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Abstract. Islands are an important part of the marine ecosystem. Increasing impervious surfaces
in the Zhoushan Islands due to new development and increased population have an ecological
impact on the runoff and water quality. Based on time-series classification and the complement
of vegetation fraction in urban regions, Landsat thematic mapper and other high-resolution
satellite images were applied to monitor the dynamics of impervious surface area (ISA) in
the Zhoushan Islands from 1986 to 2011. Landsat-derived ISA results were validated by the
high-resolution Worldview-2 and aerial photographs. The validation shows that mean relative
errors of these ISA maps are < 15%. The results reveal that the ISA in the Zhoushan Islands
increased from 19.2 km2 in 1986 to 86.5 km2 in 2011, and the period from 2006 to 2011 had the
fastest expansion rate of 5.59 km2 per year. The major land conversions to high densities of ISA
were from the tidal zone and arable lands. The expansions of ISA were unevenly distributed and
most of themwere located along the periphery of these islands. Time-series maps revealed that ISA
expansions happened continuously over the last 25 years. Our analysis indicated that the policy and
the topography were the dominant factors controlling the spatial patterns of ISA and its expansions
in the Zhoushan Islands. With continuous urbanization processes, the rapid ISA expansions may
not be stopped in the near feature. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073515]
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1 Introduction

Coastal islands are located in a transitional environment where land and ocean interact. Such an
environment is vulnerable to human activities due to limited natural resources. Under urbani-
zation and intensive exploitation activities, the coastal zone ecosystem health in Zhejiang prov-
ince is facing serious threats.1 During the past 20 years, large areas of natural landscape of the
Zhoushan Islands have been increasingly replaced by impervious surfaces. Impervious surface
area (ISA) can be defined as any material that prevents the infiltration of water into the soil, such
as paved roads, driveways, parking lots, buildings, rooftops, and so on.2 The expansion of imper-
vious surfaces can affect the hydrological cycle, water quality, local climate, and biodiversity.3

It was found that most stream quality declines if >10% area of a watershed is impervious.4

Quantification of impervious surfaces in landscape has become increasingly important with
growing concern of its impact on the environment.5–8

Remote sensing has long been used for land use/land cover (LULC) classification, and
it allows up-to-date, spatially explicit estimates of urban surface imperviousness over large
areas.9–11 Ridd proposed the classic vegetation-impervious surface-soil model to parameterize
biophysical composition of urban environments.12 Carlson and Arthur retrieved the fraction
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impervious surface of Chester Country based on the inverse relationship between impervious
surfaces and vegetation.2 Wu and Murray estimated impervious surface distribution of the met-
ropolitan area of Columbus, Ohio, through a fully constrained linear spectral mixture model.13

Xian and Crane determined impervious surfaces of the Tampa Bay watershed in Florida, to
assess urban sprawling, using a regression tree algorithm.14 Object-based image analysis has
been increasingly used to map impervious surfaces due to the advent of high-resolution satellite
imagery.15–17 Xu proposed a novel index, normalized difference impervious surface index
(NDISI), to estimate impervious surfaces of Fuzhou City with a high degree of automation com-
pared to the majority of the present methods.18 To sum up, the methods for mapping ISA with
remote sensing technology can be classified into four groups: visual interpretation or multispec-
tral classification, complement of vegetation fraction, spectral mixture analysis, and band com-
bination method. Previously mentioned studies were mostly applied to inland regions and they
might not be suitable for islands. For islands, in addition to types of woodland, arable land, urban
or built-up areas, rural settlements, and water bodies, there are also brine pan, tidal zone, and
aquaculture, the spectral curves of which can easily be confused with impervious surfaces under
the influence of water.19,20 Zhou and Wang developed a multiple agent segmentation and clas-
sification algorithm that included the steps of a multiple agent segmentation, shadow-effect,
multivariate analysis of variance–based classification, and postclassification to extract ISA
maps in the state of Rhode Island, USA, using Quickbird-2 imagery. Besides, many researchers
have done some work in island land-cover analysis using remote sensing and geographic infor-
mation system.21–25 Chen et al. explored the temporal composition and spatial configuration of
the land-cover trajectories in the ZS and its surrounding islands from 1986 to 2000, and revealed
that the land cover had changed rapidly in the ZS.23 However, little attention was paid to the
evolution of island impervious surface over time, and long-term impervious surface mapping and
change analysis in islands have not been conducted. Therefore, this study will take the Zhoushan
Islands as a case study to map and analyze impervious surface dynamics over the past 25 years.

