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ABSTRACT

Scalar diffraction theory is usually introduced using the classical Green function approach as a solution to a
boundary value problem. I propose a different approach first proposed by Duffieux and later put on a solid
mathematical foundation by Arsac. and which exploits the close connection between Fourier theory and
linear systems theory; it is based on elementary distribution theory, where scalar diffraction appears
naturally as a convolution of the diffracting screen with an optical propagator. All the classical expressions
such as Rayleigh’s integral formula and the Kirchhoff-Sommerfeld diffraction integral are easily derived as
special cases. The fact that diffraction appears naturally as a convolution facilitates the integration of
diffraction theory with linear systems theory, which has come to play a major role in fourier optics.

INTRODUCTION

The classical way to teach Fourier optics is to begin with scalar diffraction theory based on the Green
functions approach, then to consider different approximations until the Fresnel approximation is reached. A
further approximation leads to Fraunhofer diffraction, where the diffraction pattern is the Fourier transform
of the aperture. An excellent exposition of this theory is in the book by J. W.Goodman!. This book clearly
points out the difficulties and the inconsistencies of this theory; these are not simple questions, as can be
seen by the fact that in his classical book 2, Jackson erroneously attributes the difficulties of the Green
function approach to the fact that a scalar theory is being used, and wrongly claims that those difficulties
disappear if a vector theory is used. The basic problem is that the Green function approach is well adapted to
solving boundary value problems where the boundary values are known on a closed surface, which is not
the case for the diffraction problem, where part of the boundary condition is the required solution.

In the old approach, some notions of linear systems theory (including Fourier theory) are often introduced,
and Fresnel diffraction is shown to be expressible as a convolution of the diffracting aperture with a free

space propagator of the form exp(ix2/Ad).This links the theory of diffraction with the theory of linear
systems, which is particularly useful for engineering students who are already familiar with the mathematical
tools of linear systems theory including the basic theorems of Fourier theory. This approach was well
described by J. Gaskill at the St Petersburg Conference on Education3. In his book based on his course
oriented to engineers, Gaskill begins with linear systems theory, followed by fourier theory; diffraction
theory and the theory of imaging are at the end.

In a recent conference in optics education meeting held in Pecs Hungary in 1993, four papers were
presented on how to teach Fourier optics by non-conventional means, ranging from geometrical optics
methods to operator algebra, which made it the most popular subject of the conference. The approach I
present here was also presented at that conference, but because the number of participants was very small (I
was the only participant from North America), and because the proceedings have not been widely
distributed, I am presenting it again to make it available to a wider audience.

in this paper I propose a somewhat different approach that differs mostly in the manner in which diffraction
theory is handled. Instead of the Green’s function approach, I use an alternate approach using elementary
distribution theory where the exact scalar solution to he Helmholtz equation appears as a convolution.
Various approximations to this expression yield the various expressions of scalar diffraction theory such as
Rayleigh’s integral equations, the Kirchhoff formulae and the Fresnel and Fraunhofer approximations. The
connection to linear systems theory is then natural and easy, because diffraction immediately appears as a
linear filtering operation before any approximations are introduced. This approach avoids the erroneous
impression of many students that the Fourier transform is related to diffraction theory only in the
approximation of Fraunhofer diffraction. For many years I have been teaching a graduate course on Fourier
optics that uses this formulation of diffraction.

That diffraction is a convolution appears immediately obvious when the conditions for a transformation to be
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expressible as a convolution are considered: a necessary and sufficient condition is that 1)the relationship
between the input and the output satisfy the superposition principle, and 2) the output be invariant under a
translation of the input. The first condition is satisfied by the fact that the wave equation is a linear
differential equation, and the second is satisfied because of the isotropy of space.

It is paradoxical that the approach to diffraction theory based on this fact was not pursued until the 1960's,
despite the fact that the founder of Fourier optics P. M. Duffieux proposed it in his book published in the
1940’s and translated into English by me in 19834; unfortunately Duffieux did not have the mathematical
tools (distribution theory) that were required, so his arguments relied heavily on qualitative and graphical
arguments and he could not derive an expression for the propagator.

The exact convolution theory of scalar diffraction theory based on distribution theory was first proposed by
Arsac in 19615. This French book was generally ignored, and has remained relatively unknown despite the
publication of an English translation in the 70’s. In the intervening years following Arsac’s original work, a
number of authors have published approximates,? or exact 8,9 theories of diffraction using a convolution
formulation. This approach to diffraction has been slightly noted with some interest, but so far no text on
Fourier optics has integrated it in its presentation of diffraction. For example, in his book, Gaskill attributes
it to Shack and Harvey10, who were apparently unaware of Arsac’s book, and notes that it is much less
restrictive than the alternate approach based on Green’s functions.

A major advantage of this approach is that despite the use of elementary distribution theory, the mathematical
derivations are shorter than those using the Green functions approach. The knowledge of distribution theory
required is very limited, and nothing more complicated than 3D delta functions is required.

DIFFRACTION AS A LINEAR FILTERING PROCESS

We now introduce scalar diffraction theory as a linear filtering process. A more detailed and rigorous
derivation is given in the book by Arsac, as well as modifications required to take into effect edge diffraction
waves. in our proofs, we have emphasized simplicity at the expense of rigor.

