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ABSTRACT

Shift invariant spaces are common in the study of analysis, appearing, for example, as cornerstones of the
theories of wavelets and sampling. The interplay of these three notions is discussed at length over R, with the
one-dimensional study providing motivation for later discussions of Rn, locally compact abelian groups, and
some non-abelian groups. Two fundamental tools, the so-called “bracket” as well as the Zak transform(s), are
described, and their deep connections to the aforementioned areas of study are made explicit.

Keywords: shift invariant spaces, wavelets, sampling theory, harmonic analysis

1. R, THE ONE-DIMENSIONAL SETTING

We begin by describing facts about L2(R). It is well known that the properties of translation invariant (closed)
subspaces of L2(R) play an important role in Mathematical Analysis involving L2(R) — see, for example the
classical text by Helson.1 These spaces are made up of those basic closed subspaces which are generated by
systems of functions Bφ = {φ(· − k) : k ∈ Z}, where φ is a nonzero element of L2(R). Let φk denote φ(· − k) and
also let 〈φ〉 denote

〈φ〉 := span{φk : k ∈ Z}, (1)

which we refer to as the principal shift invariant space generated by φ; that is, 〈φ〉 is the closure in L2(R) of all
finite linear combinations

∑
finite αkφk, where αk ∈ C.

Before moving forward, we should remark that the Fourier transform we will be using is

(Ff)(ξ) = f̂(ξ) =

∫
R
f(x)e−2πixξdx.

Let us state some of the properties of these spaces obtained in an article by Hernández, Šikić, Weiss, and
Wilson:2 if φ, ψ ∈ L2(R), let

[φ, ψ](ξ) :=
∑
j∈Z

φ̂(ξ + j)ψ̂(ξ + j),

which is an almost everywhere defined, 1-periodic function in L1([0, 1)) = L1(T) (here T denotes the 1-torus,

R̂/Z). We call [φ, ψ] the bracket of φ and ψ in L2(R). The bracket is a “generalized” inner product and is most
useful for our purposes. For example, 〈φ〉 ⊥ 〈ψ〉 if and only if [φ, ψ] ≡ 0 almost everywhere. It can be shown2

that if pφ = [φ, φ], then the weighted space Mφ := L2(T, pφ) is “naturally” isometric to the space 〈φ〉. The
“natural” isometry Jφ :Mφ → 〈φ〉 is, for each m ∈Mφ, given by

Jφ(m) = (mφ̂)∨. (2)

We show that the properties of the system Bφ correspond to properties of the weight pφ.

(i) Linear independence. If φ is not the zero element of L2(R), then Bφ is a linearly independent set. This
follows from the fact that Jφ(e−2πikξ) = φ(·−k) combined with the fact that {e−2πikξ : k ∈ Z} is a linearly
independent system if pφ > 0 on a set of positive measure.
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(ii) Orthonormality. Bφ is an orthonormal basis for 〈φ〉 if and only if pφ ≡ 1 almost everywhere.2

(iii) Existence of orthonormal basis. There exists ψ ∈ 〈φ〉 such that Bψ is an orthonormal basis of 〈φ〉 if and
only if pφ > 0 almost everywhere: just consider

ψ̂(ξ) =
µ(ξ)√
pφ(ξ)

φ̂(ξ),

where µ is 1-periodic and unimodular.2

We feel that it is very useful to cite a 2011 article3 that derives the Plancherel properties of the Fourier
transform in a very simple and efficient way in terms of the two Zak transforms, Z and Z̃, defined by

(Zf)(x, ξ) =
∑
k∈Z

f(x+ k)e−2πikξ

and
(Z̃g)(x, ξ) =

∑
`∈Z

g(`+ ξ)e2πi`ξ,

when f, g ∈ L2(R). Since f ∈ L2(R), we have
∑
k∈Z |f(x+ k)|2 <∞ almost everywhere, and thus (Zf)(x, ξ) is

clearly defined almost everywhere as the Fourier series with coefficients {f(x+k) : k ∈ Z}; the obvious analogous

argument is valid for Z̃g. The image φ(x, ξ) = (Zf)(x, ξ) is a function of the two variables x and ξ, is 1-periodic
in ξ, and satisfies

φ(x+m, ξ) = e2πimξφ(x, ξ), for m ∈ Z. (3)

Moreover, ∫ 1

0

∫ 1

0

|φ(x, ξ)|2dxdξ = ‖f‖L2(R).

