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Summary
Introduction:
Historically, spectrometers are presented as: (i) gratings under diffraction chapter, (ii)
!"#$%&'()*'+ ,(-."%.+ /.0)'1(.2+ '3%#/.(2%/.4+ -)5%.+ /$%+ /6(+ 7%02+ ")/%.1%.(2%/.4+ 0)5+ 8"""9+
Fabry-Perot spectrometry under multiple beam interferometry. We present a unified
geometrical and mathematical presentation of all the three major, high resolution,
spectrometers that facilitate the learning process and the retention of the physics behind
spectrometry.
We also have another deeper motivation behind this paper. Conservation of energy demands
that EM signals produced by any physical system will always be of finite duration both in
space and in time. They could neither be infinite nor be point-like. Similarly, all natural
devices have finite response times and they do not wait and study the signal for the entire
duration of the signal to pass through them before reacting to it. Photo sensitive molecules
and photo detectors respond to the optical signals in the sub-pico second domains. Thus, we
have a built-")+#()#%3/-0&+#()/.05"#/"()+")+%2-&0/"):+)0/-.%*'+(3%.0/"()0&+3.")#"3&%' when we
use time-frequency Fourier theorem to eliminate the time parameter by accepting the
presence of time-infinite signals of many frequencies. This integral is a non-causal integral by
definition because a physical entity must wait to read the entire time-infinite signal first.
Although, higher level mathematics [x] attempts to skirt the problem by various mathematical
manipulations, the fundamental physical concepts remain confusing in the minds of the
young learners. So, in this paper, we develop a method for the direct time-domain
propagation for a simple pulse of width ;t and duration a(t), a(t)exp[-i2!"t], with a carrier
frequency ", to be determined by spectrometry. The strength of our proposed direct time
domain approach is demonstrated by the success (i) in unifying the formulation for
apparently three different spectrometers, (ii) in recovering the traditional Fourier frequency
interpretation when one integrates our time-evolving fringe expression over a very long
period, as we used to do in early days with photographic plates before the advent of very fast
photo detectors and electronics, and (iii) in predicting that the de-convolution of our pulse
response function from the broadened fringe pattern can help recover the actual carrier
frequency of the signal. The last statement is equivalent to claiming that #"f;t > 1, which
naturally derives from the time-frequency Fourier integral, is not a fundamental limit in
classical instrumental spectroscopy. Just as the CW response function (CW-RP) is
recognized as an instrumental width, and is de-convolved from the complex CW apparent
spectrum to find the actual carrier frequency distribution, so should we de-convolve the pulse
response function (derived in this paper) from the recorded apparent pulse spectrum.
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Time domain analysis of spectrometers:
Let us consider classical spectrometers like gratings and Fabry-Perots (FP) with pulsed light
[1-5]. They replicate the incident pulse into N partially superposed, delayed pulses, as
depicted below in Figs.1 & 2. N is the number of steps for a grating and the reflective finesse
for an FP. The time evolving fringe width can be computed by simply taking the square
2(5-&-'+(1+/$%+30./"0&&4+'-3%.3('%5+023&"/-5%+/.0")<+=$%+0330.%)/+>'3%#/.0&+1."):%+6"5/$?@+ "'+
given by the time integration over the duration of the pulse train after taking the square
modulus of the sum of all the amplitudes of the partially superposed pulses [5]:
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Where, &nm(') is the normalized autocorrelation between the m-th and the n-th pulses:
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As the width of the pulse+ %A#%%5'+ /$%+ '3%#/.(2%/%.+ /"2%+ #()'/0)/@+ B0 [2], pulse-response
function of Eq.3 converges to the standard CW instrumental response curve, Icw$"%&'()
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We have thus established the conceptual continuity for the fringe width between those

produced by a short pulse and a very long pulse, because ( ) 1p# " * as the pulse

width,
0

t N% " "* # , underscoring the significance of
0
" , defined by us as the spectrometer

time constant [2]. The beauty of this paper is in the Eq.5, which implies that for all the cases
of spectrometers, Eq.3, 3a & 3b, the traditional CW derivation of text books can be
recovered with the help Eq.C<+,-./$%.@+()%+#0)+0&'(+'$(6+20/$%20/"#0&&4@+-'"):+D0.'%E0&*'+
theorem of energy conservation, that the time broadened fringe width can be expressed as
the convolution of the CW instrumental response function, Icw(", B), with the Fourier intensity

Figure 1. Pictorial
representation of
geometrical similarity
between a multi-beam
Fabry-Perot, a multi-slit
grating, and a two-beam
Michelson interferometer by
controlling the number of
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Figure 2. Partial
superposition of a train of
finite pulses with a periodic
step delay of ! produced by
an echelette grating. The
carrier frequency, !, of the E-
vector and the time-finite
duration of the input
amplitude, a(t), is depicted on
the left. Notice that all
spectrometers have a
characteristic time constant
for its fringe evolution, or
pulse stretching, given by
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>'3%#/.-2?@+ ( )A !! ; it is the square modulus of the Fourier transform of the amplitude envelope

of the pulse, a(t) [3, 4]:

Or, ( , ) ( ) ( )
pls cw
I I A! " ! !# 1 ! (6)

This identity relation is very significant because the traditional mistake of taking Fourier
frequency as reality turns out to be correct, as far as the fringe width measurement is
concerned. However, the direct time domain analysis in Eq.3 shows that only the carrier
frequency, " , plays the physically important role of determining the location of the fringe (m
="'), and the fringe width is the artifact of time varying amplitude of the pulse. We will also
present details of pictorial and conceptual similarity between various spectrometers.
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