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ABSTRACT  

Nowadays, research in the field of science education points to the creation of alternative ways of teaching contents 
encouraging the development of more elaborate reasoning, where a high degree of abstraction and generalization of 
scientific knowledge prevails. On that subject, this research shows a didactic alternative proposal for the construction of 
Fresnel and Fraunhoffer diffraction concepts applying the Fourier transform technique in the study of electromagnetic 
waves propagation in free space. Curvature transparency and Fourier sphere operators in paraxial approximation are used 
in order to make the usual laborious mathematical approach easier. The main result shows that the composition of optic 
metaxial operators results in the discovery of a simpler way out of the standard electromagnetic wave propagation in free 
space between a transmitter and a receptor separated from a given distance. This allows to state that the didactic proposal 
shown encourages the construction of Fresnel and Fraunhoffer diffraction concepts in a more effective and easier way 
than the traditional teaching. 
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1. INTRODUCTION 

Current research in science education, show the need to engage in educational practice a number of methods and 
techniques to ensure the development of critical thinking students predominantly from an increase in the level of 
reasoning used to understand content , and which are evident forms of scientific knowledge construction involving a 
higher degree of abstraction and generalization of it. This variation on the traditional way of teaching, the teacher 
requires finding quality learning and new creative strategies for their achievement in the terms initially exposed. This is 
to avoid the use of abstractions unmotivated predominantly associated with rote learning and liabilities acquired and 
decontextualized late in many cases, given the lack of significance for the learner [1]. It should be noted that the attitudes 
assumed by teachers to enter some content in the classroom in a traditional way, are characterized by the use of 
epistemological schemes that prevent the development of both creative attitudes in students, and in themselves when 
they make their educational work [2]. This of course in turn affects the lack of possibilities to form a more complex 
thinking and meaningful learning achievement. The strategies used to teach physics at this time looking for the 
transposition of the acquired knowledge to other contexts, thereby facilitating adequate approach to problem situations 
that might include some experience associated with the solution of these. Most studies involving the search for solutions 
to these problematic situations are addressed in the context of the teaching of optics, including the use of the Fourier 
transform, into their applications can stand the theory of diffraction, resonators theory, obtaining optical and digital of 
the fractional Fourier transform and finally the correlation operation [3].  

From this perspective, in this research, we propose an alternative educational way for the construction of the concepts of 
Fresnel and Fraunhofer diffraction, using the Fourier transform on the study of electromagnetic wave propagation in free 
space.  
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The method makes use of the transparency  operator of curvature  the field and sphere Fourier operator  in paraxial 
approximation, in order to facilitate the mathematical approach the topic by changing the educational approach 
traditionally used, and encouraging the use of creative attitudes by both the teacher and students, helping them to reason 
and operate the physical concepts with a higher level than normally obtained in the study of physical phenomena such. 

 

2. FRESNEL DIFFRACTION AND FOURIER SPHERE OPERATOR 

To display the alternative teaching approach since the concept of diffraction, consider Figure 1, which shows an  input 

plane ),( AU called the diffraction plane and ),( vuU P . The output plane is called observation plane. The finite 

limits of the aperture have been incorporated in the definition of ),( AU , and the input is considered uniformly 

illuminated by monochromatic plane wave with unit amplitude and normally. 

 
Figure 1. Free space propagation  

 
To demonstrate the use of alternative teaching approach applied to the concept of diffraction, consider Figure 1, which 

shows an input plane ),( AU  called the diffraction plane and ),( vuU P , the output plane; called observation plane. 

The finite limits of the aperture function have been included in the definition of  ),( AU , and the input is considered 

uniformly illuminated by a monochromatic plane wave normally incident unit amplitude;  applying the Fresnel 
diffraction integral we obtain the following expression: 
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The origin of time P is exchanged to the origin of time A , then the factor 
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Has been neglected. Accordingly, the Fresnel diffraction equation can be written as follows: 
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But the multiplication of the complex amplitude and phase factor can be interpreted in the paraxial approximation equal 
to the complex amplitude distribution of spherical surfaces with a radius d  for the input and radio d  for the output. 
Therefore can be rewritten as: 
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The equation (4) and (5) means that the complex amplitude distributions are geometrically spherical in shape for both the 

diffraction surface  ),( 
SphAU and the surface of observation ),( vuU

SphP ; also shows that the spherical surfaces are 

tangent to the respective planes. Therefore, the Fresnel diffraction can be written as: 
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Simultaneously, equation (6) can be transformed into: 
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Where  is a conventional Fourier transform. 
  

