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Abstract. Climate change may represent the greatest future risk to the sagebrush ecosystem.
Improved ways to quantify and monitor gradual change resulting from climate influences in
this ecosystem are vital to its future management. For this research, the change over time of
five continuous field cover components including bare ground, herbaceous, litter, sagebrush,
and shrub were measured on the ground and by satellite across six seasons and four years.
Ground-measured litter and herbaceous cover exhibited the highest variation annually and
herbaceous cover the highest variation seasonally. Correlation of ground measurements to
corresponding remote-sensing predictions indicated that annual predictions tracked ground
measurements more closely than seasonal ones, and QuickBird predictions tracked ground mea-
surements more closely than Landsat predictions. When annual linear slope values from ground
plots and sensor predictions were correlated by component, the direction of ground-measured
change was tracked better with QuickBird components than with Landsat components.
Component predictions were correlated to annual and seasonal DAYMET precipitation.
QuickBird components on average had the best response to precipitation patterns, followed
by Landsat components. Overall, these results demonstrate the ability of sagebrush ecosystem
components as predicted by regression trees to incrementally measure changing components of a
sagebrush ecosystem. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073508]
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1 Introduction

Sagebrush (Artemisia spp.) ecosystems constitute the single largest North American semiarid
shrub ecosystem1 and provide vital ecological, hydrological, biological, agricultural, and recrea-
tional ecosystem services.2,3 However, disturbances such as livestock grazing, exotic species
invasion, conversion to agriculture, urban expansion, energy development, and other develop-
ment have historically altered and reduced these ecosystems,2,4–6 with ∼50% loss in total spatial
extent.3,7,8 Constant perturbations and changes to these systems are disrupting vital biological
services, such as providing habitats for numerous sagebrush-obligate species, including the
sage-grouse (Centrocercus spp.). This has severely affected sage-grouse populations across
their ranges,3,9 leaving populations threatened with extirpation in some habitats where they
historically persisted.3,10

While ecosystem-wide disturbances are having diverse impacts to sagebrush habitats today,
climate change may ultimately represent the greatest future risk to this ecosystem.11–14 Both
warming temperatures and changing precipitation patterns (such as increased winter precipita-
tion falling as rain) will likely favor species other than sagebrush15 and increase sagebrush
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disturbance risk from fire, insects, diseases, and invasive species.11,16 Despite the vast area
covered by this ecosystem and the numerous disturbance forces operating on the landscape, effec-
tive large-area monitoring and prediction tools have not been implemented, and widely accepted
metrics to quantify and communicate disturbance magnitudes are not well developed.17–20

Disturbance monitoring capable of measuring, quantifying, and reporting change in metrics under-
stood by land managers is critical to future successful management of this ecosystem.3,10,18,21,22

Optical remote sensing is still the most likely data source and tool for large-area monitoring
of disturbance within the sagebrush ecosystem, supporting a framework that can offer relatively
efficient and accurate analysis of change across a range of spatial and temporal scales.21,23,24

Sagebrush ecosystems represent a challenging remote-sensing environment because these semi-
arid shrublands have sparse and similar vegetal cover with high proportions of bare ground and a
variety of soil reflectance properties.25,26 Despite these challenges, an optical remote-sensing
signal capable of characterization exists for semiarid shrublands, and monitoring is fea-
sible.26–32 Studies within the sagebrush ecosystem have demonstrated the ability for remote sens-
ing to characterize more abrupt types of disturbance from fire33,34 and human development35,36

and gradual types of disturbance such as grazing37 and climate change.23

A comprehensive understanding of the relationship between remote-sensing change and
gradual changes in sagebrush ecosystem components is still lacking; only a few studies
have begun to explore that relationship.24,36,38–40 Further, even beyond the sagebrush ecosystem
to semiarid systems in general, remote-sensing change studies have historically targeted the
development of indices such as the normalized difference vegetation index (NDVI) or other
similar approaches to understand change.41–43 These indices can be difficult to interpret and
translate to on-the-ground understanding.44–46

Metrics that characterize changes that managers readily use in the field for real-time deci-
sions, such as fractional vegetation predictions,21 would more likely ensure application of such
products for daily management decisions and applications. Recent research has sought to rec-
oncile this need, with approaches centered on using a single year of training data to parameterize
a base characterization layer, which is then projected through several time periods using change
vector analysis to identify what change is occurring. This approach assumes change areas iden-
tified in the change vector process can be labeled using values from the base characterization
layer.39,40 However, no research has tested this assumption by gathering repeated ground mea-
surements over many time steps (seasons or years) to fully evaluate the ability of the change
vector approach to detect fine-scale change within sagebrush ecosystems.

Technological advances have also resulted in the development of higher-spatial-resolution
sensors offering new potential for monitoring in sagebrush ecosystems at resolutions finer than
Landsat.19,21,47–49 New spectral bands at finer spatial resolution can increase our ability to detect
smaller changes and improve monitoring applications. Increased sensor resolution may allow for
changes to be detected at more local scales, enhancing interpretation and understanding. Also,
because ground-measurement approaches are often prohibitively expensive, high-resolution sen-
sors offer the potential to extrapolate ground measurement across larger landscape models and
also provide an operational surrogate for ground plot remeasurement. However, studies that
explore the capabilities of higher-resolution sensors to complement and support component pre-
dictions derived at moderate spatial scales for change monitoring have not been completed.

Downscaling of climate information such as precipitation also continues to evolve to better
support more localized analysis. The release of new data with longer temporal records and at
finer spatial scales provides new opportunities for defining the relationship between climate change
and sagebrush ecosystem change. Specifically, the new release of DAYMET daily gridded surface
climate data,50 providing daily precipitation data at a 1-km spatial resolution, provides a new oppor-
tunity to explore potential finer-scale links of climate change to any observed ecosystem change.