Let M be the space of all φ defined for (x, ξ) ∈ R2 which are 1-periodic in ξ, satisfy Equation 3, and have

norm ‖φ‖M =
(∫ 1

0

∫ 1

0
|φ(x, ξ)|2dxdξ

)1/2

<∞. A simple argument shows that Z is an isometry onto M.

Let M̃ be the space of all φ̃ defined for (x, ξ) ∈ R2 which are 1-periodic in x, satisfy

φ̃(x, ξ + n) = e−2πinxφ̃(x, ξ) for n ∈ Z, (4)

and satisfy ‖φ̃‖
M̃

=
(∫ 1

0

∫ 1

0
|φ̃(x, ξ)|2dxdξ

)1/2

<∞. Similarly, it is easy to show that Z̃ is an isometry onto M̃.

Observe that the mapping U : M→ M̃ defined by (Uφ)(x, ξ) = e−2πixξφ(x, ξ) := φ̃(x, ξ) is a unitary isometry

onto M̃. It is also clear that Z−1 : M→ L2(R) and Z̃−1 : M̃→ L2(R) are given by
∫ 1

0
φ(x, ξ)dξ and

∫ 1

0
φ̃(x, ξ)dx,

respectively.

Let us write out explicitly the “formulae” of what we have done:

(UZf)(x, ξ) = e−2πixξ
∑
k∈Z

f(x+ k)e−2πikξ =
∑
k∈Z

f(x+ k)e−2πi(x+k)ξ. (5)

It follows that

(Z̃−1UZf)(ξ) =

∫ 1

0

∑
k∈Z

f(x+ k)e−2πi(x+k)ξdx =

∫
R
f(x)e−2πixξdx = f̂(ξ).

That is, we have the following factorization for the Fourier transform, F, (and by similar arguments F−1),

F = Z̃−1UZ and F−1 = Z−1U∗Z̃. (6)
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This gives us explicit formulae for the Fourier transform and its inverse on L2(R) in terms of these simple
operators.

Believe us that it follows that many important Plancherel-related results are obtained in surprisingly simple
ways by using these Zak transforms.3 Let us cite, for example, the following expression for the bracket:

[φ, ψ](ξ) =

∫ 1

0

(Zφ)(x, ξ)(Zψ)(x, ξ)dx, (7)

when φ, ψ ∈ L2(R). This shows that the bracket has a basic connection with the Zak transforms.

Let us present two more results of how a property of Bφ is equivalent to a property of the weight pφ (they
are much more challenging to prove than the aforementioned properties):

(iv) Schauder bases. A well known result of Hunt, Muckenhoupt, and Wheeden,4 describes Aq(T) weights,
spaces which are important in singular integral theory. In particular, p is an A2 weight if and only if(

1

|I|

∫
I

p(ξ)dξ

)(
1

|I|

∫
I

1

p(ξ)
dξ

)
≤M <∞ (8)

for any interval I ⊂ [0, 1), where M is some constant independent of I. Nielsen and Šikić,5 showed that Bφ
is a Schauder Basis for 〈φ〉 if and only if pφ is an A2 weight. Recall that a Schauder basis in the Hilbert
space 〈φ〉 is one such that, for each f ∈ 〈φ〉, there exists a C-valued sequence (ak)k∈Z such that

f = lim
K→∞

∑
|k|≤K

ak(f)φ(· − k),

the limit being in the 〈φ〉 norm (we also make the requirement that each ak : 〈φ〉 → C be a bounded linear
functional for all k ∈ Z).