Choosing one or more end members to represent multiple impervious surfaces is not easy.
This is particularly true for applying low- and medium-resolution remote sensing data.26 The
construction of the NDISI needs thermal data, and therefore the remotely sensed data without
thermal bands are useless in the indicator. Visual interpretation or multispectral classification is
mainly applied to high-resolution imagery. Because of the inverse correlation between ISA and
vegetation cover in urban areas, one potential approach for impervious surface extraction is
through vegetation distribution.2,27–29 The methods for acquiring vegetation fractions from
remote sensed data are quite mature following many years large-scale experiments.27–31

Here, we assume that within the urban (or developed) pixels, all areas without vegetation covers
belong to ISA and ISA are only distributed in these urban (or developed) pixels. Therefore,
mapping ISA needs two data sources: vegetation cover and urban distributions. Based on
Chen’s study, the newly developed areas in 1986, 1990, 1995, 2000, 2006, and 2011 can be
acquired.23 Another parameter, fractional vegetation distribution, can be calculated by the scaled
normalized difference vegetation index (NDVI) or tasseled cap transformation.28,32–34 Therefore,
we decided to combine the time-series classification and fractional vegetation cover to map and
monitor impervious surface dynamics of the Zhoushan Islands.

The objectives of this research are (1) to build time-series ISA maps in the study area, (2) to
estimate ISA and its changes over different time periods, (3) to examine conversions between
impervious surfaces and other LULC types, and (4) to analyze temporal and spatial variations of
ISA distribution in the new urban areas.

2 Study Area and Data

2.1 Study Area

The study area is part of Dinghai District, Putuo District, and Daishan Country (29°55’–30°12’N,
121°48’–122°20’E) of Zhoushan archipelago new area, located in the northeast of Zhejiang
province, China. It includes ZS and its surrounding inhabited islands, namely Jintang
(JT), Xiushan (XS), Cezi (CZ), Changbai (CB), Changzhi (CHZ), Damao (DM), Aoshan,

Zhang et al.: Using long time series of Landsat data to monitor impervious surface dynamics. . .

Journal of Applied Remote Sensing 073515-2 Vol. 7, 2013



Xiaogan-mazhi (XG), Panzhi (PZ), and Lujiazhi (LJZ), covering an area of ∼703.34 km2

(Fig. 1). The basic information of these islands is listed in Table 1. The Zhoushan Islands
have a hilly landscape and their climate belongs to the monsoon-influenced subtropical marine
system. The mean annual temperature is around 17°C, and the average annual rainfall is 1300 to
1500 mm. Coniferous forests, evergreen broad-leaved forests, and deciduous broad-leaved for-
ests are widely distributed on this archipelago. The capital, Zhoushan city, has been one of the
pioneering cities in the Yangze River Delta area since 1988. With the Zhoushan cross-sea bridge
between Zhoushan and Ningbo city, the study area is subject to rapid changes in transportation,
ports, tourism, and fisheries. Economic prosperity in the Zhoushan Islands has generated a sig-
nificant competition over limited land resources. Quantifying the ISA and analyzing impervious
surface change during the past 25 years in the Zhoushan Islands are therefore of great importance
to characterize the influence of anthropogenic activities in this area.

2.2 Data and Preprocessing

Remotely sensed data sets used in this study are listed in Table 2. The selected images were
georeferenced into a common transverse mercator projection with geometric errors <1 pixel.
Then the digital numbers of Landsat images were retrieved to apparent reflectance by using the
model of Chander et al.35 The nearest-neighbor resampling technique was used to resample the
images into a pixel size of 30 m by 30 m for Landsat images, 5 m by 5 m for SPOT5 multi-
spectral images, and 0.5 m by 0.5 m for Worldview-2 multispectral images. We used Pansharp
fusion method from ENVI EX 4.8 to merge images of SPOT5 and Worldview-2.