We attempt to address these research gaps by capitalizing on advancements in high-resolu-
tion remote-sensing data availability, remote-sensing component prediction and change detec-
tion, and new availability of higher-spatial-resolution precipitation. Our goal was to explore
whether component change and precipitation impacts can be detected across multiple scales
of remote sensing in a sagebrush ecosystem. Ongoing ground and satellite monitoring of several
focus areas in Wyoming provide the opportunity to explore change patterns from a variety of
drivers. For this evaluation, we focus on one particular monitoring site, labeled “1.” Site 1 has
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had no observed potential change drivers during field visits or in any satellite images other than
climate influences during the timeframe of this study, offering a good opportunity to examine
ecosystem change driven only by variation in climatic conditions. We tracked component change
in this sagebrush ecosystem across 4 years and six seasons (during the first 2 years) using multiyear
satellite imagery and ground-based vegetation sampling. The spatial distribution and temporal
change for fractional cover components of bare ground, herbaceous, litter, shrub, and sagebrush
were quantified between 2008 and 2011. Our specific study objectives were to (1) determine the
relationship between changing spatial and temporal extents of fractional component change as
measured from three scales, including ground measurement, QuickBird (QB) 2.4-m satellite
acquisitions, and Landsat 5 (LS) 30-m satellite acquisitions; (2) quantify, compare, and contrast
observed changes of remote-sensing sagebrush ecosystem components across years and seasons
with ground measurements; (3) test if remote-sensing components trained on a single base year
(2008), and subsequently extended through time using change vector analysis (2009 to 2011), are
sensitive enough to capture subtle ground-measured change over time; and (4) use DAYMET pre-
cipitation data to evaluate if precipitation changes correlate with annual and seasonal component
change identified from ground measurement, QB predictions, and LS predictions.

2 Data and Methods

2.1 Overview

Our approach examined 2 years of seasonal sagebrush ecosystem change nested within 4 years
of annual sagebrush ecosystem change using data collected from ground measurements and
remote-sensing data from QB and LS. We measured proportional amounts of each of five sage-
brush ecosystem fractional cover components (hereafter simply called components) including
cover of bare ground, herbaceous, litter, sagebrush (all species), and shrub (all shrubs combined)
as continuous fields in 1% intervals using both ground plots and satellite predictions. Using 2008
ground measurements, we produced QB and LS satellite data component predictions for the
study area. The percent cover of each component was then both annually and seasonally updated
only in areas that had spectrally changed from the 2008 base year or season. These updates were
completed with regression trees (RT) using unchanged 2008 base areas as training sources. We
collected field data in other years and seasons for evaluation of these predictions. Correlation
analysis was then conducted to explore relationships between various ground, satellite, and pre-
cipitation measurements. We explain each methodological step by section below.

2.2 Study Area

The study was conducted in southwestern Wyoming, United States. One 64-km2 area (site 1) was
selected as a focus area for intensive ground measurement coupled with QB and LS measure-
ments (Fig. 1). This site represented one of 30 sites used for initial 2006 Wyoming sagebrush
characterization.21 Site 1 is located ∼22 km southeast of Farson, Wyoming. It contains a range of
topography with elevations from 2026 to 2327 m, and slopes up to 31 deg. It has predominantly
sandy soils and contains part of the Farson sand dunes in the northeast corner. Vegetation is
dominated by sagebrush shrubland, especially in the upland areas, with salt desert shrub species
dominating in the lowland and sandy areas. Herbaceous areas range from typical grasses and
forbs interspersed among shrubs to subirrigated meadows where a high subsurface water table in
the sand dune areas creates higher-than-normal biomass productivity for these selected areas.
This site is public land administered by the Bureau of Land Management and is typically grazed
by cattle most of the summer. During our study, we observed no substantial differences in the
amount or duration of grazing from year to year.

2.3 Baseline Data Collection

2.3.1 Plot selection and measurement

We segmented the QB imagery into spectrally similar polygon patches to identify sites for poten-
tial ground sampling. We also classified the image into 30 unsupervised clusters. Segmented
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polygons were then intersected with the 30 clusters to identify the majority cluster class in each
polygon, and 66 polygons representing the full range of spectral variability across the QB
image were then selected.21 Ground measurements were conducted using ocular measurements
at seven 1-m2 quadrats along each of two 30-m transects within each polygon plot.21,27 To
ensure remeasurement was spatially over the same quadrat areas, we permanently staked
the beginning and ending of each transect. Cover was estimated from an overhead perspective
(satellite), with the total cover of all vegetation and soil components summing to 100%. The
shrub component represented all woody shrub species; the sagebrush component is a subset of
the shrub component and represented only sagebrush shrub species (Artemisia spp.); the her-
baceous component represented all grasses (live and residual standing) and forbs; litter is the
combined cover of dead standing woody vegetation and detached plant and animal organic
matter; and the bare ground component represented any exposed soil or rocks. All individual
quadrat cover estimates were made in 5% increments. Ground measurements were conducted
annually on the same approximate dates, with QB image acquisition attempted as near these
dates as possible. Plot measurements for 2008 to 2011 were conducted by the same two indi-
viduals over the same plots every year, except in 2011 when the alternate observer sampled
all plots.

2.3.2 Image collection and preprocessing

QB images covering the study area were targeted seasonally (spring, summer, and fall) for 2008
and 2009, and annually during each of the summers of 2008 through 2011. Four-band multi-
spectral images (visible blue, green, red, and near-infrared) were collected at 2.4-m resolution
with a desired target of <20 deg off-nadir view angle. Imagery was processed by Digital Globe
to UTM using a 2 × 2 bilinear resampling kernel. We used the ERDAS 10 AutoSync tool to
accomplish QB orthorectification using 1-m National Agricultural Imagery Program imagery
as the base. The AutoSync tool uses an automatic point matching algorithm to generate hundreds
of tie points between the reference image and the subject image to complete the geometric cor-
rection. This functionality is sensor specific and enhanced with the use of a digital elevation
model (DEM). Subsequent years of QB imagery were registered to the orthorectified 2008
image base to ensure spatial consistency using the same process as described above. QB images
were converted to at-sensor reflectance using the following equation:

Fig. 1 Location and spatial extent of the study area site 1 used for monitoring sagebrush
component change from 2008 to 2011 in southwestern Wyoming.
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ρλ ¼
Lλ × d2 × π

Esunλ × cosðθsÞ
;

where ρλ ¼ planetary top-of-the-atmosphere reflectance (unitless), π ¼ mathematical

constant equal to ∼3.14159 (unitless), Lλ ¼ spectral radiance at the sensor’s aperture
[W∕ðm2 · sr · μmÞ], d ¼ Earth-sun distance (astronomical units), Esunλ ¼ mean exoatmo-
spheric solar irradiance [W∕ðm2 · sr · μmÞ], and θs ¼ solar zenith angle (deg).

This is similar to the approach used for converting the LS imagery to at-sensor reflec-
tance.51,52 Results were then converted to 8-bit files using a scaling factor of 400 to remain
consistent with the way the LS was processed.