(v) `2(Z) independence. Kolmogoroff introduced the notion of “`2(Z) linear independence” for a sequence of
vectors in, say, a separable Hilbert space H. Let (φk)k∈Z be the sequence; if, for a sequence (ak)k∈Z ∈ `2(Z)
we have

lim
N→∞

∑
|k|≤N

akφk = 0,

with convergence in the H norm, then ak = 0 for all k ∈ Z — this is what it means for the sequence to be
`2(Z) independent. Then Saliani6 and Paluszyński7 showed that it is true that Bφ (with φk = φ(· − k) for
a nonzero φ) is `2(Z) independent if and only if pφ(ξ) > 0 almost everywhere.

An important point we want to make is that the principal shift invariant spaces play an important role in several
areas of Analysis. Let us consider the well known result of Shannon8 in Sampling Theory:

Let sinc(x) = sinπx
πx for x ∈ R. It is easy to see that ŝinc(ξ) = χ[−1/2,1/2)(ξ). If we let 〈φ〉 = 〈sinc〉, then the

result of Shannon asserts that f ∈ 〈sinc〉 if and only if

f(x) =
∑
k∈Z

f(k)sinc(x− k), (9)

where the convergence of the series is uniform, absolute, and in Lp(R), p ≥ 2 (this follows from the band limited

property of sinc — since ŝinc = χ[−1/2,1/2)). It is clear from Equation 9 that all values of f are known if we know
the values of f on Z (the countable “sampling” set). It is easy to see that such a result could be quite important
in applications. One can see the truth of Equation 9 if we observe that φ satisfies the Nyquist condition:

φ(k) =

{
1 if k = 0
0 if k 6= 0

. (10)
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It is natural to ask if there is a more general condition for the sequence (φ(k))k∈Z that produces a “sampling”
result (that all values of f ∈ 〈φ〉 are determined by the values on Z). Using our knowledge of the principal
shift invariant spaces and the Zak transforms we discovered such a result as well as others.9 One can replace
the Nyquist condition on the sequence c = (ck)k∈Z = (φ(k))k∈Z by using the convolution of sequences in `2(Z):
(c ∗ d)k =

∑
j∈Z ck−jdj . This operation is well defined on this space. In particular, there are infinitely many

sequences (ck) satisfying the convolution idempotent property :

c ∗ c = c. (11)

For example, consider the sequence of Fourier coefficients of χE where E is any measurable subset of [0, 1) (and
extend 1-periodically). Each such sequence satisfies Equation 11 since the square of a characteristic function is
simply itself. One can show9 that the Nyquist condition can be replaced by

φ(k) = ck for (ck) satisfying Equation 11. (12)

Moreover, if ψ is an L2(R) function then, under suitable restrictions,9 the space 〈ψ〉 contains a sampling function
φ with 〈ψ〉 = 〈φ〉; the function φ comes explicitly in terms of the Zak transform and ψ.

The “ubiquitous” nature of the principal shift invariant spaces is encountered in many other areas, and their
properties are most useful for the study of these areas. Consider Wavelets. In one dimension, a (classical) wavelet
ψ is an element of L2(R) such that the set {ψjk : j, k ∈ Z} where ψjk = 2j/2φ(2jx− k), is an orthonormal basis
of L2(R). That is, we first form the system Bψ and, then, apply the dilation (Djf)(x) := 2j/2f(2jx) for j ∈ Z
to each member f ∈ Bψ. An important method for constructing such wavelets is known as the MRA method
(with MRA standing for multiresolution analysis).

An MRA consists of a sequence of closed subspaces Vj , j ∈ Z of L2(R) satisfying the following:

(a) Vj ⊂ Vj+1 for all j ∈ Z.

