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I. INTRODUCTION 

Infrared detection is widely used in astrophysics and plays a key role in several space missions aiming for 

example at scanning the sky to discover new objects (coolest stars, dust-obscured galaxies, exo-planets …) or 

studying the evolution of the universe, where light is redshifted in the infrared range. In many cases the space 

telescope involves an HgCdTe infrared detector operating at low frame rate over long integration time. Due to 

the very low input signal, dark current and readout noise are essential figures that must be minimized to get the 

best detector sensitivity. This kind of application also requires very large focal plane array (FPA) often relying 

on a butting arrangement of large detectors [1]. The trend is to increase the single detector format from 1Kx1K 

to 2Kx2K and 4Kx4K. For very large formats, material quality and detector process may affect the production 

yield and the global infrared FPA cost. As a result the detector format could result from a trade-off taking into 

account producibility. 

In the first part, we review three common pixel circuits and discuss their characteristics with respect to these 

application needs. In the second part we describe a ROIC based on SFD pixel that we have developed at CEA-

LETI. Then we provide in the third part test results and electrical performances of the ROIC. 

 

 

II. PIXEL CIRCUITS 

Fig. 1 shows the schematics of Source-Follower per Detector (SFD), Direct Injection (DI) and Capacitive 

Trans-Impedance Amplifier (CTIA) pixel circuits. These are the more frequent input stages for hybrid detectors 

over the whole infrared spectrum. They all perform the same basic functions: photocurrent integration on a 

capacitive element and voltage readout through a switched source-follower buffer. Contrary to SFD, DI and 

CTIA also provide an – almost – constant photodiode bias voltage. 
 

   
 

 
 

Fig. 1. Simplified diagrams of SFD, DI and CTIA pixel circuits. 
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A. Source-Follower Detector 

In a SFD circuit the current is directly integrated on the input node capacitance after a reset (in a similar way 

to a 3T visible pixel). The integration node voltage is then read through a pixel switched source-follower that 

shares with other pixels a common current source. This output buffer stage drives the load capacitance which 

can be quite high in case of large array. 

The integration capacitance is the sum of photodiode junction capacitance, MOS capacitance and metal 

interconnect capacitance. As the diode junction is generally the greater term, the nodal capacitance value varies 

with the voltage and leads to a non-linear characteristics which is one of the main drawbacks of SFD pixel. The 

non-constant photodiode biasing also raises several issues as Inter-Pixel Capacitance (IPC) effects [2]. The 

photodiode is not decoupled from the circuit and its bias voltage may be affected by electrical effects (coupling, 

charge injection) occurring on the high-impedance input node during readout. 

Apart from reset noise which may be removed by Correlated Double Sampling (CDS) or other multiple 

sampling technics, the source-follower is the only noise contributor at pixel level. The total output noise related 

to the thermal noise can be easily derived from the small-signal model [3] and is given by (1) where γ is a 

constant related to device sizing and biasing. The readout noise can be quite low, especially on large arrays, 

thanks to a high load capacitance and in case of low readout speed, the bandwidth requirement can still be 

reached with limited power consumption. 
 

      
  

   

  
 (1) 

 

Compared to other circuits, this pixel type will provide the lowest output noise voltage. This statement must 

be moderated by the fact that the charge-to-voltage conversion factor (CVF) would be lower. Indeed, the 

integration capacitance cannot be made as small as desired since it is dominated by the photodiode junction. So, 

when comparing the readout noise expressed in electrons, SFD may suffer from this lower conversion factor. 

 

B. Direct Injection 

In a direct injection circuit, we find the same output source-follower structure but the integration node is 

decoupled from the photodiode thanks to a common gate MOS stage. An integration capacitance is added in the 

pixel and its value can be adjusted independently for higher CVF. For the same readout chain noise, it will 

provide a better noise performance in electrons. The main drawback of this stage is that the current injection 

efficiency [4] depends on the photocurrent (Id) via the MOS trans-conductance (gm) as seen on (2). Since the 

MOS operates in weak inversion regime its trans-conductance is directly proportional to the current. 
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 (2) 

 

At low photocurrent, the MOS trans-conductance becomes very low independently of the transistor sizing. As 

a result, the gain term Ainj of the above equation drops. For a typical 15µm-pitch SWIR HgCdTe diode the 

dynamic resistance (Rd) ranges from 10
12

 to 10
16

 ohms for temperatures below 120K. Corresponding injection 

gain and cutoff frequency are plotted on fig. 2. It can be seen that a very high dynamic resistance is required to 

get a good injection gain at ultra-low input current but it leads at the same time to a low cutoff frequency setting 

a lower limit to the integration time. Finally, a minimum current of 1fA is needed to get a good gain with a 

dynamic resistance above 10
14

 ohms (which can be achieved in SWIR at 80K) at reasonable integration time 

with respect to application needs. This solution is not well suited for ultra-low flux astrophysics applications, 

which could involve only few electrons per second per pixel (i.e. less than 10
-18 

A). 