Multiseason and multiyear LS imagery from 2008 to 2011 was acquired for path 37 row 31
and processed using the automated level 1 product feneration system. Through this process,
the scenes were converted to at-sensor reflectance, projected to Albers equal area, and terrain
corrected.40,52–54 The positional accuracy of all LS and QB images was carefully controlled to
ensure direct comparisons of multiple dates and image platforms were spatially accurate.

2.3.3 Component predictions

The 2008 base spatial distributions of five components of sagebrush habitat including cover of
bare ground, herbaceous, litter, shrub, and sagebrush were estimated at 1% intervals for both QB
and LS using RT models. For QB, 120 ground transects, with four additional mini plots centered
over very high component value areas, were used for RT training. Vegetation characteristics were
sampled at seven 1-m2 quadrats along 30-m transects in sample polygons. The mean value for
each of the variables of interest was calculated across all seven 1-m quadrats within a transect.
These values were assigned to all pixels occurring within the sampling area for each transect. The
five component predictions within the QB image were developed independently from multispec-
tral QB and ancillary data using the RTalgorithm Cubist1,55 following a protocol developed in an
earlier study.21 For LS, QB predictions from three sites (including site 1) across the LS thematic
mapper (TM) scene were combined to build training data for the LS modeling. These additional
sites provided variation in land cover types resulting in comprehensive training across the entire
TM scene and replicated a typical full TM scene component modeling scenario.21 We purposely
developed the LS prediction with the full TM scene perspective to ensure that the predictions at
site 1 represent a typical landscape level application. We refined the training by dividing the data
for each of the five component predictions into roughly three equal bins based on the mean and
root mean square error (RMSE). The middle bin was thinned more relative to the other bins to
ensure that higher and lower component values carried appropriate weighting in the model devel-
opment and reduced overall bias. LS predictions were modeled using one leaf-on image from
each year for annual predictions and one seasonal image from each season of each year for
seasonal predictions, coupled with DEM ancillary data.

2.3.4 Image normalization and change identification

The process of normalizing many image dates to ensure consistent comparison is important for
initiating trend analysis. Once images are normalized, potential change areas need to be iden-
tified and the magnitude and type of change labeled. We accomplished this process by following
several major processing steps. For QB, all cloud and cloud shadow areas in the scenes were
masked and excluded to ensure these areas did not incorrectly influence the normalization out-
come. Next, NDVI was calculated for each image, and a difference layer was calculated, to
compare NDVI magnitude differences between the reference scene (from 2008) and the subject
scene. Experimental trials of different NDVI thresholds revealed that a threshold of �5 NDVI
values was appropriate for excluding outlier pixels from influencing the normalization process.
This process of outlier pixel exclusion ensured normalization was developed from only the most
invariant pixels. Finally, a linear regression algorithm was developed from the invariant pixels
and used to relate each pixel of the subject image to the reference image (2008 image) band by
band.40 For LS, a similar approach was followed. First, all cloud, cloud shadow, and snow and
ice areas were excluded from analysis. Then, a normalization procedure using a linear regression
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algorithm to relate each pixel of the subject image to the reference image (2008 leaf-on) band
by band was conducted.40

Once image normalization was completed, images across years and seasons were compared
for identification of change areas using a change vector process. For QB, change pixels were
determined using a standard deviation (SD) from the mean value. Pixels outside 1 SD were
considered to be potential change areas. LS change pixels were determined using thresholds
specific to general land cover classes spatially identified from the 2006 National Land
Cover Database.40 Change areas identified with the threshold approach tended to be too
conservative to capture all change relative to field measurements, and an additional independent
approach was necessary to further capture potential change areas with more subtle change. This
additional approach used NDVI differencing between the master scene (2008) and the subject
year or season to confirm change pixels. Research trials showed that pixels outside of �5 NDVI
values for QB and outside of�3 values for LS needed to be retained as change pixels (the greater
sensitivity of QB to image noise artifacts necessitated a higher threshold than LS to maintain
comparability across sensors). The final potential change mask was created combining (union)
both the change vector process and the NDVI differencing results. All cloud and cloud shadow
areas were treated as no change areas and removed from the change mask image.

Labeling annual and seasonal subsequent change areas with the new component values was
accomplished for both QB and LS by using an RT modeling approach and input data layers
similar to that used to predict the 2008 baseline distributions. Training data were gathered
from the 2008 unchanged baseline component values after first excluding potential change pixels
by using the change masks described above. A random sample of 10,000 points for QB and
25,000 points for LS were selected from candidate pixels for each component. Predictions quan-
tifying the spatial distribution and per-pixel proportion of five components as a continuous var-
iable were then calculated using regression models for all change pixels in each QB and LS
image. Baseline predictions for spectrally unchanged pixels were not modeled and were left
as original predictions from the base year. Using the change mask created from the change vector
process, each of the change pixel prediction values was then applied over the base prediction.
The no-change pixels retained the prediction value from the base prediction, and only the change
pixel areas were updated for each new imagery date.40

2.4 Data Analysis and Evaluation

2.4.1 Data summation and analysis protocols: plot-level polygon data

Both QB and LS predictions were evaluated by comparison to corresponding ground plot mea-
surements within plot polygons and analyzed by component and data source. Component values
measured at ground plots were compiled into a single mean transect value (seven individual
frames on a 30-m transect) for comparison to QB, and by plot (two transects, 14 individual
frames) for comparison to LS. Similarly, for QB and LS predictions, all pixel values within
each ground plot polygon or transect boundary were averaged to represent one component
value for each transect/plot (referred to simply as plot hereafter). For consistency, the exact
same plots were analyzed across all years and seasons. If clouds or other image issues precluded
a plot from inclusion from one year or season, it was eliminated from analysis from all dates.
This ensured fair comparisons between sensors and components. For each annual and seasonal
plot, the SD of the individual frame measurements was calculated. For each annual plot, a slope
value from a linear regression was also calculated. In order to facilitate direct comparison among
components and data sources, the coefficient of variation (COV) (mean∕SD × 100) was also
calculated for each plot.

To determine whether significant change had occurred on ground-measured annual and sea-
sonal plots, a one-way analysis of variance (ANOVA) was performed. This calculation uses the
SD from the individual transect frame measurements for each plot to determine whether there are
any significant differences between the means of plot measurements across time. All ANOVA
significance levels are reported at alpha ¼ 0.1. To determine if a significant direction of change
occurred on annual plots, the linear slope was calculated and significance tested at the 0.1 level.
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Several combinations of Pearson’s correlation were used to compare ground plot measure-
ments to QB and LS predictions. First, in order to test the overall similarity of the component
predictions to ground measurements, a correlation analysis comparing plot-level mean compo-
nent values for each of the data sources was completed. Second, correlation was used to test the
strength of the relationship between ground-measured significant ANOVA plots and significant
slope plots to component predictions. Finally, correlation of slope values from both ground
measurements and component predictions was used to test the ability of components to track
the direction of change over time.