(b) f ∈ Vj if and only if f(2(·)) ∈ Vj+1 for all j ∈ Z.

(c)
⋂
j∈Z Vj = {0}.

(d)
⋃
j∈Z Vj = L2(R).

(e) There exists a function φ ∈ V0 so that Bφ = {φ(· − k) : k ∈ Z} is an orthonormal basis for V0. This φ is
called the scaling function of this MRA.

We thus meet the principal shift invariant space V0 = 〈φ〉. A very good example of an MRA and how it
produces a wavelet is given to us by the Shannon sampling theorem. Let us see how it provides us with a wavelet
produced by an MRA. We call this wavelet the Shannon wavelet. Let φ be the sinc function and define V0 = 〈φ〉.
Define the Vj to be the dilations of the V0, i.e. Vj = Dj(V0). That this sequence of subspaces is an MRA is quite

immediate since V̂0 = L2([−1/2, 1/2)).

Consider the set E = [−1,−1/2) ∪ [1/2, 1), and define ψ by ψ̂ = χE . Clearly the various dyadic dilations of
E, namely the sets 2jE, produce a disjoint covering of R\{0}; also, the sets

Ŵj = span{χE(2−jξ)e2πik2−jξ : k ∈ Z} = L2(2jE) (13)

are mutually orthogonal with L2(R) =
⊕

j∈ZWj . Moreover,

Vj+1 = Vj ⊕Wj (14)

for all j ∈ Z (in other words, the orthogonal complement of Vj within Vj+1 is Wj). It is completely straightforward
from these observations that ψ is actually a wavelet. This Shannon wavelet is probably the simplest example of
a wavelet, as the previous simple argument demonstrates, even though the Haar wavelet is traditionally cited as
the simplest.

Proc. of SPIE Vol. 8858  885808-4



Let us give a quick description of the MRA construction of wavelets.10 Let φ be the scaling function of a

general MRA. Since the Fourier transform of the dilation operator Dj is D−j — in the sense that D̂jφ = D−j φ̂

— we have that φ̂(2ξ) belongs to V−1 ⊂ V0. Let Ŵ−1 be the orthogonal complement of V̂−1 in V̂0. Clearly

there exists a 1-periodic function, h0, in L2(T) such that φ̂(2ξ) = h0(ξ)φ̂(ξ). The function h0 is called the

low-pass filter, and one constructs another function, h1(ξ) = e2πiξh0(ξ + 1
2 ), called the high-pass filter. This pair

of functions satisfies
|h0(ξ)|2 + |h1(ξ)|2 = 1. (15)

Furthermore, ψ̂(2ξ) = h1(ξ)φ̂(ξ) gives us the desired wavelet: ψ ∈W0, with {ψ(· − k) : k ∈ Z} is an orthonormal
basis for W0. This means that the principal shift invariant space W0 has the property that its dilations DjW0 =
Wj form an orthogonal decomposition of L2(R) (see Equation 13). We see, therefore, that the Shannon wavelet
is a simple example of an MRA wavelet obtained from the scaling function sinc. Observe that V0 and W0, in
general, have the following different properties: the dilations Vj of V0 form an increasing sequence of subspaces
of L2(R) while {Wj : j ∈ Z} is a mutually orthogonal sequence of subspaces.

The last condition in the definition of MRA, namely that Bφ be an orthonormal basis for V0 is quite restrictive
from a pragmatic point of view, whether one is interested in pure or applied Analysis. Even when one asks whether
Bψ is a frame or Riesz basis (defined below) for 〈ψ〉, the weight function pψ still gives an extremely simple answer:

(vi) Frames. Recall that a frame for a Hilbert space H is a countable subset {fk} so that there are finite,
positive constants A and B so that for every f ∈ H

A‖f‖2 ≤
∑
k∈Z
|〈f, fk〉|2 ≤ B‖f‖2.

