the several particular cases. During simulation, the stars were arranged in the FOV of the
device as shown in Fig. 7. In total, 3 possible relative positions of stars were considered,
for the number of stars n ¼ 2; 3; 4. Simulation results are shown in Fig. 8. The indicated depend-
ence is valid also for other quantity and mutual positions of the stars.

It is worth mentioning that the problem of degradation of conditionality when the FOV is
decreasing is not only the specific problem of the SAR but is also typical for the Wahba problem
in general.

8 Conclusions

The SAR method proposed in this work is an iterative sequential method for solving the Wahba
problem, having linear and quadratic convergence. For the data represented by double precision,
the optimal solution is achieved after two iterations, with an error of initial approximation many

Fig. 7 Relative disposition of stars in field of view (FOV) of angular radius W .

Fig. 8 Dependence of the condition number of matrix A from the FOV’s angle of the star tracker.
The dots denote the condition numbers computed experimentally, the line denotes the approxi-
mation by the function k� tan ðW Þ−2. The numbers 1, 2, and 3 correspond to three different
dispositions of stars according to Fig. 7.
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times higher than actually possible. For actual data, one or two iterations of the method are
sufficient. Each iteration of the method is reduced to sequential multiplication of n vectors
by a matrix or to multiplication of quaternions and solving of the system of linear algebraic
equations with dimensionality 3. The method is stable against single errors of individual vectors.

The primary advantage of the proposed method as compared with classical methods based on
calculation of eigenvectors and singular decomposition is the simplicity of implementation.

The SAR method of the first order was implemented in software of wide-angle star tracker
329K. The trackers of this type successfully operate already more than 1 year on board of the
Russian data relay geostationary satellites Luch-5A and Luch-5B.

9 Future Works

It would be useful to determine the theoretical dependence of conditionality of the task being
solved from size of the FOV, which, as experimentally shown in this work, is proportional to the
squared cotangent of the FOV’s angle of the star tracker.
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