Forward diffraction

Consider a monochromatic scalar wave field f(x,y,z) in free space. The problem of diffraction is to
determine the wave field in space, given the values of the field on the plane z=0. The wave field in free
space for quasi-monochromatic light satisfies the Helmholtz equation
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with k=27/A. the Fourier transform of this expression is
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where (u,v,w) are the conjugate coordinates corresponding to the spatial coordinates (x,y,z), and F(u,v,w)
is the Fourier transform of f(x,y,z).

Arsac has pointed out that Eq.(2) implies that in Fourier space, F(u,v,w) is zero everywhere except on the
surface of a sphere of radius k/2w. Therefore this may be expressed
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Now the wave field f(x,y,z) may be written as the fourier transform

£(x,y,2)=[ | [ F(u,v,w)e ") qudvdw . (4)
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inserting Eq. (3) into this expression allows the reduction of the integral to a double integral

f(x,y,2)=[ [Fo(uy)e e o+ W aydy (5)
where wo=(k2/4n2 -u2 - v2), and Fy(u,v) = F(u,v,wp). 6)
Setting z=0 in Eq. (5) yields

£(x.y2)= J [ Fo(@v)e ™ dudv -

So Fo(u,v) is the Fourier transform of the field f(x,y,0) on the diffracting plane at z=0. From this fact and
from the convolution theorem, Eq. (5) may be expressed as the convolution

f(x,y,2)=1(x,y,0) * g(x,y,2), ®)

where g(x,y,z) is the Fourier transform of exp(-2wiwgz). This Fourier transform has been evaluated before
11 and is equal to

1 8 (&
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p

where p=(x2+y2+z2)1/2.

Equation (9) expresses the diffracted amplitude as a convolution of the field f(x,y,0) on the diffracting plane

with a function that is the diffracted field of a point source, as may be easily verified by setting

f(x,y,0) = 8(x,y) (10)

in Eq. (8). This impulse response is the wave propagator for scalar diffraction. We can use the values of the
field g(x,y,z) given by Eq. (9) and set R = [(x-x0)2+(y-y0)2+22]1/2 to get the expression
ikR

3
£(x,y,2) = Ifl fF(xo,yo,O)g[eT]dxodyo, (11)

which is one of Rayleigh’s well-known integral formulae for diffraction.
Diffraction between two arbitrary planes

The above theory can be easily modified to obtain an expression for diffraction between two arbitrary planes
z=z¢ and z=z;: instead of setting z=0 on the diffraction plane, set it equal to z¢; the convolution expression
then becomes

ikp
Jd |e °
f(X’YaZI ) = f(X,y,Zo) * ﬁ [ ] (12)
1] Po

where po=[x2+y2+(z1-20)2]1/2, which expresses the diffracted field in a plane z=z; as a function of the field
at the plane z=z,

Inverse diffraction

In the previous derivation, we made no suppositions regarding whether z;>z(. Therefore Eq. (12) is valid
whether z;>zg or not. Therefore when z;<zg, Eq. (12) is the solution to the inverse problem of diffraction,
namely to find what field is required on plane z to obtain a given field on plane z;_ If the condition

K2/AT2 > u2+v2 (13)

is satisfied, there is no problem, because only homogeneous waves are present. But if the condition is not
satisfied, the waves are non-homogeneous. For forward diffraction, the corresponding waves are
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evanescent waves propagating in a direction parallel to the plane z=zp, whose amplitudes decrease
exponentially in the direction of increasing z. But in the case of inverse diffraction, these waves become
exponentially divergent waves that cannot be generated in a passive medium.

HOW TO TEACH IT

Although there is more than one way to teach Fourier optics using this method, depending on previous
knowledge of the students, here is how I do it in a beginning graduate course. I assume no previous
knowledge of Fourier theory on the part of the students.

Because the mathematical derivations use Dirac delta functions and basic Fourier theorems, I begin the
course with an introduction to basic Fourier theory. in the first hour, I establish the connection between the
Fourier transform and linear systems by showing that the complex exponential exp(iux) is an eigenfunction
of a linear shift invariant system. The basic theorems and elementary generalized functions or distributions
such as the delta function are then introduced. No additional knowledge of distribution theory is required.
The material contained int he early chapters of the book by Bracewell 12 are quite sufficient. This is
followed by diffraction theory as summarized above, and continues with topics such as discrete Fourier
transforms, the linear theory of image formation, spatial frequency filtering, coherent and incoherent
transfer functions, applications of Fourier theory to stochastic processes and other examples. Optical
information processing and optical computing are covered in a separate course.

For students with a good background in Fourier theory and in linear systems, such as most students with an
electrical engineering background, the course could begin directly with the diffraction theory described
above, after a short review of linear systems.

CONCLUSION

The formulation of scalar diffraction theory using distribution theory, in addition to avoiding the pitfalls
associated with classical scalar diffraction theory, yields results that express diffraction as a linear filtering
process and easily integrates diffraction theory into the context of linear systems theory and Fourier theory.
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