CORONA images from the year 1970 were used to map early historical land cover over the
study region. Landsat TM∕ETMþ imagery and SPOT5 were used to quantify the LULC and

Fig. 1 (a) Location of the study area, which covers part of Zhoushan archipelago new area.
(b) The digital elevation model (DEM) maps for the study area, −7 to 464 represents the values
of DEM (unit: meter).
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Table 1 Introduction of the main islands in the study area.

Island Location Area (km2) Distance (km) Function

Zhoushan 503.84 ∼ Comprehensive development

Jintang 81.11 29 Comprehensive development

Cezi 15.01 2.5 Port logistics

Changbai Dinghai District 13.32 1.1 Urban extension

Changzhi 7.51 0.3 Urban extension and marine research

Damao 6.6 2.6 Port logistics

Aoshan 5.15 2.7 Port logistics

Panzhi 4.23 0.9 Ship repairing and building base

Xiushan Daishan Country 25.47 2.5 Marine tourism

Xiaogan Putuo District 5.24 0.3 Harbor industry

Lujiazhi 3.77 0.2 Urban extension

Note: The area was calculated in ArcMap based on the investigation map of 2005, including both land and tidal
zone. The distance means the least distance from the Zhoushan island.

Table 2 Remotely sensed data used.

Sensor data Acquisition date Spectral and spatial resolution

CORONA March 15,1970 One panchromatic band with 1.83 m (resampled with 5 m)

May 31,1986

June 11,1990 Three visible bands (blue, green, and red), one near-infrared (NIR)

Thematic
mapper (TM)

August 12,1995 Band and two shortwave infrared (SWIR) bands with 30 m spatial

June 3, 2006 Resolution

May 20,2011

ETMþ June 14, 2000 The same as TM, but including one panchromatic band with 15 m

spatial resolution

SPOT5 April 20, 2011 Two visible bands (green, red), one NIR band, and one

SWIR band with 10 m spatial resolution, one

panchromatic band with 2.5 m

Worldview-2 April 23, 2010 Three visible bands (blue, green, and red), two NIR

bands, one coastal band, one yellow band, and one red edge band

with 2.0 m spatial resolution, one panchromatic band with 0.5 m

spatial resolution

Aerial data1a December, 1990 One panchromatic band with1 m spatial resolution for the photograph
and scale of 1∶10; 000 for corresponding digital raster graph (DRG)

Aerial October, 2002 Three visible bands (blue, green, and red) with 1 m spatial resolution

data2b March, 2007 Three visible bands (blue, green, and red) with 1 m spatial resolution

aAerial photograph and DRG.
bAerial data2: Aerial orthophotographs.
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impervious surface change in the Zhoushan islands. The aerial photographs of 1990, 2002, and
2007, as well as Worldview-2 fused images in 2010, were combined for evaluating the extracted
ISA maps (Table 3). Other data sets used in this study include differential global positioning
system data and the land-use vector data from Zhejiang Administration of Surveying Mapping
and Geoinformation, China; these are utilized as the reference data for classification purposes.

3 Methodology

3.1 Estimating ISA

ISA is generated by applying the following formulation.2,36 As mentioned earlier, we assume that
ISAs are only distributed in pixels being classified as “developed“ and it is the fraction of each
pixel that is not covered by vegetation.

ISA ¼ ð1 − FrÞdev; (1)

where the subscript dev indicates that the quantity is defined only for pixels classified as “devel-
oped” (i.e., urban/suburban) and Fr indicates fractional vegetation cover in a pixel.

3.1.1 Fractional vegetation cover

To obtain Fr, we first compute NDVI. NDVI is defined as

NDVI ¼ ρnir − ρr
ρnir þ ρr

; (2)

where ρr is reflectance in the red band (630 to 690 nm) and ρnir is reflectance in the near-infrared
band (760 to 900 nm).

To remove biases from atmospheric influences on NDVI, we used two references, one for
bare soil (NDVIs) and one for full vegetation (NDVIv), respectively, to rescale the calculated
NDVI.33 The rescaled vegetation index (N�) is calculated as

N� ¼ NDVI − NDVIs
NDVIv − NDVIs

: (3)

In this research, we overlaid NDVI maps for each time on the corresponding classification
map to derive NDVIv in the land type of “woodland” and NDVIs in the land type of “dryland,”
respectively. Time-series classification maps are discussed in Sec. 3.1.2.