2.4.2 Data summation and analysis protocols—by total proportional area

To test component prediction relationships beyond plot-level polygons, ground measurements,
QB and LS predictions were also compiled to assess the total area of change of components
across the full study area. For ground-measured polygons within the site 1 study area, the total
area covered by all polygons was calculated; subsequently, the proportion of that total area
covered by each component by year and season was also calculated. For QB and LS, the
full study extent of site 1 predictions were used to calculate the areal proportion of each com-
ponent of each cell into a total area summary value (e.g., a 50% bare ground prediction in a
30-m LS cell means 50% of the area of that cell is counted as bare ground, or 450 m2).
The mean proportional amounts of total area by year and season were calculated for each
data source. We calculated the mean epoch-to-epoch percent change by dividing the percent
change of epoch (season or year) by the total number of epochs, and also calculated the mean
relative error between component predictions and ground measurement. Pearson’s correlation
analysis was used to compare proportional component measurements among data sources.

2.4.3 Comparison to precipitation, by source and component

DAYMET daily gridded surface climate data providing daily precipitation data at a 1-km spatial
resolution was downloaded for site 1 for 2008 to 2011.50 Daily data were then combined into
mean seasonal precipitation amounts by 1-month and 2-month intervals for seasonal analysis,
and by calendar year and water year (September to October) for annual analysis. Mean monthly
and annual DAYMET precipitation values for all cells in site 1 were then pooled into a single
mean value representing the entire site 1 study area. Corresponding mean monthly and annual
total area percent component values from ground measurements and QB and LS predictions for
site 1 were then correlated with precipitation data using Pearson’s correlation.

3 Results

3.1 Overview

We measured five sagebrush ecosystem fractional cover components including bare ground,
herbaceous, litter, sagebrush, and shrub on the ground and from satellites over six seasons
and four years. Comparison analysis of component change patterns among data sources was
conducted at both the single-plot level and proportionally across the entire study area. Study
area proportional seasonal and annual changes were also correlated to annual and seasonal pre-
cipitation measurements. Specific results are listed by section below.

3.2 Plot-Level Ground and Satellite Measurements

A total of 66 ground plots (132 transects) were sampled during the summers of 2008 through
2011 across site 1. Only plot results from 2008 were used to develop RT predictions for all five
components across one 2.4-m QB 64-km2 image extent (site 1) and corresponding LS extent; all
other years and seasons were developed using change vector analysis (Fig. 2). The RMSE aver-
age for the 2008 base estimate for all five components over site 1 was 4.68 for QB and 6.83 for
LS.21 Image collection dates deviated an average of 16 days from ground collection for QB and
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nine days from ground collection for LS (Table 1). After removing plots affected by clouds on
either QB or LS imagery, 52 plots (104 transects) remained for analyses.

Of the five components, litter exhibited the highest COV for annual ground-measured change
at 18.4, with herbaceous second at 18.1, then shrub at 17.2, sagebrush at 9.9, and bare ground the

Fig. 2 Site 1 QuickBird (QB) (2.4 m) on the left and Landsat 5 (LS) (30 m) 2008 base component
predictions on the right. Masked cloud areas in the LS predictions are shown in gray. Note the total
range of each component prediction.

Table 1 Ground-measurement dates, with corresponding Landsat and QuickBird image collec-
tion dates.

Source
Spring
2008

Summer
2008

Fall
2008

Spring
2009

Summer
2009

Fall
2009

Summer
2010

Summer
2011

x̄ (days)
from field
collection SE

Ground June 17 July 22 Sept 22 June 13 July 22 Sept 22 July 14 July 16

QB ——— Aug 11 Oct 17 June 3 July 14 Sept 14 July 12 Aug 21 16 4.5

LS June 20 July 22 Sept 24 June 23 Aug 10 Sept 27 Aug 13 July 14 9 3.9

Homer et al.: Detecting annual and seasonal changes in a sagebrush ecosystem. . .

Journal of Applied Remote Sensing 073508-8 Vol. 7, 2013



lowest at 8.3 (Table 2, Fig. 3). Litter had the largest number of plots qualifying as significantly
changed from the ANOVA analysis at 15, with herbaceous second at 13, bare ground third at 7,
and shrub and sagebrush with 1 each (Table 2). Only seven annual plots overall showed sig-
nificant plot change and significant slope change, two each in bare ground and litter, and one in
each of the remaining three components.

For seasonal change, herbaceous exhibited the highest COV for ground-measured change at
23.8, with litter second at 21.4, then sagebrush at 19.4, shrub at 18.9, and bare ground the lowest

Table 2 Mean ground-measured annual change (% of 100) across 52 plots, by component.

Components
Plots
(N)

2008
(mean)

2009
(mean)

2010
(mean)

2011
(mean)

SD
(mean)

Coefficient
of variation
(mean)

Linear
slope

N with sig.
ANOVA
(.10)

N with sig.
slope (.10)

Bare ground 52 57 54 56 55 2.88 8.3 1.36 7 2

Herbaceous 52 16 16 15 14 2.42 18.1 1.31 13 1

Litter 52 16 17 16 16 1.94 18.4 0.79 15 2

Shrub 52 11 12 12 13 1.45 17.2 0.76 1 1

Sagebrush 52 6 7 7 8 0.99 9.9 0.53 1 1

Fig. 3 Visual example of bare ground component change in the northeastern part of site 1 from
2008 through 2011 in southwestern Wyoming. QB bands 4, 3, and 2 are displayed as RGB on the
left, and the corresponding bare ground component predictions are on the right.
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at 8.7 (Table 3). Litter and herbaceous had the largest number of plots with significant ANOVA-
measured change at 23 each, with bare ground next at 11, then shrub with 2, and sagebrush
with 1 (Table 3).

3.3 Plot-Level Data Correlation Relationships

Each set of values from both annual and seasonal individual ground plots and transects were
correlated with the corresponding satellite component measurements to test the ability of the
component predictions to replicate ground measurements. Overall, annual predictions were
more highly correlated than seasonal predictions, and QB had higher correlation values than
LS (Table 4). QB displayed a mean correlation value across all components of 0.85 for annual
and 0.82 for seasonal. LS had a mean correlation value of 0.77 across all components for annual
and 0.73 for seasonal. For components, bare ground had the highest mean correlation across
sensors at 0.91, with shrub exhibiting the lowest correlation at 0.69 (Table 4).