It can be shown2 that Bψ is a frame with constants A and B if and only if Aχψ ≤ pψ ≤ Bχψ almost
everywhere, where χψ is the characteristic function of the support of pψ. Thus, in particular, Bψ is a
Parseval frame (a frame with A = B = 1) if and only if pψ is the characteristic function of a subset of [0, 1].

(vii) Riesz bases. Recall that a Riesz basis is the image of an orthonormal basis under a bounded, invertible
linear transformation. It follows that Bψ is a Riesz basis if and only if there are finite, positive constants
A and B so that A ≤ pψ ≤ B almost everywhere.2

1.1 Non-principal shift invariant spaces in R
In all of the above discussions, our dilations were dyadic. One may well wonder whether it makes a difference if
one replaces 2j with 3j or, more generally, (p/q)j for positive integers p > q which are relatively prime. In fact,
such a change makes the corresponding notion of an MRA more complex. The primary complication is that
property (e) from the above definition of MRA is no longer achievable. Instead, one must broaden one’s view to
considering the case V0 = 〈φ1, φ2, ..., φp−q〉, where this latter symbol means “the smallest shift-invariant space
containing all the functions φ1, ..., φp−q”. In such a case, one does not produce a single wavelet, but rather a
vector of p− q functions called a multiwavelet. In the ensuing analysis, rather than a single low-pass filter, one
produces a matrix of low-pass filters M0(ξ), so that

φ1(pq ξ)

φ2(pq ξ)

...
φp−q(

p
q ξ)

 = M0(ξ)


φ1(ξ)
φ2(ξ)
...

φp−q(ξ)

 .

Thus one is rather naturally drawn to consider “wavelets” (read: multiwavelets) generated by more compli-
cated shift-invariant spaces. If one considers the dyadic definition of MRA while relaxing condition (e) to allow
for V0 to be generated by more than one function, there is, for example, a family of multiwavelets described by
Journé (see Example A on page 350 of the book by Hernández and Weiss10) requiring V0 to be a shift-invariant
space generated by n functions. In fact, D. Bakić has produced a more complicated example where V0 must
actually be infinitely generated.
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2. IN SETTINGS BEYOND R
2.1 The Rn case

To describe some of the complications one encounters in shift invariant spaces in Rn — in particular, to generalize
the notion of an MRA wavelet to Rn — first observe that while one could simply view L2(Rn) as, roughly
speaking, the tensor product of n copies of L2(R) and import the one-dimensional theory into n-dimensions,
such an approach dramatically increases the numerical complexity for applied problems. Thus one would like a
“naturally” n-dimensional framework.

With that in mind, one would obviously like to use Zn as the family of translations, but it is not immediately
obvious how to “best” replace the dilations, even in R2. It is fairly common to use the quincunx matrix,

q =

(
1 −1
1 1

)
.

In this setting, with q producing dilations and Zn as the translations, suppose that we were to attempt to
generalize the Haar wavelet from L2(R): this is just the standard (dyadic, one-dimensional) MRA wavelet with
scaling function φ = χ[0,1]. It is possible11 to generalize the Haar wavelet to R2 — that is, a (q,Z2)-MRA wavelet
whose properties are very similar to those of the Haar wavelet. However, the scaling function produced in such
a case is the characteristic function of a fractal set called “the twin dragons”, and so mostly useful only in the
abstract.

By including not just dilations by q, but a group of dilations generated by q and the symmetry group of
the square (a dihedral group), one can produce a Haar-like wavelet whose scaling function is the characteristic
function of a right triangle.12 Alternatively, one could use just q to generate the dilations with the caveat that
V0 is generated by several characteristic functions (one coming from each element of the square symmetry group
acting on the aforementioned triangle). Thus one again encounters the more complicated shift-invariant spaces
described at the end of the previous section.

2.2 Locally compact abelian groups

In this section, we summarize the results of recent work on locally compact abelian groups.13 The general idea
is that one can appropriately generalize the notions of translation, principal shift invariant spaces, brackets, and
weight functions from the R setting to the locally compact abelian setting in such a way that one obtains a
similar dichotomy between principal shift invariant spaces and their weight functions.