 

 
Fig. 2. DI injection gain and cutoff frequency in case of standard photodiode. 
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Nevertheless, Avalanche PhotoDiode (APD) technology may move this current boundary since avalanche 

gain (M) amplifies the photocurrent (Iph) and offers a different dynamic resistance characteristic. In the 

avalanche regime (above a certain bias voltage, Vo) the gain has an exponential dependency with the bias 

voltage (3). It can be derived (4) that the gm.Rd product will approximately be independent of the photocurrent 

and bias voltage thus giving a constant injection gain. 
 

   ( )   ( )                ( )   
 (    )   where a and Vo are two constants. (3) 

        
  

   ( )

  

 
 ( )    

  ( )

  
         ⁄

 
 

    
 (4) 

 

Using a more precise electrical model for the APD diode [5] we also performed circuit simulations that 

confirm the previous analysis. Coupling an APD with a direct injection pixel gives injection gain above 99% 

even at low current (10
-18 

A) and low gain. Compared to standard photodiode, the cutoff frequency when no 

gain is applied is similar to what we obtained with very high dynamic resistance values (we don’t have the floor 

frequency behavior that occurred for lower Rd). As the APD gain has a direct effect on the current flowing 

through the MOS it helps improving its trans-conductance and at the end the cutoff frequency. 

 

 
 

Fig. 3. DI injection gain and cutoff frequency in case of avalanche photodiode. 

 
Concerning the noise, APD will slightly degrade the BLIP SNR due to its excess noise factor (about 1.2) but it 

will reduce the readout noise contribution in electrons thanks to a higher CVF than a SFD pixel (due to smaller 

integration capacitance and/or APD gain). 

To summarize, while DI is not well suited for very-low flux SWIR applications with a standard photodiode, 

the use of an avalanche photodiode gives a high and constant injection gain, greater than 99%. Thus, it could be 

an interesting alternative with good noise performance, especially for large arrays with small pixels (10µm and 

below) to avoid IPC and other coupling effects. Considering a moderate gain for the SWIR APD (M<10), the 

cutoff frequency remains low and would limit its use to some applications with very long integration time or 

higher current. Also, further work is needed to reach dark current and space reliability requirements with this 

emerging technology. 

 

C. Capacitive Trans-Impedance Amplifier 

This circuit allows adjusting the CVF in the same way, offers a precise low-impedance photodiode bias but 

without the injection efficiency issue of DI pixel. We performed a noise analysis to evaluate the interest of a 

CTIA input stage. The amplifier noise contribution can be added as a voltage source at the input. The noise 

transfer function (5) can be calculated from the small signal circuit [3]. 
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For this analysis, we extracted simulation data (trans-conductance, input thermal and flicker noise) from a real 

CTIA circuit. The output noise was then calculated for a variable feedback capacitor by applying the noise 

transfer function. CDS is necessary for low noise performance as it removes the large reset noise. In a pixel with 

strong area constraints, the amplifier flicker noise is the dominant noise contributor and integration time will 

determine the final noise value as it modifies the spectral response of CDS filtering. 

The readout chain after the integration node (pixel source follower, output buffer) will add a constant voltage 

noise (B). Its value will mainly depend on the chain bandwidth and power consumption limitations. We can 

consider that a CTIA pixel becomes beneficial compared to SFD when the feedback capacitance is small enough 

so that the reduction of the readout chain noise due to higher conversion gain compensates the extra pixel noise 

due to the amplifier. We plotted on fig. 4 the CDS read noise evolution with the CTIA feedback capacitance for 

three different readout chain noise values and for three different integration times. We also plotted the results 

without considering the flicker noise. In order to enable a comparison with SFD we added data points showing 

the noise of the readout chain converted to electrons considering a 30fF nodal capacitance. 