 
 

Figure 2. Fresnel diffraction between the spherical surfaces  
 

Thus, the Fresnel diffraction is a Fourier transform between two spherical surfaces where the vertices are located in the 
same axis and separated by a distance similar to the radius of the sphere. This result allows to define the Fourier sphere 

operator. Consequently ),( vuU
SphP  is the  Fourier  sphere [4-6] of ),( 

SphAU . Obviously, this interpretation complies 

with the Huygens principle, ie the spherical surface of the radio transmitter that propagates d be observed at a distance d, 
but on a spherical surface of the radio receiver -d. 

Thus, "If SpheA  is the emitter spherical with radius R = d, and SpheP is a receiver spherical with radius R =-d and both 

form a concentric surface. The field that is transferred from SpheA to SpheP corresponds to Fraunhofer diffraction 

phenomenon and is mathematically expressed as a Fourier transform." 
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3. CURVATURE TRANSPARENCY OPERATOR 
 
Considering the geometry of Figure 3, assume that a spherical  monochromatic wave is illuminating the left side of a 
positive lens. 

 
Figure 3.  Curvature transparency operator 

 

To calculate the complex amplitude distribution of the field on the right side of the lens ),( BU  , considering Figure 

3, and using properties of the Fourier transform of a lens, one can show that: 
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And assuming that BRR 1  and  ARR 2  the amplitude distribution on the right side of the lens becomes              
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In equation (9), the factor  
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approximation to a spherical wave converging to a point of light at a distance BR . 
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spherical wave diverging light toward a midpoint in a distance AR . 

Then equation (9) is given as: 
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If 0 o , it is assumed that the lens has a thickness and the spherical surfaces coincide with the surfaces of the faces 

of the lens. Where 
SphBU  is the complex amplitude distribution of radio BR  and 

SphAU  is the amplitude distribution is 

the spherical surface with radius AR . 

In the case where 0o  transparency of curvature operator is obtained. Then: 
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Considering two spherical segments A and B with radii AR  and BR shown in Figure 3, states that the transfer from the 

emitter field spherical SphA  tangential to a spherical surface SphB is expressed by a quadratic phase factor dependent 

and radii of curvature SphA   and   SphB . 

 
 

4. EMITTER A RECEIVER TRANSFER 
 
Using the described operators, equation electromagnetic field transfer between a spherical emitter A and spherical 
receiver B separated by a distance d can be obtained with complete generality (see Figure 4). 

 
Figure 4.  Emitter and receiver system. 

 

With successive applications of two operators, one can achieve the electromagnetic transfer, with complete generality 

between transmitter  AR and receiver BR  separated by a distance d (see Figure 4.). Therefore:  
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In the special case of diffraction from a plane screen located at a finite distance, when AR  and  BR , the 

Fresnel diffraction formula is achieved; for the case   AR  or BR  a finite distance, ie spherical transmitter 

or receiver, an appropriate scaling the coordinates allows obtaining a fractional Fourier transforn; finally, when 

AR  , BR  and  d , the resulting expression corresponds to the known phenomenon of Fraunhofer 

diffraction[7]. 
 

CONCLUSIONS 
 
The analysis proposed in this work can prove, that the passage of a spherical wave with a radius of curvature well known 
through a thin lens and the spherical wave study, corresponds mathematically transparent curvature operator. 
Furthermore, it was found that the Fresnel diffraction metaxial approximation corresponds mathematically to the Fourier 
transform between spherical surfaces, reaching the sphere of Fourier operator. Furthermore, it is important to note that 
the composition of the optical operators allows a more simple way to study the propagation of electromagnetic waves in 
free space, that is, with the application of the two operators, it is possible to obtain the propagation of the 
electromagnetic field more generally from sender to receiver, when they are separated by an arbitrary distance given. 
This last aspect, suggests that the proposal submitted, using the transparency of curvature operators and Fourier sphere to 
study wave propagation in free space, facilitates the construction of the concepts of Fresnel diffraction and Fraunhofer of 
more effectively and easily than traditional teaching, emphasizing its educational role. 
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