The linear slope value was calculated across annual measurements for each plot, QB and LS
prediction. These slope values were then correlated to test the ability of component predictions to
replicate the trend of ground-measured slope change. QB had relatively high correlation values
for individual components, and most correlations were significant (Table 5). In contrast, LS
had low correlation values for individual components, with significant correlation values only
in the bare ground component. When slope values from all plots and transects were pooled
across all components (N ¼ 520), QB had a correlation of 0.37 and LS a correlation of
0.10. When a subset of slope values from only significant ground-measured ANOVA plots
were pooled (Table 2) (N ¼ 40), QB had a correlation of 0.74 and LS remained at 0.10.

Table 3 Mean ground-measured seasonal change (% of 100) across 52 plots, by component.

Component Plot N

June
2008
(mean)

July
2008
(mean)

Sept
2008
(mean)

June
2009
(mean)

July
2009
(mean)

Sept
2009
(mean)

SD
(mean)

Coefficient
of variation
(mean)

N with sig.
ANOVA
(.10)

Bare ground 52 59 57 57 56 54 56 3.42 8.7 11

Herbaceous 52 15 16 14 15 16 12 3.04 23.8 23

Litter 52 15 16 17 16 17 19 2.80 21.4 23

Shrub 52 11 11 11 12 12 12 1.67 18.9 2

Sagebrush 52 7 6 6 7 7 7 1.02 19.4 1

Table 4 Remote-sensing prediction correlations to annual and seasonal ground measurements
over plot areas, by component.

Component

N Annual Seasonal

QB (transects) LS (plots) QB (R) LS (R) QB (R) LS (R) Mean

Bare ground 104 52 .94 .92 .90 .88 .91

Herbaceous 104 52 .81 .73 .81 .71 .77

Litter 104 52 .93 .87 .87 .80 .87

Shrub 104 52 .77 .63 .75 .59 .69

Sagebrush 104 52 .78 .71 .77 .69 .74

Mean .85 .77 .82 .73

Note: All correlations were significant at the 0.01 level.
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However, correlation of slope values from ground-measured plots with a subset of both signifi-
cant ANOVA and slope results (N ¼ 14) yielded a correlation of 0.77 for QB and a correlation of
0.64 for LS (Table 5).

3.4 Total Area Comparison

The total proportional area covered by each component from each source (ground and satellite)
was calculated for each season and year across all of site 1, with the proportion of change
between seasons and years also calculated. For annual predictions, bare ground exhibited
the highest mean annual change at 1.3%, shrub the next highest at 0.8%, then herbaceous at
0.6%, litter at 0.5%, and sagebrush the lowest at 0.3% (Table 6). Shrub had the highest
mean annual relative error, and litter had the lowest. When compiled by data source, ground
measurement showed the highest overall mean change across all components at 1.02%, with
LS second at 0.56%, and QB the lowest at 0.52%. Ground mean annual change values showed

Table 5 Annual component correlations of individual linear slope value calculated for plot
measurements, correlated with the linear slope value calculated for corresponding LS and
QB predictions.

QuickBird Landsat

Component stratification (ANOVA and slope significance
from field measurements) N (Transect) R N (Plot) R

Bare ground—all plots 104 .28a 52 .23a

Bare ground—only plots ANOVA significant at 0.1 9 .78a 7 .73a

Bare ground—only plots slope significant at 0.1 3 .92 2 +

Herbaceous—all plots 104 .70a 52 −.06

Herbaceous—only plots ANOVA significant at 0.1 15 .78a 13 .10

Herbaceous—only plots slope significant at 0.1 8 .86a 1 +

Litter—all plots 104 .61a 52 .05

Litter—only plots ANOVA significant at 0.1 13 .78a 15 .23

Litter—only plots slope significant at 0.1 1 + 2 +

Shrub—all plots 104 −.46a 52 .13

Shrub—only plots ANOVA significant at 0.1 3 −.99a 1 +

Shrub—only plots slope significant at 0.1 2 + 1 +

Sagebrush—all plots 104 −.55a 52 −.07

Sagebrush—only plots ANOVA significant at 0.1 0 + 1 +

Sagebrush—only plots slope significant at 0.1 0 + 1 +

All components, all plots combined 520 .37a 260 .10

All components, only significant ANOVA plots combined 40 .74a 37 .10

All components, only significant slope plots combined 14 .77a 7 .64

Note: Correlation results reveal the ability of the sensor component predictions to replicate the direction of
slope change as measured on the ground.
Note: +Inadequate sample size.
aCorrelation significant at 0.1.
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the most variation between components, with QB showing the least. Overall, QB had higher
relative errors than LS (Table 6).

For seasonal measurements, the mean total proportional seasonal change across six seasons
for ground and LS and five seasons for QB was calculated. Bare ground exhibited the highest
mean seasonal change at 2.0%, herbaceous next at 1.2%, litter at 0.8%, shrub at 0.7%, and sage-
brush the lowest at 0.5% (Table 7). Herbaceous had the highest mean annual relative error, and
bare ground had the lowest. When compiled by data source, in contrast to annual measurements,
LS showed the highest overall mean seasonal change across all components at 1.90%, with
ground second at 0.7%, and QB the lowest at 0.52%. The seasonal change values showed

Table 6 Comparison of the percent proportions of total area covered by each component for
every year.

Component 2008 2009 2010 2011
Mean annual
change (%)

Mean annual
relative error (%)

Bare ground (%)

Field 59.5 57.1 59.1 57.8 1.9

QuickBird 59.7 59.1 59.9 60.6 0.7 2.5

LS 60.3 61.4 60.8 58.8 1.2 3.4

Mean 1.3

Herbaceous (%)

Field 15.7 15.9 13.5 13.3 0.9

QB 12.9 13.3 12.8 12.7 0.3 10.9

LS 13.2 12.5 12.9 13.7 0.6 9.6

Mean 0.6

Litter (%)

Field 15.4 16.1 14.8 15.5 0.9

QB 15.3 15.7 15.6 15.2 0.3 0.1

LS 15.4 15.2 15.4 16.2 0.4 0.7

Mean 0.5

Shrub (%)

Field 10.2 11.9 12 12.7 0.8

QB 9.6 10.4 9.1 10.2 1.1 15.6

LS 10.1 9.8 10.0 10.8 0.4 12.4

Mean 0.8

Sagebrush (%)

Field 5.8 7.1 7.3 7.6 0.6

QB 5.4 6.1 6.1 6.0 0.2 14.7

LS 6.2 6.2 6.3 6.8 0.2 7.4

Mean 0.3

Note: For ground plots, the total area is calculated from pooling all plot polygons; for QB and LS, the total area is
calculated from full study area predictions.
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the most variation between components from LS, with QB showing the least. Overall, LS had
higher relative errors than QB (Table 7).