 

 

 
 

Fig. 4. Noise analysis results of a CTIA pixel. 

 
In the targeted applications, the readout speed is very low. As a result, the readout chain bandwidth can be 

small leading to low noise values (typically below 100µV). In these conditions, a CTIA will give higher noise 

especially because with long integration time the flicker noise of the amplifier will remain significant after CDS. 

Low-frequency noise on the reference voltage (in case of differential structure) or power supply (in case of 

single-ended structure) could further increase the noise of the CTIA. 

 

Beside noise, the amplifier power consumption is also a key issue as it can reach 50mW to 150mW for large 

format arrays (eg. 1Kx1K to 2Kx2K). Careful power supply routing over the array is required and special design 

technics can be used to minimize or compensate gradients due to I-R drop. In addition, the pixel-level amplifier 

can cause hot carrier injection (HCI) or thermal emission which is critical for glow-sensitive, low-flux 

applications. 

 

From this analysis, it can be derived that CTIA is not well suited when targeting very low noise performance 

at slow readout speed. At video speed (50fps and above), it becomes an alternative solution since the higher 

conversion gain will decrease the effect of the higher readout chain noise while the CDS will be more effective 

at filtering the amplifier flicker noise and low frequency reference voltage noise. In this case low noise 

performance (<15e-) can be reached with high gain CTIA. It will typically be used in medium array size (up to 

1Kx1K) where its power consumption remains acceptable. 
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III. SFD ROIC DEVELOPMENT 

Following a previous development [6] from our partner, Sofradir, we designed a 640x512 ROIC with 15µm 

pixel-pitch in a standard 0.18µm CMOS process. It has been hybridized with a SWIR HgCdTe photodiode array 

in the perspective of astrophysics applications. Such ultra-low flux applications require low noise multiple 

readouts at a low rate (2.5fps) over very long integration time (several minutes). As discussed in the previous 

part, a SFD pixel is the good candidate and special care was taken during design to minimize the ROIC input 

capacitance, reduce the readout noise and limit the glow. 

The circuit architecture is presented on fig. 5. The active pixel array is surrounded by a ring of four reference 

pixels which are not connected to a photodiode but to an equivalent capacitance on the ROIC. Several rows of 

test pixels have also been added for the purpose of electrical characterization. The array is divided into height 

strips that are read in parallel. Each strip is connected to an analog output buffer working at 110kHz. In SFD 

pixel, the photodiode voltage is not kept constant and inter-pixel capacitance could cause crosstalk between 

pixels. To enable the evaluation of IPC we included a test mode that keeps some hardwired pixels spread over 

the array under reset (red dots on the figure). 

 

 
Fig. 5. ROIC architecture and simplified schematic. 

 
As speed is not a concern here, standard cells based on minimum channel length MOS are not necessary. In 

order to minimize the HCI we designed custom gates with a sizing that reduces the electrical field across the 

transistor channel [7]. The register architecture based on half frequency clock also lowers the switching activity 

and digital power consumption. Shielding and guard rings have also been used to limit the glow. 

 

The circuit includes a 3 bits row address decoder for basic windowing purpose. It allows much faster readout 

compared to the 400ms full frame readout time by choosing the starting row (window position) while the 

number of rows and columns to be read is adjustable (window size) with the control signals. In this mode the 

strips are still operated in parallel. The windowing mode is useful when the input current becomes high (above 

10 fA), for example in case of photodiode characterization at high temperature. 

 

 

IV. TEST RESULTS 

One of the key parameter of the detector is the pixel nodal capacitance. It is interesting to evaluate the ROIC 

input capacitance (Cp) independently of the photodiode junction capacitance. The average input capacitance of 

the ROIC has been evaluated with three families of test pixels having fixed capacitances of 10, 15 and 20fF 

connected between the integration node and a reference voltage. One can measure the pixel capacitance by 

changing the reference voltage in the middle of an acquisition. The pixel capacitance is then given by: 

            
  

     
 (6) 

where Cf is the fixed capacitance of the test pixel, ΔVin is the voltage difference applied on the reference voltage 

and ΔVout is the difference between the two measured signals. With this test method we obtained a 5.6fF ROIC 

capacitance which is noticeably small and fairly close to the expected design value. 
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We used a test pixel not connected to a photodiode but embedding an equivalent capacitance to measure the 

leakage current. Although there is a small uncertainty related to the measurement, we can see on fig. 6 that the 

leakage is about 0.04e-/s at 80K and quite steady up to 200K. This value meets the requirement but an 

improvement would be an objective for future developments in order to get some margin compared to SWIR 

photodiode dark current at low temperature. 