Field experiments and observations indicated that Fr has a linear relationship with N�2

(Refs. 32, 36, and 37) and we used this equation to quantify Fr from N�.

Fr ≈ N�2: (4)

Table 3 Accuracy assessment.

Time Validation data Test area Statistical indicators MRE/R

1990 1990 aerial photograph and Dinghai 0.144∕0.583

DRG Putuo 0.157∕0.758

2000 2002 aerial orthophotograph Dinghai 0.108∕0.601

Jintang 0.131∕0.608

2006 2007 aerial orthophotograph Putuo 0.090∕0.612

Jintang 0.085∕0.595

2011 2010 Worldview-2 image Dinghai 0.085∕0.621

Putuo 0.070∕0.606
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3.1.2 “Developed” pixels

The “developed” pixels were picked out from LULC maps which were classified with Landsat
TM/ETM and other sources during 1986 to 2011. To decrease data gaps in historical periods and
update recent changes in LULC, we generated three new time slots of LULC maps (i.e. 1990,
2006, and 2011) over our previous work, i.e., Chen et al.23,25 The study area was classified into
eight classes, including woodland, arable land (i.e., dry land and paddy field), built-up areas,
rural settlements, water body, aquaculture, brine pan and tidal zone. These land-use types and
interpretation criteria for Landsat images were used for classifying historical LULC from
CORONA image in 1970. The 2005 classification map was directly from the vector data in
2005. The new LULC map for 1990 was generated with the same method as Chen et al.23

The samples for supervised classification were selected from pixels without change by compar-
ing the LULC maps before and after 1990, respectively. Using the land-use vector map of the
year 2005 as a reference, Landsat TM and SPOT5 images were classified for land use in 2006
and 2011, respectively. The classification accuracies were higher than the standard of 85% stipu-
lated by the United States Geological Survey classification scheme.38 For lack of high-resolution
data in 1986 and 1995, classification accuracies in these two periods were not quantified.

Here the urban/built-up areas and rural settlements were chosen to generate masks of devel-
oped pixels. The nondeveloped areas were reclassified as 0% impervious surface. Moreover,
modified normalized difference water index (MNDWI)39 was combined to exclude some rivers
ignored in developed areas as follows. Practice has proved that the pixels are regarded as water
when satisfying 0.18 > MNDWI > 0.1.

MNDWI ¼ ðρg − ρm1Þ
ðρg þ ρm1Þ

; (5)

where ρg and ρm1 are the apparent reflectance of TM∕ETMþ green band (520 to 600 nm) and
middle-infrared band (1550 to 1750 nm), respectively.

3.2 Accuracy Assessment

The accuracy assessment involved the following steps. (1) Samples were randomly chosen from
the same period’s high-resolution data, but excluding the shadow pixels and pixels that are
totally different from low-resolution images. (2) Classifications on the sampled pixels of
high-resolution images were conducted with integrated methods including visual interpretation,
maximum likelihood classification, and vector quantization. The overall accuracy and the kappa
coefficient of these classifications on samples should be >90% and 0.89, respectively. (3) All
1-m pixels classified as impervious surfaces were tallied within TM pixels to compute ISA. (4)
Accuracy assessment indicators of the mean relative error (MRE) and Pearson correlation coef-
ficient (R) were selected.40,41 The overall accuracies of LULC maps for 1990, 2000, 2006, and
2011 were 86.6% [kappa index (K): 85.1%], 86.0% (K: 84.3%), 86.2% (K: 84.7%), and 88.0%
(K: 86.7%), respectively.

Due to data availability, we evaluated ISA products only for the years of 1990, 2000, 2006, and
2011 by using archived photographs and the Worldview-2 fusion image (Table 3). The accuracies
on ISA mapping are listed in Table 3. On the whole, the correlation coefficient is>0.6 and MRE is
<15%. There are some uncertainties on these evaluations on the ISA mapping. The different image
acquisition time between reference high-resolution images and TM∕ETMþ images may show a
spectral difference of the same object, which produces the different ISA, though in the same invari-
ant locations. Besides, the assumption that the impervious surface pixels would not return to their
pervious surface type at a later time may not be true spanning such a long period.

