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ABSTRACT   

We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer 
diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under 
QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, 
morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is 
reported on a dataset of more than 300 cores of various diagnosis results. 
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1. INTRODUCTION  
Prostate cancer is the second most common type of cancer that causes deaths to men in the US [1]. In 2010, 196,038 men 
were diagnosed with prostate cancer, and 28,560 men eventually died from it. During prostate cancer diagnosis, if the 
patient fails under the Digital Rectal Examination and Prostate-Specific Antigen (PSA) screening, a urologist or 
radiologist will takes a cylindrical biopsies of prostate tissue through the rectum of a patient with hollow needles. These 
samples are stained. Then, its glandular architecture is evaluated under microscopy inspection and a Gleason score is 
assigned by a pathologist based on the Gleason grading system [2]. This score is a sum of two partial scores 
corresponding to the most and second most predominant grades in the tissue. Each partial score is a grade ranging from 1 
through 5, measuring the degree of malignancy and cancer aggressiveness. Benign tissues usually have grade 1 or 2. 
These grades are characterized by large, well separated glands, large and branchy lumen and thick boundaries. Grade 3 
has smaller glands, thinner boundary, smaller and round lumen. In grade 4, the glands merge together and create a mass 
of glands containing multiple lumens. Grade 5 indicates that poorly differentiated tissue and low chance of survival. The 
Gleason grading is an important factor to prostate diagnosis since it has strong correlation with the extent of the disease 
and patient survival rate. It also helps the pathologist determine most suitable treatments to the patients. 

Several efforts have been spent to produce a reliable Gleason grading based on the histological H&E images. 
Such efforts can be divided to two categories: classification-based and segmentation-based. Methods in the first group 
utilize various H&E-based features to produce Gleason scores without needing a label map. These features include 
textures from H&E images [3], multi-spectra images [4]. Methods in the second group produce a Gleason score in two 
stages. In the first stage, label maps of different parts of the biopsies are produced from the H&E images. Then, 
morphological features are extracted from these maps. Then, subsequent classifiers are deployed to produce the final 
Gleason scores. Naik et al. [5] build statistical models of the likelihood for the class of a pixel given it color and location 
in the training set. Although the authors reported good separation accuracies of 86.35% between Grade 3 and benign, 
95.19% between Grade 3 and Grade 4, 92% between Grade 4 and benign, the information of stroma and lumen is not 
fully deployed. In [6], Nguyen et al. use the (L, a, b) color space and various constrains on the relative arrangements of 
tissue regions sections to refine the segmentation map. 
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One common point between these methods is the use of H&E images in the diagnosis. The need for staining 
comes from the fact that many biopsies are known to be “phase object” i.e. they are nearly transparent under bright-field 
inspection. Exogenous factors such as H&E molecular tags must be introduced to enhance the contrast. Unfortunately, 
this introduction sacrifices intrinsic properties of the specimens. Beside long sample preparation time, variation in 
imaging condition hinders translation of research findings into medical clinics. In contrast, QPI modalities [7-13] render
high contrast of these phase objects without staining and measure the refractive index of imaging sample non-invasively. 
This refractive index information is intrinsic and have shown high potential for medical diagnosis. In [14], the authors 
reported, for the first time, the use of  QPI to classify cancerous areas vs. begin areas in 11 prostate biopsies. In their 
research, mean and median of the phase distribution in a sliding windows are used as the feature. Although the number 
of biopsies is relatively small, this pioneer work has deeply motivated us in building a fully automatic diagnosis system 
for prostate cancer diagnosis.  

Our paper follows the second approach to produce automatic diagnosis results. Here, a high throughput Spatial Light 
Interference Microscopy (SLIM) [9] system is used to image biopsies with frame rate up to 12.5 frames/s. These biopsies 
come from a dataset of more than 300 cores from the Department of Pathology at University of Chicago. A Random
Forest classifier [15] is trained to segment the SLIM images into different regions (e.g. glands, stroma and lumen) with
accuracy of at least 90%, based on the texture of the tissue. Given all features computed from segmented glands, a Bag-
of-Word (BoW) model [16] is used to extract the feature of each cores from all the glands inside the core. Using the core 
features, we show a binary classification problem for Gleason grade 3 vs. Gleason grade 4 cores using the Support
Vector Machine (SVM) classifiers.

