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ABSTRACT

Introductory textbooks on basic optics introduce gratings and Fabry-Perot spectrometers

separately with the logic that they are based on (i) diffraction and interference or (ii)

division of wavefront and division of amplitude. Since in modern classrooms, most of

the experiments can be carried out with highly coherent and collimated laser beams, we

propose to introduce that gratings and Fabry-Perots are equivaleni to each other by using

a "pencil" He-Ne beam illuminating a plane-parallel Fabry-Perot at an angle. It produces

a set of distinct and parallel pencil of beams by multiple reflection resembling a multiple

slit illumination ' . When these beams are superposed by a focusing lens, a multiple slit

diffraction grating like pattern is observed. One can use an appropriately spaced etalon

and reflectivity to demonstrate the evolution of resolving power by allowing step-by-step

an increasing number of beams to interfere at the focus and slowly resolve the

longitudinal modes (or frequencies) ofthe He-Ne laser.

1. INTRODUCTION

The interference between two or more, beams replicated from the original beam, with a

specific path delay between the beams is at the root of all spectral resolving power. This

is true for spectrometers which can be represented by three basic groups: (i) Two beam

Michelson' s (Fourier transform) spectrometer, (ii) Multiple-beam Fabry-Perot
spectrometer and (ii) Multiple beam grating spectrometer. The first two category can be

classified as of the type "amplitude division" as the entire wave front is replicated

through amplitude division by partial mirror (s) and the gratings can be classified as of

the type "wave front division" as the wave front is divided into multitudes of secondary

wave fronts by the grating lines for ultimate interference. In this paper we simulate the

grating like behavior of a plane parallel Fabry-Perot spectrometer using a narrow but
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collimated laser beam illuminating the Fabry-Perot at an angle. This approach reveals the

similarity between Fabry-Perots and gratings as spectral instruments. It also helps one to

appreciate why interference of high order and superposition of a large number of beams

complement each other to achieve high spectral resolution. The order of interference is

the optical path difference between the consecutive interfering beams expressed in

number ofwavelengths. The separation between the neighboring fringe maxima for a

two closely spaced frequencies will be larger for larger path delay (or larger order of
interference). The frequencies will be well resolved when the number of interfering

beams is large enough that the width ofthe main fringe peak for each frequency is

narrower than the spacing between the peaks for the two frequencies. A plane grating

achieves high resolution by increasing the total number of beams by virtue of increasing

the number of grating lines. But a Fabry-Perot achieves its high resolution by increasing

both the order of interference by virtue of increasing plate separation and the effective

number of interfering beams by virtue of increasing reflectivity (reflective finesse). Our

objective is to demonstrate these concepts graphically and experimentally using a Fabry-

Perot Spectrometer.

L2
Fig. I. Experimental setup to demonstrate that: (i) increase in spectral resolution is a product of

the increasing order of interference and the increasing number of the interfering beams, and (ii) a

Fabry-Perot and a grating are equivalent on this fundamental level. FP, Fabry-Perot; S, Screen to

control the number of beams; L1, focusing lens; L2, microscope objective; PS, multiple-beam

fringes on the projection screen
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2. EXPERIMENTAL SETUP

A narrow light beam straight from a laser (Fig. 1) is incident on one end ofthe FP etalon

at an angle such that the beams generated by multiple reflections are spatially separated

from each other as if a multiple-slit screen or, more appropriately, an echelle grating had
been placed in front of an extended collimated beam. At the focal plane of the lens Li,

immediately following the FP, one can see interference fringes which have properties

similar to the multiple-slit interference pattern. For convenience of observation by many

people, the fringes can be projected on a screen by a microscope objective.

During experimental set up, the lenses Li and L2 are adjusted to be coaxial with the laser

(which can be tested by observing the beams reflected from the lens surfaces) to

minimize optical aberration. Then the FP etalon is inserted at an angle to the axis before
Li preferably on a turntable, to control the angle of insertion. This control over the

angle of insertion will control the lateral separation between the transmitted beams

produced by multiple reflection. Thus, a continuous tilt ofthe etalon will give continuous

change in the separation between the "slits". If a two plate FP interferometer is used

instead of an etalon, the parallelism between the plates can be easily achieved by first

allowing the incident beam to be perpendicular to the first mirror and then adjusting the

other mirror until all the transmitted beams are exactly coincident and gives high finesse

Fabry-Perot fringes when one of the mirrors is scanned.

The effect of changing the number of beams or "grating slits" can now be easily

demonstrated by moving a screen S (Fig. i) to allow as many beams as are wanted.

3. THEORY

The mathematical expression for such a multiple-beam interference pattern with a FP can

be derived from its similarity to a diffraction grating. The only difference is the decrease

in amplitude of the consecutive beams and the increase in path difference due to their

traveling through the FP. In Fig. i, the consecutive beams are shown to have a separation

of 2b with the appropriate changes in amplitudes and phases. We shall avoid using the

Fourier transformation technique by using a simplified model: a plane wave incident on a

lens produces a small "spot" of plane wave at the focal plane of the lens (focal spot)

where the irradiance distribution follows the Fraunhofer diffraction pattern for a single
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"slit", in this case, the laser beam diameter. Then the situation of many plane waves

incident on a lens can be visualized in Fig. 2. (The size of the focal spot is exaggerated).

x02

Fig. 2 Multiple-slit Fraunhofer diffraction pattern as interference between plane-wave "spots"

with regularly increasing tilt at the focal plane.