 

 
Fig. 6. ROIC leakage measurements. 

 
A rms read noise of 50µV has been measured – including the acquisition electronics contribution – at 80K 

under continuous reset. In our test bench, the acquisition is based on 16 bits ADCs having an input referred rms 

noise of 35µV. We can thus infer a ROIC contribution of 36µV i.e. almost the same magnitude. The CDS noise 

was also measured on reference pixels based on two successive readouts (spaced in time by 0.4s). Fig. 7 shows 

that the CDS process is effective at removing the large reset noise (kT/C) while it increases the noise to 72µV –

almost in the expected √2 ratio – compared to the previous continuous reset value. If we remove the acquisition 

electronics noise it leads to 52µV for the ROIC itself. Based on the 20.6fF nodal capacitance of test pixels it 

corresponds to a CDS noise of 9.3e- and 6.7e- respectively for an expected linear well around 60ke- when 

hybridized to a photodiode. 

 

 
Fig. 7. CDS noise measurement at 80K for Tint=0.4s. 

 
The noise was also evaluated with different multiple readout schemes representative of possible operating 

conditions: CDS with Tint=60s, FUR-150 with Tint=60s and Fowler-32 with Tint=600s. These measurements 

have been performed at 100K using test pixels with 20.6fF nodal capacitance. Fig. 8 illustrates the results and 

shows that a noise below 4e- (including acquisition electronics) can be obtained with FUR-150. 
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Fig. 8. Multiple sampling noise measurements at 100K. 

 
The on-chip power consumption measured in typical operating conditions is detailed in table 1. The main 

consumption comes from the eight analog output buffers driving the large external load at 110kHz. It can be 

highlighted that the digital power consumption is extremely low (0.8µW). No glow effect has been observed on 

hybridized detectors. 

 
Table 1. ROIC power consumption. 

 

 Average current 
(µA) 

Typical voltage 
(V) 

Power consumption 
(µW) 

Digital 0,5 1,8 0,8 

Analog & line drivers 85,0 3,3 280,5 

Output buffer 259,0 1 259,0 

TOTAL 344,5 
 

540,3 

 

 

V. CONCLUSION 

Our analysis confirmed that SFD is the good choice for ultra-low flux, glow-sensitive applications working at 

low frame rate. It is well suited for large arrays. While direct injection is useful to decouple the diode from the 

integration node and to allow pixel conversion factor adjustment independently of the diode junction 

capacitance it is not appropriate at very-low flux due to poor injection efficiency. But we showed that coupling 

this input stage to an avalanche photodiode constitutes a novel and interesting alternative, in particular for small 

pixels. It offers a very good current injection above 99% even with low APD gain and low current. The 

avalanche gain could help reducing the noise of the readout chain while increasing the input stage cutoff 

frequency. Anyway, in case of very-low flux this frequency remains low and limits this solution to applications 

with very long integration time. CTIA pixel will not have these limitations and is therefore a good solution for 

high frame rate applications. Compared to SFD, higher pixel conversion gain will mitigate the input-referred 

readout chain noise, for a global benefit when this noise reduction compensates the extra pixel’s amplifier noise. 

A benefit will effectively be obtained with a small feedback capacitance (<10fF) in case and short integration 

time (<1ms) for proper flicker noise filtering through CDS. Power consumption would be an issue for very large 

arrays (above 1Kx1K) and a concern for glow. 

As we targeted ultra-low flux applications, we developed a 15µm-pich 640x512 ROIC based on an SFD pixel. 

It was designed in the goal to minimize the ROIC input capacitance and glow effects. The CDS noise of the 

ROIC has been measured and is about 52µV at 80K. It corresponds to 6.7e- with a nodal capacitance value of 

20.6fF on which the ROIC only contributes for 5.6fF. The pixel leakage current is about 0.04e-/s and no glow 

effect has been observed. The custom digital circuit’s power consumption is very low (0.8µW) for a total of 

540µW for the whole chip in normal operating conditions (full-frame readout at 2.5fps). These ROIC electrical 

results meet the high performance level required for SWIR infrared astrophysics applications while the circuit 

architecture is scalable for larger arrays. 
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