4 Results and Discussions

4.1 Differences in ISA Changes Among Major Islands

The percentages of ISA distribution for the entire study area from 1986 to 2011 are shown in
Fig. 2. The total ISA in the Zhoushan Islands increased from 19.2 km2 in 1986 to 86.5 km2 in
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2011. The growing rate of ISA is continuously increasing during 1986 to 2011 (Fig. 3) and the
last period has the highest growing rate of 5.59 km2 per year.

Because of the difference in location, geomorphology, and population among these islands,
they have different changes in total ISA and the percentage of ISA. ZS has the largest increase
in total ISA, followed by JT, XS, CHZ, CZ, XG, LJZ, PZ, and, DM (Table 4). In terms of
change in percentage of ISA, LJZ goes to the first place, followed by CHZ, XG, CZ, XS,
PZ, ZS, JT, and DM (Table 4). Islands closer to ZS normally have a larger increase in
ISA than farther islands. For example, CHZ, which is 0.3 km from ZS, has seven times
more increase in the percentage of ISA than DM, which has the same size as CHZ but is
located far away from ZS. Some smaller islands, such as CHZ, XG, and LJZ, had higher
increases in the percentage of ISA than the main island (ZS), even though the policy of “con-
struct the major island and to emigrate from minor islands” was started in 2000. Because of the
limited plain area in ZS, the land requirements for industries in this region will fall on nearby
islands with ideal landscape and locations.

4.2 Land Conversions to ISA

The land-cover change analysis from 1970 to 2011 has been conducted in previous research.25

Here we focused on the conversions from other land covers to ISA in the Zhoushan Islands. The
LULC maps in the study area from 1986 to 2011 are shown in Fig. 4. The most notable change

Fig. 2 ISAmaps in the Zhoushan Islands, 1986 to 2011. 0 to 100 represents the values of ISA (%).
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was built-up areas, which grew by twice the area in 1986, followed by arable land and tidal zone,
which shrank by 40.27 and 30.05 km2, respectively. Aquaculture totally increased 10.52 km2,
and brine pan decreased 8.57 km2 from 1986. The major land conversions in the Zhoushan
islands over the last 25 years were from tidal zone to aquaculture and brine pan, from brine
pan to built-up areas and aquaculture, and from arable land to built-up areas. Overall, more
and more natural landscapes were disturbed by human activities and the land use had been
intensified.

The percentage of ISAwas classified into three ranks: 0 to 60%, 61 to 80%, and 81 to 100%.
By integrating ISA maps, high-resolution images, and land-use investigation maps, we found
that high-percentage ISA (81 to 100%) mainly covered industrial land, port land, and some urban
high-density buildings; middle-percentage ISA (61 to 80%) involved residential areas outside the
city center, hydraulic construction sites, and roads; and low/lower percentage ISA (<60%) was
composed of green parks and suburban woodlands. During the past 25 years, Zhoushan has
experienced a rapid urbanization. The population of urban areas has doubled since 1986.42

The increasing population in Dinghai District and Putuo District drove the conversions of natural
and arable lands into built-up and urban areas, including infrastructures and facilities, e.g., hos-
pitals, roads, and residential buildings. It generated some new middle-percentage ISA areas in
the suburban areas and some new high-percentage ISA areas in the inner city. Besides urban-
izations near the big city, there are a growing number of high-percentage ISA areas along the
shoreline, e.g., ports, piers, and industrial lands. These were largely converted from tidal zones.

4.3 Temporal and Spatial Variations in ISA Distribution

Figure 5 shows that most of the new impervious surfaces were distributed along the coastline of
the Zhoushan Islands rather than in the interior from 1986 to 2011. In 1986, impervious surfaces
were mainly located in the old cities of Dinghai District, Putuo District, and several designated
towns, i.e., Zhanmao, Baiquan, Ma’ao, Cengang in ZS, as well as in Lingang District and the
town of Jintang in JT. The period from 1986 to 1990 experienced no big change in ISA.

Fig. 3 The total ISA area (km2) and growth area (km2 per year) for each period.

Table 4 Increased ISA area (km2 and area percentage (%) for each island, 1986 to 2011.

