
FOREWORD

The Proceedings contain the papers presented at the Twenty -First
Symposium on Optical Materials for High -Power Lasers held at the National
Institute of Standards and Technology in Boulder, Colorado, on November 1 -3,

1989. The Symposium was sponsored jointly by the National Institute of
Standards and Technology, the American Society for Testing Materials, the
International Society for Optical Engineering, the Defense Advanced Research
Project Agency, and the Department of Energy. The Symposium was attended by

approximately 200 scientists from the United States, Canada, the United
Kingdom, Japan, France, and the Federal Republic of Germany. It was divided

into sessions devoted to the following topics: Materials and Measurements,

Mirrors and Surfaces, Thin Films, and, finally, Fundamental Mechanisms. The

Symposium Co- Chairmen were Harold E. Bennett of the Naval Weapons Center,
Arthur H. Guenther of the Los Alamos National Laboratory, Lloyd L. Chase of
the Lawrence Livermore National Laboratory, Brian E. Newnam of the Los Alamos
National Laboratory, and M. J. Soileau of the University of Central Florida.
They also served as editors of the proceedings.

The editors assume full responsibility for the summary, conclusions, and
recommendations contained in the report, and for the summaries of discussion

found at the end of each paper. The manuscripts of the papers presented at
the Symposium have been prepared by the designated authors, and questions
pertaining to their content should be addressed to those authors. The

interested reader is referred to the bibliography at the end of the summary
article for general references to the literature of laser damage studies. The

Twenty- Second Annual Symposium on this topic will be held in Boulder,
Colorado, October 24 -26, 1990. A concerted effort will be made to ensure
closer liaison between the practitioners of high -peak power and high- average

power.

The principal topics to be considered as contributed papers in 1990 do
not differ drastically from those enumerated above. We expect to hear more
about improved scaling relations as a function of pulse duration, area, and
wavelength, and to see a continuing transfer of information from research
activities to industrial practice. New sources at shorter wavelengths
continue to be developed, and a corresponding shift in emphasis to short
wavelength and repetitively pulsed damage problems is anticipated.
Fabrication and test procedures will continue to be developed, particularly in
the diamond - turned optics and thin -film areas. It has been our intention to
pause and reflect on progress over the past twenty years to the Symposium on
Optical Materials for High Power Lasers. It will be our pleasure to present
the last (Thin Film, the Second Decade) in a comprehensive array of tutorial
lectures by distinguished workers in the field of laser induced damage in
optical materials.

The purpose of these symposia is to exchange information about optical
materials for high -power lasers. The editors will welcome comments and
criticism from all interested readers relevant to this purpose.

H. E. Bennett, A. H. Guenther, L. L. Chase,
B. E. Newnam, and M. J. Soileau,

Co- Chairmen
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DISCLAIMER

Certain papers contributed to this publication have been prepared by
non -NIST authors. These papers have not been reviewed or edited by NIST;
therefore, the National Institute of Standards and Technology accepts no
responsibility for their accuracy, nor for their comments or recommendations.

Certain commercial equipment, instruments, and materials are identified
in this publication in order to explain the experimental procedure adequately.
Such identification in no way implies approval, recommendation, or endorsement
by the National Institute of Standards and Technology, nor does it imply that
the equipment, instruments, or materials identified are necessarily the best
available for the purpose.
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WELCOME FOR 21st BOULDER DAMAGE SYMPOSIUM

M. J. Soileau
Professor of Electrical Engineering and Physics

Director, Center for Research in Electro- Optics and Lasers
University of Central Florida

Orlando, Florida

It is my pleasure and duty to call this year's meeting to order. I was
abroad when the final program was put together by my co- chairs and did not
learn of this honor until a couple of weeks ago. I had no time to prepare
until this weekend, so this will be a bit rough and without the benefit of
elegantly prepared slides.

I don't mean to take a stab at my co- chairs, but I must admit that as I
began my preparation I couldn't remember a single thing about previous opening
remarks by my esteemed colleagues! Did I miss something? Surely these
distinguished leaders of national laboratories must have said something
profound and prophetic! So I spent part of the day Saturday reviewing the
past utterances which have launched this meeting.

It is true that the memory is the second thing to go, because as I read
the opening remarks for the past 20 meetings, I found many, profound
statements - -a few of which are listed below:

This is a quote from the next speaker from 1972:
"It is a pleasure to be here this afternoon."
Martin Stickley, 1972.

"Whatever turns you off." (Alex's definition of damage)
Alex Glass, 1974

"A name which invokes images of people cracking rocks."
Alex Glass, 1976. (In response to Martin Stickley's call for a
more positive sounding name for the conference.)