Suppose that G is a locally compact abelian (LCA) group. Basic facts about harmonic analysis on such
groups can be found in texts by Rudin14 or Folland,15 including the definition and various properties of the
Fourier transform in this setting. We shall use additive notation for the group G. Recall that a character of G
is a continuous map α : G→ C such that

|α(g)| = 1 for all g ∈ G, and α(g1 + g2) = α(g1) · α(g2) for all g1, g2 ∈ G.

The character group of G is the multiplicative group of all characters of G. We take the dual group Ĝ to be the
character group of G — one has the famous examples

T̂n = {e2πiξ·k : k ∈ Zn} and Ẑn = {e2πiξ·k : k ∈ Tn}.

A representation of an LCA group G on a Hilbert space H is a strongly continuous map g → Tg from G into
L(H,H), the group of bounded linear operators on H having bounded inverses, such that Tg ◦ Th = Tg+h for all
g, h ∈ G. We say that a representation is unitary if all the operators Tg are unitary on H.

One key example to keep in mind is the regular representation h → Rh on L2(G, dg) given by (Rhφ)(x) =
φ(x+ h).
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First, we generalize the notion of translation, shift invariance, and principal shift invariant subspaces. If T is
a unitary representation of G over H, a closed linear subspace S of the Hilbert space H is said to be T -invariant
if Tg(S) ⊂ S for all g ∈ G. Given ψ ∈ H\{0}, define the closed linear subspace of H generated by ψ to be

〈ψ〉 = span{Tgψ : g ∈ G}
H
. (16)

The subspace 〈ψ〉 is clearly T -invariant and is called the cyclic T -invariant subspace generated by ψ. For the
regular representation, Tg represents translation by g, T -invariance is just translation invariance, and cyclic
subspaces are just the obvious generalization of principal shift invariant spaces to this setting.

Now we generalize the bracket. Fix a Haar measure on Ĝ. A unitary representation T of an LCA group G
on a Hilbert space H is said to be dual integrable if there exists a function, which we shall call bracket,

[·, ·] : H ×H → L1(Ĝ, dα)

such that

〈φ, Tgψ〉H =

∫
Ĝ

[φ, ψ](α)α(g)dα.

The notion of dual integrability, i.e. that the integration takes place over the dual group Ĝ, is the key idea
here. For the regular representation, using the Fourier transform on G and its Plancherel identity, one has

〈φ,Rhψ〉L2(G,dg) =

∫
φ(g)(Rhψ)(g)dg =

∫
Ĝ

φ̂(α)R̂hψ(α)dα =

∫
Ĝ

φ̂(α)ψ̂(α)α(h)dα. (17)

Thus for the regular representation, the bracket is simply given by [φ, ψ](α) = φ̂(α)ψ̂(α), which is reminiscent
of the bracket on R. This notion of bracket is as useful as the 1-dimensional version. In particular, we have the
property that 〈φ〉 ⊥ 〈ψ〉 if and only if [φ, ψ] = 0 (almost everywhere). Moreover, one has the following general
theorems:

Theorem 2.1. Let g → Tg be a dual integrable unitary representation of an LCA group G on a Hilbert space

H. For ψ ∈ H\{0}, define Ωψ := {α ∈ Ĝ : [ψ,ψ](α) > 0}. Then the map

Jψ(φ) = 1Ωψ

[φ, ψ]

[ψ,ψ]
for φ ∈ H

is a linear, one-to-one isometry from 〈ψ〉 onto the weighted space L2(Ĝ, [ψ,ψ](α)dα).