3.5 Total Area Correlation to Precipitation Data

DAYMET annual precipitation at site 1 varied from a low of 219 mm in 2009 to a high of
297 mm in 2011 (Fig. 4), with seasonal scenarios varying from a low of 2 mm in August/
September 2008 to a high of 67 mm in June 2008 (Fig. 5). Correlation of mean monthly
and annual DAYMET precipitation values to the corresponding mean monthly and annual

Table 7 Comparison of the percent proportions of total area covered by each component for
every season.

Component
June
2008

July
2008

Sept
2008

June
2009

July
2009

Sept
2009

Mean
seasonal

change (%)
Mean annual

relative error (%)

Bare ground

Field 61.4 59.9 60.1 58.5 57.8 58.8 0.9

QB —a 59.9 60.7 59.8 59.5 62.4 1.2 2.4

LS 57.0 60.6 60.7 55.7 61.8 65.6 3.8 1.4

Mean 2.0

Herbaceous

Field 13.4 14.0 13.3 14.0 14.3 12.0 1.0

QB —a 12.8 11.9 12.6 13.0 11.7 0.8 8.4

LS 13.7 12.8 12.3 14.4 12.2 10.4 1.7 6.7

Mean 1.2

Litter

Field 13.8 15.5 15.6 15.3 16.2 17.8 0.7

QB —a 15.6 15.7 15.8 15.7 14.9 0.3 2.9

LS 16.8 15.4 15.8 17.8 15.3 14.2 1.5 2.0

Mean 0.8

Shrub

Field 10.0 09.6 10.1 11.0 11.1 10.8 0.5

QB —a 10.4 10.3 10.4 10.4 10.0 0.2 1.6

LS 11.9 10.1 10.4 12.5 09.9 09.1 1.5 2.5

Mean 0.7

Sagebrush

Field 06.5 05.6 05.7 06.9 06.8 06.6 0.4

QB —a 06.1 06.3 06.2 06.1 06.1 0.1 1.6

LS 07.8 06.3 06.7 08.2 06.3 06.4 1.0 10.2

Mean 0.5

Note: For ground plots, the total area is calculated from pooling all plot polygons; for QB and LS, the total area is
calculated from full study area predictions.
aNo data collected.
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total area component calculations is presented in Table 8. Of the 60 scenarios tested, only nine
were significant at the 0.1 level. When correlations were averaged across components, herba-
ceous had the highest mean correlation across all seasonal and annual scenarios at 0.67, and
shrub the lowest at 0.47. When correlations were averaged by data source, the highest mean
correlation was LS annual water year at 0.88, and the lowest was LS seasonal bimonthly cor-
relation at 0.29 (Table 8). The highest significant individual correlation scenario was ground
plot herbaceous against calendar year precipitation at −0.99.

4 Discussion

Our results demonstrate reasonable ability of sagebrush ecosystem components as predicted by
regression trees to incrementally measure changing components of a sagebrush ecosystem.
Specifically, we demonstrate the ability of regression tree component predictions to track
ground-measured change over time using ground data from one year and change vector analysis
for subsequent years. We demonstrate the ability of high-spatial-resolution satellite imagery to

Fig. 4 Annual precipitation measurements for site 1, compiled by calendar year and water year, in
millimeters.

Fig. 5 Seasonal precipitation measurements for site 1 compiled both monthly and bimonthly, in
millimeters.
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serve as a potential surrogate for repeated ground measurement. Finally, we demonstrate the
ability of component predictions to potentially monitor vegetation change related to precipitation
variation over time. Specific discussion topics are covered below.

4.1 Ground-Measured Component Change

Ground measurements reveal a subtle changing landscape both seasonally and annually
(Tables 2 and 3). This is to be expected given that we could observe no other major change
agent operating in this area, other than climate.23,40 However, it is encouraging that we were
able to observe and detect this subtle change from both a ground and remote-sensing perspective.
We went to great lengths to ensure ground measurements were consistent by using staked plots,
revisiting plots at the same time of year and season, and having the same observer repeat mea-
surements. The only exception was from 2011, when 35 plots were measured by the alternate
observer; however, a quality check of these data revealed the measurement pattern to be con-
sistent with previous measurements both observers had completed.

Component change varied by season and year, with seasonal measurements in every com-
ponent consistently showing a higher COV than annual measurements (Fig. 6). This follows an
expected ecosystem pattern, with seasonal plant response potentially more dynamic than annual
response.56,57 For individual components, litter and herbaceous exhibited the highest COV from
annual measurements, and herbaceous the highest for seasonal measurements. These results are
logical due to the ephemeral nature of these components with changing precipitation.56 The
shrub and sagebrush components exhibited relatively moderate COVs in both seasonal and
annual measurements, with sagebrush having a substantially lower annual COV than shrub
(Fig. 6). Sagebrush species contain some ephemeral leaves, which are dropped later in the grow-
ing season,58,59 and we suspect this change is detected on the seasonal plots from spring meas-
urement, but not on summer-measured annual plots. Alternatively, the shrub component contains
many additional shrub species besides sagebrush that exhibit sustained growth through the entire
season, resulting in similar change patterns for both annual and seasonal measurements. Because
of the relatively high SD exhibited by bare ground, we did not anticipate that it would have the
lowest COV of any component in both seasonal and annual measurements (Tables 2 and 3).
However, high proportions of bare ground on many of our plots resulted in a large dynamic
range for this measurement, which was factored out by the COV, suggesting bare ground in
site 1 had relatively low variation both seasonally and annually compared to other components.