"Our onion unfortunately, exists in Hilbert Space." (Alex
borrowing from an ancient philosopher's description that
learning is like peeling an onion - -each layer exposes another.)

"Who cares ?" (Alex on why study damage ?)
Alex Glass, 1976.

"It is my annual hope that each year's symposium will be the
last." (Alex the failed prophet.)
Alex Glass, 1978.
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"The key...is terawatts per megabuck.
Alex Glass, 1978.

"Power Optics." (A supplier of megabucks at the time in comparing laser
optics to electronics.)
Harry Winsor, 1978.

"Aside from a gain medium, lasers require mirrors." (Insightful words
from the great visionary.)
Harry Winsor, 1978.

"Progress has been made, but I am confident that in 10 years we will
celebrate the 20th and Art and Alex will still be running it!" "...we
owe a debt to these 2 young men." (Note the term young.)
Martin Stickley, 1978.

To this point I've spared you the profound utterance of my current co- chairs
such as:

"Welcome to the Tenth Anniversary Damage Symposium." (Art Guenther gave
this greeting at the 11th meeting.)
Art Guenther, 1979.

Then there were profound things said regarding the international
participation.

"...countries represented include the British Isles, Canada, England,
France, Japan, Scotland, and West Germany:"
Brian Newnam, 1980.

"International contributors...have come a long way..."
Hal Bennett, 1985.

It should be clear to all how difficult it is for me since these guys
have used up all the good stuff! Further review of these openings presented
me with a good outline for my remarks. I will follow the trail blazed by my
predecessors:

Outline

1. Welcome participants.

2. Acknowledge sponsorship of NIST, ASTM, and others.

3. Count the papers for this year's meeting and comment on the statistical
distribution.

4. Observe that thin films are a major problem.

5. Profound and prophetic statement about the future of the meeting.

I do welcome you to the 20th Anniversary Boulder Damage Symposium.
Those of you who are still asleep or partially hung over, may be confused by
the fact that last year was our 20th Anniversary celebration. The resolution
of this dilemma is the fact that last year was the 20th meeting and this is
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the 20th Anniversary (but the 21st meeting). One might say that this meeting
is old enough to drink - but you will also note that there is no wine and
cheese this year. This situation has resulted from rulings by NIST
accountants. In fact, the accountants have made it difficult for us to
conduct business as usual, so you can expect further changes next year.

We do want to thank NIST and the ASTM for their continued sponsorship
and all the helpful folks at Boulder who make the meeting run smoothly.

There are about 70 papers this year with contributions from 6 countries,
in addition to the U.S. The talks from abroad constitute 27% of the papers,
about the same percentage as from Livermore and Los Alamos. About an equal
number of papers come from U.S. aerospace companies (15 %) and U.S.
universities (16 %). About 9% are from DoD labs and the remaining 8% from
various other sources.

Our next speaker (Martin Stickley) has suggested on a number of
occasions that the name of the conference be changed to something more
positive. I want to finish this presentation by noting that there are many
positive things being done with phenomena studied by participants in these
meetings. Here is a list of a few:

"Spin Offs" of LID Phenomena

1. Laser marking, cutting and drilling of materials.

2. Laser medicine
a. laser scalpel
b. laser - induced breakdown for eye treatments and plaque removal.

3. Laser disc storage - the first application of LID to consumer products.

4. Photorefractive information' storage, processing, and phase conjugation
interconnects.

5. Nonlinear refraction and nonlinear absorption for limiters, switches,
and optoelectronic computing.

6. Electro- absorptive switches using UHV manufactured quantum well devices
(SEED's).

So I issue a challenge to us all to keep the name Damage Symposium, but
continue to seek positive applications of the phenomena we study. A wise
professor once told me that phenomena are neither good or bad - -they exist and
it's up to us to find ways to make good things using phenomena given by
nature.

Before I left Orlando, I looked into by crystal ball for a glimpse of
future laser damage or optical materials problems - -here is my short list:

Future Topics for Optical Materials Research

1. Thin films for all applications. Two talks viewing 20 years of thin
film work.
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2. New laser host and nonlinear optical materials for compact, efficient,
tunable and solid state lasers for many old and many new applications.

3. X -ray optics for lasers (remember Harry Winsor said that lasers have
mirrors...), and optics for x -ray microscopy and x -ray lithography.

4. Materials for x -ray lithography.

I'm sure that these and other topics will keep optical materials people
busy for some time - -the only question is where will the funding come from?
DoD funding will surely decline as peace is breaking out all over. DOE

funding usually finds its way to the national labs - -but not much finds its way
out. DARPA, under Martin Stickley's leadership, provided much of the spark
that lead to modern day materials and much of the research reported at this
conference. Materials research tends to be too long -term for present day
funding. We need to all do our part in ensuring continued research support
for the foundation of the technology food chain -- materials research.