Thus, as in the one-dimensional case, the space 〈ψ〉 is isometrically isomorphic to a weighted L2 space with
the weight coming from the bracket. In Section 4 of the article referenced at the beginning of this section, explicit
computations are performed using the integer translations as the representation to produce the isomorphism from
the one-dimensional setting, i.e. the isomorphism given in Equation (2) above. Other computations using the
Gabor representation shows the connection with the Zak transform given in Equation (7) above.

Theorem 2.2. Let G be a countable abelian group and let k → Tk be a dual integrable unitary representation
of G on a Hilbert space H. Let ψ ∈ H\{0}. Let Bψ,G := {Tkψ : k ∈ G} and 〈ψ〉 as above. Then one has the
following:

(i) Bψ,G is an orthonormal basis for 〈ψ〉 if and only if [ψ,ψ](α) = 1 for almost every α ∈ Ĝ.

(ii) Bψ,G is a Riesz basis for 〈ψ〉 with constants A and B if and only if A ≤ [ψ,ψ](α) ≤ B for almost every

α ∈ Ĝ.

(iii) Bψ,G is a frame for 〈ψ〉 with constants A and B if and only if A ≤ [ψ,ψ](α) ≤ B for almost every
α ∈ Ωψ := {[ψ,ψ](α) > 0}. In particular, Bψ,G is a Parseval frame for 〈ψ〉 if and only if [ψ,ψ] = χΩψ .
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2.3 Non-abelian groups

Recent work by Barbieri, Hernández, and Mayeli16 generalizes shift-invariant spaces and the bracket to the non-
abelian Heisenberg groups Hn (and actually to a broader class of “similar” non-abelian groups). The Heisenberg
groups are 2n+ 1-dimensional groups parametrized by (x1, ..., xn, y1, ..., yn, t), where the group law is given by

(x1, ..., xn, y1, ..., yn, t) · (x′1, ..., x′n, y′1, ..., y′n, t′) = (x1 + y1, ..., xn + yn, t+ t′ + x1y
′
1 + ...+ xny

′
n);

the non-commutativity comes from the last term. The group law is better understood by considering the upper-
triangular matrices  1 xT t

0 In y
0 0T 1

 .

The concept of shift-invariant space comes by choosing, for example, the translations Lγ as coming from left
translation by the family Γ of matrices above when all the entries are integers — their paper works equally well
for other similar lattices, but this is the motivating example.

Harmonic analysis in this setting is more complicated than the abelian case; in particular, the character group
is insufficient to support a Fourier transform, and one must exert effort to parametrize the (correct) dual space
and compute an appropriate measure to support a Plancherel identity. However, once one is comfortable in this
abstract setting, one is able to produce a bracket function [·, ·] : L2(Hn)× L2(Hn)→ L2([0, 1)):

[φ, ψ](α) =
∑
j∈Z
〈FHnφ(α+ j),FHnψ(α+ j)〉HS |α+ j|n,

where FHn is the Fourier transform on the Heisenberg group (which takes values in a space of Hilbert-Schmidt
operators), the inner product is the Hilbert-Schmidt inner product, and the last factor is a rescaling factor coming
from the “Plancherel measure” in this setting.

While significantly more difficult to interpret, this bracket enjoys many of the same properties of its relatives
on locally compact abelian groups. For example, Barbieri, Hernández, and Mayeli were able to prove the following
theorems:

Theorem 2.3. The collection {Tγψ γ ∈ Γ} is a frame for 〈ψ〉Γ,L with constants A and B if and only if
A ≤ [ψ,ψ](α) ≤ B for almost every α in the support of [ψ,ψ].

Theorem 2.4. Let Ωψ denote the support of [ψ,ψ]. The map

(Sψ(φ))(α) := χΩψ (α)
[φ, ψ](α)

[ψ,ψ](α)

is an isometry from an appropriate principal shift-invariant space onto the weighted space L2([0, 1), [ψ,ψ](α)dα).

In the previous theorem, the shift invariant space is not generated by the full family of translations Γ described
above, but we refer the reader to the paper in question for the full details.
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