2. METHODS
2.1 Principle of SLIM imaging 

Assuming a phase object with sample transmission ( )T r  is imaged using QPI where r denotes the transverse coordinate

in the sample plane. The phase quantity of interest in QPI, ( ) ( )arg ,Tφ = ⎡ ⎤⎣ ⎦r r  is given by ( ) ( ) ( )k h nφ = Δr r r , where

( ) ( ),n hΔ r r  is the difference in refractive index and the thickness of the sample. k  is the mean wavenumber of the
illumination. For coherent illumination, assuming the incident field has unit amplitude, the total field at the output port of 
the microscope relates to the sample’s transmission as ( ) ( )tU T=r r . To measure ( )φ r , SLIM decomposes tU  into a

DC component oU  and an AC component sU  such that ( ) ( ){ }( ) ( ) 1 expt o s oU U U U iβ φ= + = + Δ⎡ ⎤⎣ ⎦r r r r  where

( ) ,o tU U=
r

r obtained by spatial filtering the total field .tU  The quantities ( ) ( ) ,s oU Uβ =r r  

( ) ( )arg arg ,s oU UφΔ = −⎡ ⎤⎣ ⎦r r  denote relative amplitude and phase difference between the two fields. If both quantities 
are known, the phase of interest can be computed as 
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Figure 1 shows the SLIM optical setup. Here, the system is designed as an add-on
module to a commercial microscope. First, the total field tU  is relayed to the output port of the scope. Then, it is
spatially decomposed at the back focal plane of 1L  into oU  and .sU  The DC field, ,oU  has the Fourier spectrum 
matches the condenser phase annulus while that of AC field occupies the rest of the focal plane. An SLM, placed at this
plane, generates modulating phase rings (see Figure 1(b)) matching the spatial spectrum oU%  and shifting its
wavefront by 2n nϕ π=  with 0,1,2,3n = . A camera placed at the back focal plane of lens 2L captures the interference
intensity between sU  and the phase-shifted oU , namely: 

( ) ( ) ( ) ( ) ( )
2 22; 1 2 cos ,mi

n o s o mI e U U Uϕϕ β β ϕ ϕ⎡ ⎤= + = + + Δ −⎣ ⎦r r r r   (2) 

where nϕ  is the external phase modulation.
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Figure 1. a) Optical setup of SLIM [8], b) Four different intensity images corresponding to 4 different modulation of the  
phase mask, c) Synthesize phase map 

During the processing stage, four different images ( );0 ,I r ( ); 2 ,I π±r ( );I πr  are combined to solve for ( ) ( ),β φΔr r  
using Eq. (2) and further plugged into Eq. (1) to compute ( ).φ r  More details can be found in [9]. Figure 2

 shows an example of H&E and SLIM images of the same core. Most of the details of the samples are observables
 in both images. However, the contrast of stromal area in the SLIM image are significantly better compared 
to that of the H&E.  
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Figure 2. a) H&E image of a core in our database, b) Corresponding SLIM image 

 
2.2 Segmentation of SLIM images 

In this section, we show how to obtain the label map from the SLIM image using machine learn. The segmentation 
maps are produced by classifying each pixel in the phase image with a Random Forest classifier given feature vector of 
each pixel. Here, we use the texton-based classification framework that has been widely used in computer vision for 
material classification problem e.g. [17]. The framework consists of two steps. First, the textons are extracted. Second, 
feature vector of each pixel is calculated given extracted textons. Figure 3 (a) shows how our textons are retrieved 
from a set of input SLIM images. Each input SLIM images is convolved with a filter bank, 
here, a modified version of the Leung-Malik filter bank proposed in [18]. The bank consists of 80 directional filters and 
10 symmetric filters oriented at 8 different directions and 5 scales. Each filter has dimensions of 49 x 49 pixels. For each 
scale and direction, we generate one first-order and one second-order derivative of Gaussian kernels with elongation 
factor of 3. Ten symmetric filters include 5 Gaussian at 5 Laplacian of Gaussian (LOG) kernels at 5 different scales. To 
capture rotational invariant features, for each scale, we keep the maximum responses over 8 directions. Filter responses 
obtained following this method are also known as MR-8 [17]. To train the Random Forest classifier, about 4 million 
filter responses or 0.18% of the total number of filter responses, are randomly sampled over 240 cores. Then, these 
sampled filter responses are clustered into k=50 clusters, whose centers are chosen as textons (see Figure 3 (a)).
 Found texton are used to compute the feature vector of each pixel in the next step. 

