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ABSTRACT  

Ensuring adequate quality for additive manufactured (AM) materials presents unique metrology challenges to the on-line 
process measurement and nondestructive evaluation (NDE) communities.  AM parts now have complex forms that are 
not possible using subtractive manufacturing and there are moves for their use in safety criticality components. This 
paper briefly reviews the status, challenges and metrology opportunities throughout the AM process from powder to 
finished parts. The primary focus is on new acoustic signatures that have been demonstrated to correlate process 
parameters with on-line measurement for monitoring and characterization during the build. In-process, quantitative 
characterization and monitoring of material state is anticipated to be potentially transformational in advancing adoption 
of metal AM parts, including offering the potential for early part rejection, part condition guided process control or even 
potentially in-process repair. This approach will enable more effective deployment of quality assessment metrology into 
the layer-by-layer material build with designed morphology. In this proof-of-concept study acoustic-based process 
monitoring signals were collected during the Direct Energy Deposition (DED) AM process with different process 
conditions to investigate and determine if variations in process conditions can be discriminated. A novel application of 
signal processing tools is used for the identification and use of metrics based on temporal and spectral features in 
acoustic signals for the purpose of in-situ monitoring and characterization of conditions in an AM process. Results show 
that the features identified in signatures are correlated with the process conditions and can be used for classifying 
different states in the process.      
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1. INTRODUCTION  
There are significant challenges faced in fabrication and then the subsequent life cycle of AM parts when seeking to 
ensure needed initial quality and reliability. The inspection and characterization of powder metal parts at various points 
in the manufacturing process has been under consideration for several decades, with much of the attention focusing on 
non-destructive testing (NDT) of finished or near-finished parts1,2. Over the years some methods have been demonstrated 
for application at interim fabrication steps and at other interim points during manufacture3-5. Critical to understanding 
NDT needs is material characterization and “allowables” (those “naturally” occurring material anomalies that are 
acceptable), such as some level of micro-porosity and grain variation that will not impact performance under some 
defined set of stressors6. 

Providing the capability for in-situ monitoring has the advantage of not only inspection of the part to ensure that it is 
produced to meet the design requirements, but also to detect anomalies which occur within the build process7. There are 
several technologies that are currently deployed, including those using optical8 and IR imaging9. The advantage of using 
acoustic and ultrasound-based techniques is that the acoustic signatures have the potential to contain rich information 
about the material properties, defects and anomalies, as well as the process conditions. 

2. ACOUSTIC IN-SITU PROCESS MONITORING  
Acoustic and ultrasonic-based methods have the advantage of being able to be deployed to give real-time continuous 
monitoring of a part during the manufacturing processes.  Such techniques can be used for process monitoring with 
different forms of sensors10, with laser generated and detected ultrasound 11,12  and for monitoring the acoustic emissions 
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from cracking events8. Considering the successful application of acoustic-based monitoring techniques for other 
manufacturing processes, these techniques seem to have the potential for in-situ additive manufacturing process 
monitoring 13,14 and some new systems and techniques have been developed for this purpose15. For reliable monitoring of 
the additive manufacturing process, it is important to identify signatures, develop metrics and the transient process-
related signals in the presence of potentially high levels of time-varying noise, generated by the AM machine and 
processing environment. Both temporal and spectral features can potentially carry useful information that are correlated 
to the process and part conditions and which can be used for quality monitoring purposes. 
 
Experimental setup and data collection 
 
An instrumentation system together with an experimental fixture that supports piezoelectric acoustic sensors was 
designed to enable attachment to the control stage of a Direct Energy Deposition (DED) system. Titanium 6Al-4V 
powder was deposited on a steel substrate under a variety of conditions. The fixture built to support sensors for process 
monitoring is shown in Figure 1. The arrangement and dimensions of the specimens and the sensor locations are shown 
in Figure 2. 

 
Figure 1. Monitoring Fixture and accessories, (a) upper and lower adapter plates, build plate and mounting posts, 

(b) attaching the mounting plate and sensors to the upper adapter plate 
 

 

  
(a) (b) 

Figure 2. Direct Energy Deposition (DED) single layer deposition of Titanium 6Al-4V powder on steel build plate on 
5x5 grid, (a) test grid and related dimensions, (b) location of the sensors related to the grid and on the build plate 

 

A typical section of “RF” data record and corresponding spectrum are shown in Figure 3, which indicates that there are 
two main frequency bands where the majority of energy occurs. Based on this observation, the band of frequencies 
observed was divided into a low frequency band (<800 kHz) and a high frequency band (>800 kHz), and the dominant 
temporal and spectral features in each were investigated.  
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(a) (b) 

Figure 3. An example of the (a) original RF acoustic signal, and (b) frequency bands segments  
 

 
      Figure 4. RMS noise levels for a normal build condition showing an underlying process noise and interspersed hits. 

An accumulated number of the hits over the course of the build is also shown as an indicator of material state 
 
 
Temporal metrics and analysis of acoustic signatures 
 
The signal processing employed consisted of band-pass filtering (150 kHz-2MHz) applied using a Kaiser order filter 
design and a convolution filter. Baseline subtraction was utilized to remove any signal drift and electronic noise using 
interpolated noise power spectra between intermittent baselines taken during testing (Boll), a common noise suppression 
technique in speech processing.  
 