The successive plane waves generated at the focal plane of the lens interfere with each

other at angles

e tann sine n(2b/J), (1)

where n is an integer and f is the focal length of the lens Li. So, the phase difference at a

point x is,

where

= kx sin On n(2kbx / f) n4 nk6 1

k = 2-ic / X.

(2)

In our case, the amplitude and phase of the successive beams are also modified by the

Fabry-Perot etalon. So the n-th wavefront can be written as

TR exp(in), (3)
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where T and R are the intensity transmittance and reflectance, respectively, and 'f is the

optical path delay between any two consecutive beams, given by,

k:Tf k(2dpXcosa)k2, (4)

where d and a are shown in Fig. 1 , and p is the refractive index of the medium between

the two reflecting surfaces. We shall neglect any constant phase shift introduced by the

reflecting surface. So, the resultant amplitude of interference for our case is

A = TR exp(inV )exp(in)
n=o (5)

Then the irradiance distribution is,

I=Tl+FN5N(w +)/2
1+Fsin2(w+4)/2 (6)

where

I T2(1— RN)2 1(1 —R)2, (7)
FN=4R /(1—R ) , (8)

and

F4R/(1—R)2. (9)

Equation (6) will also describe the fringe pattern for a Lummer-Gehrcke plate. This

suggests that the demonstration experiment can also be carried out by using a Lummer-

Gehrcke plate, if available. Equation (5) will give an exact FP Airy function in the limit

when N tends to infinity and the separation between the "slits" goes to zero (2b = 0, when
= 0) The same equation becomes identical with the ordinary diffraction grating

equation when one replaces TR11 by unity and 'F by zero. In the above derivation, we

have neglected the small changes in phase curvature and the beam waists of the Gaussian

laser beams due its propagation.
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If a He-Ne laser oscillates in q independent modes, the spectral intensity distribution of

Equation 6 should be summed over all the q-modes with appropriate intensities

(Fig. 3),

I = T>Iq1
+FNsin2N(W +)/2
1+Fsin2( +)/2q

ENERGY

31

(10)

Fig. 3 Longitudinal modes of a laser. AVg, gain bandwidth of the lasing medium; VL, the

separation between two consecutive longitudinal modes. The dotted line corresponds to the

lasing threshold.

4. COMPUTER SIMULATION AND EXPERIMENTAL RESULTS

Let us consider the specific case of a 30 cm cavity He-Ne Laser oscillating dominantly in
3 modes (q = 3) around mean wavelength of 6328A with a mode spacing of 500 MHz (or

0.06674A). The plane parallel FP we have used, has mirrors ofRi = R2 = 0.98 separated

by air (p = 1). The resolving power for a grating is the product ofthe order of

interference, m, and the total nuaber of grating lines, N, intercepted by the spatially
coherent light beam. We will demonstrate that the resolving power of our tilted Fabry-

Perot spectrometer is approximately given by the same product of the MN, where m is

(6 + 62)/k and N is the number of interfering beams.

Table 1 shows the number of minimum beams Nx necessary for resolving the He-Ne

modes for several different mirror spacing from about 0.1 cm to 9 cm. It is clear that as

the mirror spacing or equivalently, the interference order number m is increased, the
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required number of interfering beams N is reduces. This is because the separation

between the m-th order fringes for three modes is larger for larger mirror spacing,

requiring less sharper fringes to resolve them.

Above results are demonstrated by experimental and computer plotted graphs in the

following nine pages. We have plotted three sets of spectral curves for d =5, 7.5 and 9

cm. For each case of d, we show the fringe narrowing due to increasing number of

interfering beams. Notice in the computer graphics that the separation between the fringe

maxima from the three He-Ne modes increases with increasing mirror spacing allowing

mode resolution with a fewer number of interfering beams.
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TABLE 1. Evaluation ofthe Resolving Power With the
Minimum Number of Beams For a Given Etalon Spacing

Etalon
Spacing

d
(cm)

Interference Order

m 0
0

X06328A

6m

for the case

v=5x1O8Hz
(30 cm He-Ne)

Minimum
resolving

power
needed

R
m

06
öm

Minimum
no. of Beams

Na

öm

0.938 295174 0.031131 0.9482 32

1.875 59035 0.062262 0.9482 16

3.75 118070 0.124524 0.9482 8

5.00 157426 0.166032 0.9482 6

7.50 236139 0.249048 0.9482 4

9.00 283367 0.298858 0.9482 3

Resolving power:

A V m
öXöv m ( for grating R = 0.9)
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N=2

N=3

N=4

N=5

Multi Modes Single Mode
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COMPUTER SIMULATION;
Fabry-Perot Spacing, d = 5 cm
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Multi Modes

0.

COMPUTER SIMULATION;
Fabry-Perot Spacing, d = 5 cm
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Single Mode
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N=2

N=3

N=4

N=5

Multi Modes Single Mode
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COMPUTER SIMULATION;
. Fabry-Perot Spacing, d = 7.5 cm
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COMPUTER SIMULATION;

.
Fabry-Perot Spacing, d = 7.5 cm

N=6

N=7

N=8

Multi Modes
0.
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N=2
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COMPUTER SIMULATION;
Fabry-Perot Spacing, d = 9 cm
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COMPUTER SIMULATION;
Fabry-Perot Spacing, d = 9 cm
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EXPERIMENTAL RESULTS; FP Spacing, d=5 cm
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EXPERI MENTAL RESULTS; FP Spacing, d=7.5 cm
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EXPERIMENTAL RESULTS; FP Spacing, d=9cm
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