Since we don't have an official wine and cheese gathering, I hereby
propose that we forgo small gatherings of old friends for dinner, etc. and
meet instead at the Dark Horse for an informal, pay as you go, social hour.
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Manuscript received
2 -14 -90

SEARCH FOR TECHNOLOGY TRANSFER IN HIGH POWER OPTICS

C. Martin Stickley

BDM International, Inc.
1300 N. 17th St., Suite 950

Arlington, VA 22209

In the late 60's and through the 70's, DARPA supported a broad program
to develop optics for use with high power cw CO lasers and new laser and
nonlinear optical materials. This paper summarizes those efforts and asks
anyone who knows in what defense systems these have been used to contact
the author.

In the late 1960's and through the 1970's, the Materials Sciences Office (now the Defense
Sciences Office) of the Defense Advanced Research Projects Agency (DARPA) funded a broad
program to develop optics for high power continuous development of approaches to fabricate
large area windows with high transparency (absorption of 10 -5 per cm), optical surface
preparation techniques which leave very little residual absorption, and techniques for
depositing antireflection as well as reflecting coatings for transparent windows and mirrors.
Some development of new laser and nonlinear optical materials was also funded. Approximately
$22.9 M dollars were spent between 1967 and 1978.

The Defense Sciences Office is now searching for examples of where optical parts fabricated
using these techniques and the laser and NLO materials have been used in defense systems.
While defense uses are of primary importance, NASA and industrial uses are also of interest.

Technologies which may have had the best chance of being utilized include, for windows:
casting of fluorides, reactive atmosphere processing of halides, forging of halides, and
CdTe growth, distortion and damage studies; for surfaces and coatings: polymers and surface
preparation of halides, fluorides, and selenides; for lasers: erbuim glass, and holmium
and erbium in YLF; for mirrors: beryllium optics; and for laser damage: platinum removal
and surface preparation of Owens -Illinois glass, and bulk and surface damage of ruby.

The tables which follow summarize the activities which were supported in each major area.
Included are the specific technology developed (e.g. fluoride fusion casting), the contractor,
the amount of funding provided, and at the time period where the work was done.

If the reader knows of areas where any of these technologies may have been used in defense
systems (as well as for NASA and the commercial sector), please contact the author.
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Laser Induced Damage in Optical Materials

Twenty -First ASTM Symposium
November 1 -3, 1989

The Twenty -First Annual Symposium on Optical Materials
for High -Power Lasers (Boulder Damage Symposium) was
held at the National Institute of Standards and
Technology in Boulder, Colorado, November 1 -3, 1989.

The Symposium was sponsored jointly by the National
Institute of Standards and Technology, the American
Society for Testing and Materials, the International
Society for Optical Engineering, the Defense Advanced
Research Project Agency, and the Department of Energy.
Approximately 200 scientists, including representatives
of the United Kingdom, France, Japan, Canada, and the
Federal Republic of Germany, attended the Symposium.
The Symposium was divided into sessions concerning
Materials and Measurements, Mirrors and Surfaces, Thin
Films, and, finally, Fundamental Mechanisms. As in
previous years, the emphasis of the papers presented at
the Symposium was directed toward new frontiers and new
developments. Particular emphasis was given to

materials for high power apparatus. The wavelength
range of the prime interest was from 10.6 pm to the uv
region. Highlights included surface characterization,
thin film substrate boundaries, and advances in

fundamental laser- matter threshold interactions and
mechanisms. The scaling of damage thresholds with pulse
duration, focal area, and wavelength was discussed in
detail. Harold E. Bennett of the Naval Weapons Center,
Arthur H. Guenther of the Los Alamos National
Laboratory, Lloyd L. Chase of the Lawrence Livermore
National Laboratory, Brian E. Newnam of the Los Alamos
National Laboratory, and M.J. Soileau of the University
of Central Florida were co- chairmen of the Symposium.
The Twenty- Second Annual Symposium is scheduled for
October 24 -26, 1990, at the National Institute of

Standards and Technology, Boulder, Colorado.

Key words: laser damage; laser interaction; optical
components; optical fabrication; optical materials and
properties; thin film coatings.