Overall, total annual changes were represented by a gradual increase in shrub and sagebrush
canopy with corresponding decreases in bare ground, herbaceous, and litter across the four years
(Fig. 7). Given that water year precipitation increased from 231 to 297 mm over this time, this

Fig. 6 Mean individual ground-measured coefficient of variation values, compiled annually and
seasonally by component.
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type of component response makes sense for shrub, sagebrush, and bare ground. The slow
growth of the sagebrush is to be expected; others have reported that multiple precipitation
years may be required to influence overall growth.1 We expected to see larger annual fluctuations
of herbaceous cover, but given the annual growth pattern of many of the herbaceous plants,56,60 it
would appear that herbaceous cover in this case is mostly responding to the seasonal precipi-
tation pattern rather than the annual. Total seasonal component change patterns show seasonal
fluctuations, especially for the more ephemeral components of bare ground, herbaceous, and
litter (Fig. 8). These seasonal patterns are also reflected in the annual patterns from the overall
2-year annual trends of decreasing bare ground and herbaceous, increasing litter, slightly increas-
ing shrub, and stable sagebrush. The timing of the moisture of the second year (2009) being less
abundant in the spring, and more abundant (Fig. 8) later in the summer, appears to also have
influenced the more ephemeral components, with bare ground and herbaceous showing a notice-
able fluctuation, and litter a noticeable increase.

4.2 Satellite Acquisitions

Detecting subtle change with remote sensing requires rigorous processing protocols to overcome
inconsistencies in satellite measurements from atmospheric conditions, sun-sensor geometry,

Fig. 7 Total annual ground-measured percent change compiled by component, 2008 to 2011.

Fig. 8 Total seasonal ground-measured percent change compiled by component, 2008 to 2009.
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geolocation error, variable ground pixel size, sensor noise, vegetation phenology, and surface
moisture conditions.45 We paid careful attention to processing protocols developed in this study
as well as previous research21 to minimize potential noise differences. The greatest challenge was
to ensure that timing of satellite collects were appropriate for ground-measured phenology con-
ditions. As reported in Table 1, our high-resolution QB satellite collects were less phenologically
accurate than LS because the variance from the timing of ground measurements was seven days
greater. In this case, we feel the effects were minimal. But because our study area is semiarid with
more minimal cloud cover than less arid places, gaining an appropriate phenological series
of high-resolution imagery for potential monitoring in other places remains a challenge.
Additionally, the need to collect appropriately timed imagery should not outweigh the need
for collects with useable view angles. Our experience shows that acquiring high-resolution sat-
ellite collects with view angles of <20 deg is the most desirable; greater angles make compari-
son across years or seasons more difficult because of distorted ground geometry. In our case,
three QB images had view angles >20 deg, which required extra processing to maintain con-
sistency. This extra processing is a challenge and does affect product quality, but we recognize
that the use of high-view angle imagery cannot always be avoided.

4.3 Component Change Magnitude and Direction

With such subtle change amounts and a small sample size of years and seasons, gaining additional
understanding of real change versus simple measurement variance is important. We approached
this in two ways. First, we examined ground plot deviation using a one-way ANOVA that capi-
talized on examining the variance of the individual frame measurements for each plot. For annual
plots, the mean variation (based on COV) for all pooled plots was 14.8, and the mean COV
variation for significant ANOVA pooled plots was 36.4. For seasonal plots, the mean COV varia-
tion for all pooled plots was 18.4 and the mean COV for significant ANOVA pooled plots was
35.1. These results confirm that a higher variance threshold was required to achieve significant
change and suggest that annual and seasonal average plot COVs of 35 or higher, on average,
indicate that change on the plot is substantial enough to be real.

Second, we pooled ground plots by three categories (all plots, significant ANOVA plots, and
significant ANOVA and slope value plots) with the corresponding sensor-based predictions to
understand if our ability to capture change with imagery increased as the significance of change
on the ground increased. We anticipated that the sensor-based component predictions would be
more successful in capturing ground-measured change as the reliability and magnitude of change
increases. Analysis reveals that as difference trends increase, there is a better correlation with
imagery linear slope values (Fig. 9), suggesting that as more real change is realized on the
ground, sensor component predictions perform increasingly better. QB especially performs
well, suggesting a good ability to be a future surrogate for ground measurement, either supple-
menting or replacing ground plots under some circumstances. LS correlations only improved
after pooling for slope significance, suggesting that ground component change needs to happen
at both substantial spatial and temporal scales to be reliably detected by LS components.

4.4 Performance of Satellite Component Predictions

A key objective of this study was to test the utility of continuous field component predictions as a
method capable of monitoring subtle change on a sagebrush ecosystem. Especially, this method
depends on predictions created from a single base year (2008) or season and then identifies
component change on subsequent periods using change vector analysis and RT labeling.
When compared to corresponding ground measurements by correlation, sensor component pre-
dictions performed reasonably well, with mean R values of 0.85 and 0.82 for QB, and 0.77 and
0.73 for LS, all significant at the 0.01 level (Table 4), successfully demonstrating this objective.
We assume QB predictions outperformed LS largely due to the more compatible spatial scale in
relationship to the ground plots and spatial ecology and pattern of vegetation in this ecosystem.
QB predictions were trained and compared to ground data at the transect level (two transects in
every plot) rather than plot level for the training and comparison of LS. The finer spatial scale of
QB allowed better tracking of local heterogeneity that was more homogenized at the LS scale. In
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the future, some additional QB component performance improvement may be realized by train-
ing and monitoring at a finer spatial scale than demonstrated by our transect level; however, we
speculate that at some level, complications of controlling spatial geometry, erratic plot variance,
and spurious sensor variance could overwhelm any benefit.61,62

When sensor predictions over the entire study area (rather than only at plot level) were com-
piled as total proportions by component, the correlation of QB and LS proportional area esti-
mates to corresponding ground proportional areas was very high (>0.99) for both annual and
seasonal predictions, showing general compatibility among sources. Additionally, annual and
seasonal component change relationships were very similar to plot-level polygon measurements,
suggesting that sensor predictions over the entire study area remained reliable. For annual pre-
dictions, ground-measured proportions exhibited the highest amount of change, with LS second
and QB the lowest, with QB also displaying the highest relative error (Table 6). We assume most
change variance is scale related—likely a combination of variance from the ground-measure-
ment method and the different ratio of total landscape area covered by ground polygons com-
pared to QB or LS wall-to-wall predictions. Lower change numbers for sensor predictions over
ground measurements could also indicate our change method was either too conservative, creat-
ing more omission than commission errors, or some ground change was not resolvable by the
sensors. For seasonal predictions, LS showed the highest overall mean seasonal change, with
ground measurement second and QB the lowest, although LS had higher relative error than QB
(Table 7). LS seasonal change values also showed the most variation between components. This
amount of change from LS was unexpected, as we anticipated QB to have higher change rates
than LS, especially given the consideration that all LS classification and analysis was performed
at the much broader landscape level. Our assumption that LS data in general were better cali-
brated and consistent, and warranted a lower NDVI change threshold than QB (3% versus 5%)
for change vector component production, appears to be unlikely. This lower threshold likely
contributed to the higher LS change values and relative error by allowing more commission
error over actual unchanged areas than QB.