Island JT XS CZ CHZ DM PZ XG LJZ ZS

Total area 4.50 3.44 2.05 2.92 0.36 0.38 1.86 1.50 44.96

ISA (%) 5.55 13.53 13.66 38.86 5.50 9.06 35.59 39.88 8.92
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However, for the periods 1990 to 1995 and 1995 to 2000, large areas of new impervious surfaces
formed within and around existing urban areas. After 2000, it was observed that the impervious
surface of Dinghai District grew from the inner city to the west and southeast, and gradually
merged with the Putuo District. From 2006 to 2011 the impervious surfaces in ZS, XS, CHZ, CZ,
and JT islands experienced a rapid growth along the shore. The driving forces of these spatial and
temporal patterns of ISAwere related to policies and geography. First, the policy that “construct
the major island and to emigrate from minor islands” caused the increase in impervious surfaces
in ZS from 1990 to 2005. During this period, increasing populations required a growth of infra-
structures, including energy, hospitals, roads, subsidized housing, as well as village-owned
enterprises in towns. Second, the strategy of “to thrive the city by relying on the port” in
2005 boosted the exploitation of ports, piers, and industrial lands along the shoreline in this
region. Finally, the topography also had a certain impact on the distribution of ISA. In ZS,
there are hills and mountains in the middle and only small areas of plains distributed in the
periphery [Fig. 1(b)]. The plain land existing in the nearby islands gave an expansion chance
for Zhoushan urban areas, and therefore, CHZ and LJZ are functioning as urban extensions of
Dinghai District and Putuo District, respectively.

With the expansions of urban area, the frequencies of the percentage of ISA (ISA%) were
changing over time (Fig. 6). Normally, the mean and mode (or the peak) of the ISA% is becom-
ing higher and higher since the year 1986 (Table 5).

Fig. 4 The LULC maps in Zhoushan Islands, 1986 to 2011.
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Fig. 5 ISA distribution for the five periods (1986 to 1990, 1990 to 1995, 1995 to 2000, 2000
to 2006, 2006 to 2011) in the new urban areas. The ISA of 1986 was conducted as the
reference.

Fig. 6 The frequency distribution of ISA in the increased urban area, 1986 to 2011.

Table 5 The statistical analysis of the percentage of ISA for the increased urban areas from 1986
to 2011.

Time 1986 1990 1995 2000 2006 2011

Mean 69.04% 67.11% 74.04% 77.72% 80.05% 82.26%

Mode 79.89% 82.75% 84.89% 86.11% 88.25% 91.61%

Note: Mode means the most frequently occurring value.
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5 Conclusions and Future Works

This study generated ISA maps of the Zhoushan Islands using multiple satellite data from 1986
to 2011. These maps show that the total ISAs in the Zhoushan Islands expanded from 19.2 km2

in 1986 to 86.5 km2 in 2011, at an average increase rate of 2.70 km2 per year. The increasing
rate of ISA in these islands had large spatial heterogeneities because of differences in the topog-
raphy, size, and location. The dominant land conversion in these islands was from tidal zones and
arable lands to urban areas with middle and high percentages of ISA. The expansions of ISA
occurred unevenly in spatial dimension and most of the new ISA took place in peripheries of
these islands. The mean and mode of ISA in urban area increased gradually from 1986 to 2011.
The policy and the topography may contribute to the pattern of ISA and its expansions for differ-
ent periods. Results from this research can be used by policymakers for island management,
planning, and for ecological and hydrological modeling to determine the effect of the increasing
ISA on coastal environments of the Zhoushan Islands.

Several issues are not covered in this study. One issue is the use of spectral mixture analysis
classification approach. Although we have estimated the ISA and its change rate for the
Zhoushan Islands from 1986 to 2011, and have captured the general impervious surface dynamic
using middle-resolution satellite data, the use of different spectral endmembers for tidal zone,
brine pan, aquaculture, and impervious surfaces may improve the classifications on ISA.
Another issue is the effects of spatial resolution of remotely sensed data on estimating island
ISA. The high-resolution data may better detect the imperviousness of the ring belts, from the
central to the urban-rural peripheral, than the Landsat data.26 In this study, the 2011 SPOT5/
Worldview-2 data were only used to validate the extraction of impervious surfaces. High-
resolution satellites might be used in the near future when they become economically affordable
for large-scale mappings.
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