Once the texton set have been specified, a vector quantization step is applied to associate each pixel in a SLIM 
image to a “closest” texton retrieved. Here, “closest” means smallest Euclidean distance. The output of this step is an 
indexing map specifying the best explained texton for each pixel (see Figure 3 (b)). Then, a Gaussian weighted 
histogram of texton indices is computed and used as the feature vector for each pixel.  
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Figure 3. (a) Texton extraction from prostatic SLIM images. (b) Feature extraction: a normalized histogram of texton 
indices in the neighborhood of each pixel is used as its feature vector. (c) Training the Random Forest for pixel 
classification: pixel feature vectors with class labels randomly sampled at several locations are used to train the Random 
Forest classifier. (d) Label map prediction: The feature vector each pixel in the image is fed into the classifier to produce a 
value from 0 to 1 of pixel stroma likelihood. The label map is obtained by thresholding the stroma likelihood map. 

 
Using normalized histogram of texton indices as feature vector, we train a Random Forest classifier [15] to 

discriminate two different kinds of textures: epithelial gland and connecting stroma. Lumen pixels are temporary 
excluded from the diagnosis since their phase values are very close to that of the background. These pixels will be 
semantically refine after classifying the others. The Random Forest classifier is a modification of bagging (or bootstrap 
aggregating) method that reduces the prediction variance of a single decision tree by creating an ensemble of T de-
correlated decision trees, trained on a bootstrapped sample of the original training dataset using random sampling with 
replacement and “feature bagging”. The classifier has shown its priority over other methods in several classification 
problems e.g. [19]. The training of this classifier is explained in Fig. 3 (c). After classifier training, a query pixel can 
be classified using its feature vector by traversing from the root node to the leaf node in each tree. At each node 
before termination, a branching decision is made based on the current value of the feature vector. Each leaf node in

 the random forest is associated to a class probability obtained through training, telling 
percentage of training samples for each class reaching the node. In prediction (see Fig. 3 (d)), the 
forest produces class probability ( )p c L  by averaging the prediction over the leaf nodes  ( )1,..., TL l l=   as: 

 
( ) ( )

1

1 .
T

t
t
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2.3 Automatic diagnosis of SLIM images 

After the segmentation map for each core has been computed, all glands are identified. To obtain diagnosis result for the 
whole core, we compute six different features for each gland inside the core. These features consist of ratio between the 
area of gland to the maximum glandular area in the core, gland eccentricity, gland solidity, stroma invasion score, ratio 
between perimeter of the gland to that of the circumscribing ellipse and that of the average stroma likelihood inside the 
gland. The first four features are morphological and have demonstrated good classification performance in other 
automatic segmentation with H&E images, see [20]. Meanwhile, our experimental results show strong correlation 
between the average stromal likelihood feature with the consensus Gleason grades. To aggregate the glandular features 
and characterize the cores, we use the Bag of Word (BoW) model developed in [21]. This model combines the features 
of several glands inside a single core to describe the whole core. The model is constructed as shown in Fig. 4. 

 
Figure 4. (a) Bag-of-word model for cores: The feature vectors of all glands in the cores are aggregated and clustered into 
different groups using k-mean clustering. The cluster centers are used as the “words”. (b) Feature extraction for each core: 
Each gland in the core is associated with a closest word. Then, a normalized histogram of word count is used to 
characterize the core. 

 
First, feature vectors of all glands from all cores are collected. Here, from all 302 cores, 4227 gland feature vectors are 
extracted. Each a feature vector of dimension of 6. Then, k-mean clustering is used to partition these 4227 vector into 
k=15 different clusters. The centers of these clusters will be used as the “words” in the BoW model (see 
Fig. 4 (a)) while the normalized histogram of word count will be use as descriptor for the whole core (see Fig. 4 (b)).  

  Next, we test our BoW model in classifying cancer cases of Gleason grade 3 vs. Gleason grade 4.  Here, 94 grade 3 and 
32 grade 4 cancer cores were used. Since grade 2 diagnosis is not given on cores, we gather all cores with the biopsy 
diagnosis of grade 2 and grade 3 in majority to the grade 3 group. Meanwhile, 32 Grade 4 cancer cores come from those 
with biopsy diagnosis of grade 4 for the majority pattern. As a side note, here, Gleason score of biopsy evaluation is used 
for the ground truth instead of core evaluation. 
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3. RESULTS
Our code is implemented in MATLAB with the MexOpenCV plugin for Random Forest obtained from 