1. Introduction

The Twenty -First Annual Symposium on Optical Materials for High -Power
Lasers (Boulder Damage Symposium) was held, as in previous years, at the
National Institute of Standards and Technology in Boulder, Colorado, November
1 -3, 1989. The Symposium was held under the auspices of the ASTM with the
joint sponsorship of NIST, and the Department of Energy. Approximately 200
scientists, including representatives of the United Kingdom, France, Japan,
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Canada, and the Federal Republic of Germany, attended the symposium. The
Symposium was divided into sessions concerning Materials and Measurements,
Mirrors and Surfaces, Thin Films, and, finally, Fundamental Mechanisms. In
all, approximately 70 technical presentations were made. Harold E. Bennett of
the Naval Weapons Center, Arthur H. Guenther, and Brian E. Newnam of the Los
Alamos National Laboratory, Lloyd L. Chase of the Lawrence Livermore National
Laboratory, and M. J. Soileau of the University of Central Florida were co-
chairmen of the Symposium. Aaron A. Sanders of the National Institute of
Standards and Technology acts as conference Coordinator.

The purpose of these symposia is to exchange information about optical
materials for high power lasers. The authors welcome comments and criticism
from all interested readers relevant to this purpose and particularly relative
to our plans for the Twenty- second Annual Symposium, scheduled for October 24-
26, 1990, at the National Institute of Standards and Technology, Boulder,
Colorado.
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2. Overview

The following comments by the Symposium co- chairmen represent their
impression of significant advances that were discussed immediately after the
close of the meeting. This is not meant to be a thorough review of the
conference, but only a brief glimpse of some of the highlights.

The largest single group of papers in the Fundamental Mechanisms session
dealt with the effects of high photon energies on laser- induced damage (LID)
at lower photon energies. As one example, short -wavelength harmonic radiation
generated within free - electron lasers can potentially reduce the LID at the
fundamental lasing wavelength. Another case involved the effect of
ultraviolet radiation on the damage resistance at 10.6 pm. Yet another paper
dealt with the use of photoconductivity as a diagnostic to identify defects
within the bandgap and to monitor the onset of LID.

One area covered at this meeting for the first time was the nonlinear
properties of inorganic polymers as well as those of organic polymers. In

addition, a theoretical paper described the contribution of conjugated
electronic systems to the nonlinear polarizability of such materials which
have potential use as photoelectronic devices.

Always of interest to theoreticians are the possible relationships of
apparently different classes of materials properties. This year, one group
studied the relationship between the nonlinear refractive index and two -
photon absorption coefficient using a model that assumed that a Kramers-
Kronig relationship exists between the two.

One paper provoked a great deal of discussion and controversy, and
suggested that avalanche breakdown is not a fundamental mechanism even for
intrinsically pure materials, as generally accepted. Data which they
believed supported their claim that damage occurs first by multiphoton
absorption followed by nonlinear free - carrier absorption and heating that then
leads to damage were presented. To account for earlier observation by other
experimenters, it was asserted that avalanche processes do take place after
breakdown is initiated. Nevertheless, indications of avalanche before
breakdown were ascribed to extrinsic processes and /or impure materials. These
conclusion challenge the laser damage community to propose a set of
independent experiments that can confirm or discount their proposed model.

Concerning surfaces and mirrors, perhaps one of the most encouraging
developments, after many years of continuous effort, was the progress reported
for the polishing of silicon carbide. SiC and Be are among the most
attractive mirror materials now being considered for use in space missions.
One study reported on two different techniques for producing SiC mirrors which
could be finished to varying degrees of surface polish and which were stable.
The most attractive technique was physical -vapor deposition finishing of SiC
by ion -beam sputtering very smooth coatings with a low level of stress. The
rms surface roughness on these elements was less than 0.5 nm(5 A), and stable
with time.
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Another exciting development was that ultra -precise grinding of glass
surfaces with diamond had attained 0.5 nm(5 A) roughness, which is remarkable.
A number of papers concentrated on mirrors for the vacuum ultraviolet, a new
thrust this year. There was some concentration on production problems of
working with a system with 1 m diameter mirrors subjected to very high laser
fluences. Systematic errors in surface topography using noncontact
interferometers were discussed. We also heard a novel suggestion for laser
protection of surfaces by developing small spherical particles that would
diffusely reflect incoming laser beans. The particles must have absorption
levels of -10 -5 to 10 -6 cm -1. If this becomes possible, then mirrors with very
high reflectance of 99.999% or better could result.

In the area of thin film coatings, degradation by ultraviolet and
vacuum- ultraviolet wavelengths was emphasized. One parametric study concerned
degradation to Zr02 films caused by 25 -eV synchrotron radiation.
Surprisingly, after a short period, the initial damage apparently healed,
possibly by the material evolving to a different crystal structure. Another
paper described the much higher resistance of Hf02 films to color- center
formation caused by a 248 -nm KrF laser when the usual 3% Zr02 impurity content
was reduced to a few tenths of a percent. We also heard a report on much
higher damage thresholds being attained for multilayer reflectors prepared by
the sol -gel process as a result of altering the coating process to decrease
the concentration of absorbing impurities.
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