4.5 Precipitation Correlation Results

We recognize that rigorous climate change analysis with remote-sensing predictions should
ideally be done over spatial and temporal scales larger than our study area. However, this
research offered the opportunity to compare annual and seasonal component series measured
on the ground and by satellite to newly available DAYMET downscaled precipitation data,

Fig. 9 Three annual mean correlation comparison scenarios of individual ground-measured slope
values correlated to the corresponding remote-sensing prediction slope values by data source.
Scenarios include pooling of all ground-measured plots, a subset containing only those with sig-
nificant analysis of variance (ANOVA) change, and a further subset containing only those with
both significant ANOVA change and a significant slope change direction.
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providing potential insight into the relationship between component change and precipitation
change. Correlations of component change to precipitation change overall were better than
expected. When individual component correlations to precipitation were averaged across all
components by data source, QB had the highest mean correlations overall at 0.61, with LS
having the next highest at 0.54, and ground the lowest at 0.44. The higher mean correlations
from the sensor components over the ground measurements are likely due to the ability of
their wall-to-wall prediction scale to provide better correlation to the 1-km cell precipitation
data than the small footprint of ground plots.

When individual component correlations to precipitation were averaged across all compo-
nents by season, the annual component mean correlation of 0.64 was much higher than the sea-
sonal component mean correlation of 0.42, suggesting annual component predictions as a whole
better reflected precipitation pattern than seasonal predictions. Closer examination of mean cor-
relations pooled by individual annual components reveals mean values ranging from 0.71 for
herbaceous to 0.64 for bare ground, 0.63 for shrub and litter, and 0.59 for sagebrush. The sea-
sonal component mean values ranged from 0.64 for herbaceous to 0.41 for sagebrush, 0.39 for
bare ground, 0.37 for litter, and 0.32 for shrub. This suggests that annual components of her-
baceous, shrub, and sagebrush, and the seasonal component of herbaceous, have the greatest
capacity to reflect precipitation patterns. However, component categories still need more in-
depth precipitation analysis. For example, when individual component correlations to precipi-
tation are pooled into two categories of ephemeral (bare ground, herbaceous, and litter) and
persistent (shrub and sagebrush), the timing of precipitation is a major factor. Persistent com-
ponents have higher average correlations when precipitation is calculated as a water year (0.67 as
water year and 0.55 as calendar year), and the ephemeral components have higher average cor-
relations when precipitation is calculated as a calendar year (0.69 as calendar year and 0.63 as
water year). We assume the higher correlations of persistent components of shrub and sagebrush
with water year precipitation better reflect the availability of the potential winter moisture that
shrubland physiology is adapted to. Shrubs such as sagebrush can respond to precipitation as far
as 2 to 5 years previous to the growing season.1 Clearly, more in-depth analysis across larger
spatial areas and time frames will be warranted in the future for better predictive analysis, but our
initial analysis has shown the potential of establishing a relationship between component change
and precipitation change, and should provide confidence at larger scales.

4.6 Implications for Sagebrush Monitoring

This research demonstrates the ability for multiscale remote sensing to offer monitoring of
gradual change in a sagebrush ecosystem. This has important implications for a widely distrib-
uted semiarid ecosystem under threat from multiple disturbance forces creating both abrupt and
gradual change. One important implication of our research is the ability of sagebrush fractional
components to successfully parameterize change on the landscape. A component metric potentially
offers an easily understood, straightforward quantification of the landscape that is measureable
over time and offers maximum flexibility to be converted into applications. Perhaps the most
far-reaching implication is the demonstrated ability to use sagebrush component predictions
trained from a single base year and subsequently projected across many years with change vector
analysis.40,45 For sensors such as LS, with a rich historical archive, this provides further opportunity
to compare gradual change rates back in time to causal agents such as climate to further understand
potential cause and effect.39,40 Although we projected base classifications successfully across
3 years and five seasons, we caution that this method likely has a realized decay rate in accuracy
from the original classification that would affect results after some number of replications.

Another monitoring implication is the potential ability for high-resolution satellite remote-
sensing sources such as QB to act as a surrogate to ground measurement. For monitoring to
typically be sustained and effective, not only low-cost tools and approaches but also mechanisms
to maintain consistency are required. Both of these requirements can be difficult to achieve with
ground measurements.63 The ability to leverage a single year of comprehensive ground collec-
tion and image classification across many years of monitoring provides an attractive option to
quantify and monitor a landscape. Because of the limited sample size of years and seasons
reported here, our research will continue to track additional years to supplement our sample
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size. Future work is already underway to track precipitation- and temperature-induced compo-
nent change many years back in time using the LS historical record.

5 Conclusion

Sagebrush ecosystems constitute the largest single North American shrub ecosystem and provide
vital ecological, hydrological, biological, agricultural, and recreational ecosystem services.
Disturbances have altered and reduced this ecosystem by 50% historically, but climate change
may ultimately represent the greatest future risk to this ecosystem. Improved ways to quantify
and monitor gradual change in this ecosystem are vital to its future management. Here, we dem-
onstrate the ability to successfully detect gradual change over a four-year period using continu-
ous field predictions for five components of bare ground, herbaceous, litter, sagebrush, and
shrub. Results show that herbaceous and litter exhibited the highest variation for annual and
seasonal ground-measured change, and bare ground exhibited the least. When ground measure-
ments were correlated to corresponding sensor predictions, annual predictions were more highly
correlated than seasonal ones, and QB had higher correlation values than LS. Component pre-
dictions for the entire study area were also correlated to annual and seasonal DAYMET precipi-
tation amounts. QB had the highest mean correlations to precipitation overall, and herbaceous
was the highest performing component overall. Our results demonstrate that regression trees can
be successfully used to monitor gradual changing components of a sagebrush ecosystem, dem-
onstrate the ability of high-spatial resolution satellite imagery to serve as a reasonable surrogate
for repeated ground measurement, and demonstrate the ability of component predictions to
respond to changing precipitation. Future work is already underway to track precipitation-
and temperature-induced component change many years back in time using the LS historical
record, allowing for more comprehensive trend assessment and further analysis of the impact
of vegetation component change on ecosystem services.
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