In acoustic emissions literature ‘Hits’ are defined as a signal that exceeds some predefined threshold and these are 
generally counted over time. They are also used to identify waveforms for further investigation and characterization. 
Hits were identified as waveforms with amplitudes exceeding 2 standard deviations from the mean (~95% confidence 
interval). The accumulation of hits over the course of a build under Normal conditions in depicted in Fig. 4. It can be 
observed that the hit total rises quickly during the build, and settles after build completion (~2500 waveforms). Hits have 
been associated in previous work with formation of material defects including porosity and cracking16 and this can be 
used as a material state indicator.  
 
Excluding waveforms identified as hits shows a marked decrease in RMS noise after build completion in Figure 5. Also 
displayed is the Baseline level RMS noise level which the Normal build condition approaches upon build completion. 
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Accumulating temporal metrics and fitting with normal distributions, the scatter in the central tendency (mean) and 
standard deviation appear to follow consistent trends as seen in Figure. 6. 

 

 
 

     Figure 5. RMS noise values for the same Normal build condition depicted in Fig. 4 with waveforms associated with 
Hits removed to isolate process noise. A marked reduction in RMS noise levels is seen at approximately 2500 

Waveforms coinciding with build completion and a return to Baseline RMS noise levels 

 
 

Figure 6. Clustering based on build conditions show consistency between builds of the same condition 
(same markers) and separation with other conditions (unique markers). Central tendencies of a fitted normal               

distribution to RMS noise level distributions tend to be elevated above baseline for all conditions, and with stronger 
deviations for builds entailing material deposition. 

 
 Spectral metrics and analysis of acoustic signatures 
 
The use of frequency domain spectral features has proved to be particularly useful when there are a variety of different 
noise generation mechanisms in a system, such as in manufacturing machinery17, processing systems including boilers 
and heat exchangers, and in turbo-machinery fault diagnosis18. If defined appropriately, the frequency-related features 
and signatures for the acoustic signal are very effective in terms of “event” or source extraction and their use for 
discrimination and classification purposes. 
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The method used for data analysis used here is based on feature extraction from the frequency response of the acoustic 
signature signals. Defined features in the spectral domain are listed in Table 1.  
 
Table 1. Spectral features type and abbreviation 

 

Feature Number Feature Description Feature’s 
abbreviation 

Feature 1 peak amplitudes of the spectral data from the Fourier 
Transform PA 

Feature 2 
Difference in peak amplitudes of the spectral data from 
Fourier Transform for each condition compared to the one 
for baseline condition 

PAD 

Feature 3 Peak frequency of the spectral data from of Fourier 
Transform Pf 

Feature 4 Centroid amplitude of the spectral data from Fourier 
Transform CA 

Feature 5 Centroid frequency of the spectral data from Fourier 
Transform Cf 

 
 
Clustering analysis is based on plotting the identified features in pairs and triples (2D and 3D respectively) to study the 
separation of variables and classification of process conditions for different build settings. The Clustering results for data 
from an acoustic piezoelectric sensor using centroid frequency (Cf) and centroid amplitude (CA) of spectral data 
obtained using the Fourier Transform in low frequency and high frequency bands are shown in Figure 7. The 
classification of process conditions using three frequency domain features; centroid frequency (Cf) and centroid 
amplitude (CA), and peak amplitude of frequency spectrum (PA) of spectral data obtained using the Fourier transform 
for a single sensor at low and high frequency bands is shown in Figure. 8. 
 

  
(a) (b) 

      
Figure 7. Clustering results for data from a single sensor using centroid frequency (Cf) and centroid amplitude (CA) of 

spectral data obtained using the Fourier Transform in (a) low frequency and (b) high frequency bands 
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(b) 
 

    Figure 8. Classification of process conditions using three frequency domain features; peak amplitude of frequency 
spectrum (PA), centroid frequency (Cf) and centroid amplitude (CA) of spectral data obtained using the Fourier 

Transform for a single sensor at (a) low frequency and (b) high frequency bands 
 
 
Distinct separations of clusters are seen in Figures 7 and 8 to correlate with the data from different process conditions. 
Combination of acoustic signatures in the frequency domain can provide closer and more effective data clustering for 
different process conditions. 

3. CONCLUSIONS 
A proof-of-concept study has investigated new approaches to process monitoring for additive manufacturing based on 
acoustic signatures. Various alternatives for signal processing, pattern recognition, and classification methods were 
applied to acoustic signals generated by an additive manufacturing process. It has been shown that acoustic signal 
characteristics can be used to classify process and system conditions. The acoustic signals were collected during the 
Direct Energy Deposition (DED) additive manufacturing process operated under different process conditions.   
A novel application of signal processing tools is used for the identification and use of metrics based on frequency 
spectral features in acoustic signals for the purpose of in-situ monitoring and characterization of conditions in an additive 
manufacturing process. A spectral feature-based clustering method was implemented to analyse the acoustic signals. 
Clustering plots for metrics in 2 and 3-D were used to facilitate the visualization of the groupings and condition 
discrimination. It is demonstrated that a passive acoustic monitoring approach and use of signal processing algorithms is 
effective at giving metrics that achieve clustering and separation of conditions based on multiple spectral features 
extracted from the original test data, and that these metrics do correlate with different AM system conditions.  
 
Classification of different DED additive manufacturing process conditions exhibit successful clustering of large data 
sets. Evaluation of the identified features confirmed the consistency in process monitoring and data collection by all 
sensors, different locations on the build plate, and various process conditions. Results show that this novel approach 
using acoustic signal analysis can provide metrics based on acoustic signals (signatures) generated by the AM process, 
and classification of the signatures can be correlated with different process conditions. 
 
Monitoring of the manufacturing process using acoustic signatures would appear to have the potential to give data which 
can help enable early detection of off-normal conditions, generation of faults in the process, and can be used for process 
optimization and control. 
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