http://vision.is.tohoku.ac.jp/~kyamagu/software/mexopencv/. The training dataset for pixel classification consists of 4.92 
million histograms of texton indices with two possible labels (“gland” or “stroma”). These histograms of texton come 
from 246 cores with manual labeling. For each core, 20,000 histograms of texton indices in stroma and gland regions 
area are randomly sampled. Note that, the whole dataset consist of 302 cores with more than 9 million histograms each. 
Therefore, our training set is approximately 0.18% of the total dataset. A Random Forest of 50 trees are trained. Each
tree in our forests is trained on 11 randomly selected features (out of 50, the number of textons). The training are
performed recursively and terminated at leaf nodes when the maximum depth D=25 is reached or less than 20 samples is
available. Total training time is approximately 5-6 hours. Some typical segmentation results are shown in Fig. 5.
Here, four different cores are displayed. The first three cores have cancer with Gleason grading from
grade 3 to grade 5. The last core has High Grade Prostatic Intraepithelial Neoplasia (HGPIN), a condition in which
the core is not cancer but its glandular expressions are similar to that of high-grade carcinoma. It canbe seen in grade 3,
the glands are well-defined. Therefore, automatic segmentation results match very well with manually 
ones. In grade 4, although glands lose their shapes due to fusion and distortion, the algorithm is robust enough to produce
good segmentation. Moving to grade 5, some glands are not fully segmented due to heavy change in the glandular 
formation of epithelial cells. Therefore, only small portions of the glands or sheets of epithelial cells are detected. These 
remarks are also reflected in the plot of  ROC curves for pixel classification shown in Figure 6 (a). 

Next, based on segmented maps, we build the BoW model to compute feature vector for each core in the dataset
following the procedure in Section 2.2. Then, a Support Vector Machine (SVM) classifier is trained to differentiate
Gleason grade 3 and 4. To handle the imbalance of the dataset between these two classes, we use the Synthetic Minority
Oversampling Technique [22] to oversample 32 samples of Grade 4 with 5 nearest neighbors into 92 samples before
training. After oversampling with SMOTE, a Principle Component Analysis (PCA) step is performed. Based on the 
explained variance of the PCA, we keep 8 principal eigenvectors and project the feature vectors of all cores into the
subspace spanned by these PCA vectors after subtracting their mean. Using 4-fold stratified cross-validation on the new
dataset and the standard SVM classifier with Radial Basis Function (RBF) kernel, the average accuracy of correctly
classifying Grade 3 cores as Grade 3 is 68.08% and that of classifying Grade 4 cores as Grade 4 is 71.27%. The Receiver
Operating Curves (ROCs) for correctly classifying the Grade 4 cores for each fold and the average curve is shown in
Fig. 6 (b). The average ROC curve has an Area Under the Curve (AUC) of 0.79. 

Proc. of SPIE Vol. 9336  933619-7



-

i'{' k
a

'LAP

p IA
VrqZ;

Grade 3 Grade 4 Grade 5

H&E

SLIM

HGPIN

Manual
label

Automatic
segmentation

 
Figure 5. Segmentation results. First row: (from left to right) four H&E images of 4 cores containing Gleason patterns 
grade 3, 4, 5 and HGPIN. Second row: corresponding SLIM images. Third & fourth rows: manual and automatic labeled 
images. It be further seen that the performance of the classifier is reduced when the grade is higher. Generally, when the 
grade is high, the density of epithelial cell become less uniform, which makes the classifier produces under-segmented 
gland areas 
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Figure 6. (a) Receiver Operating Curves for different diagnosis results in the binary classification problem between glands 
vs. stroma.  Lumen pixels are excluded from the classification. (b) Four different ROC curves of the 4 folds in stratified 4-
fold cross-validation and the average ROC curve (dashed one). 

 

4. SUMMARY & FUTURE WORK 
This paper proposes a unified framework to perform automatic diagnosis of prostatic cancer directly from QPI 

images. The framework utilizes texture analysis to produce segmentation maps for different regions of the cores. Given 
the label map, all glands in each core are identified and their feature vectors are calculated. BoW model is used to 
compute the core feature vector from its glands. Using standard SVM classifiers, we showed that an accuracy of about 
70% can be obtained in the binary classification problem for cores of Grade 3 and Grade 4 cancer. Further work on this 
project includes improving misclassification due to outliers (e.g. inflammatory cells, blood vessels, nerves), and 
incorporating more classes into automatic diagnosis. 
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