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ABSTRACT 

With a view to future large space telescopes, we investigate image-based wavefront correction with active optics. We use 

an image-sharpness metric as merit function to evaluate the image quality, and the Zernike modes as control variables. In 

severely aberrated systems, the Zernike modes are not orthogonal to each other with respect to this merit function. Using 

wavefront maps, the PSF, and the MTF, we discuss the physical causes for the non-orthogonality of the Zernike modes 

with respect to the merit function. We show that for combinations of Zernike modes with the same azimuthal order, a 

flatter wavefront in the central region of the aperture is more important than the RMS wavefront error across the full 

aperture for achieving a better merit function. The non-orthogonality of the Zernike modes with respect to the merit 

function should be taken into account when designing the algorithm for image-based wavefront correction, because it may 

slow down the process or lead to premature convergence. 

Keywords: active optics, adaptive optics, sharpness metrics, aberration compensation, algorithm design 

 

1. INTRODUCTION  

Space telescopes with 10-m-class primary mirrors are currently being studied for astronomy, in particular for 

characterization of exoplanets, and for Earth observation from the geostationary orbit. Such telescopes will need to have 

segmented, lightweight primaries in order to reduce mass and stowed volume. Active optics at the primary mirror and/or 

in a plane conjugate to the primary mirror will be required to co-phase the segments, align the optical telescope, and correct 

for manufacturing errors and slow drifts caused by thermo-elastic effects and gravitational release. The method we discuss 

here requires a continuous surface of the active element, because we use the Zernike modes to describe the active element. 

Therefore, in the case of a segmented mirror, the segments should be already co-phased by using another technique. 

Conventional adaptive optics measures the wavefront and applies its inverse to the corrective active element. Direct 

wavefront sensing using a dedicated wavefront sensor requires a bright guide star and results in non-common path errors. 

In addition, the angular separation between the science target and the guide star leads to anisoplanatism. In ground-based 

telescopes, anisoplanatism is reduced with sophisticated concepts such as multi-conjugate adaptive optics, by using several 

guide stars, wavefront sensors, and corrective elements. Indirect wavefront sensing uses the science camera and an iterative 

method, e.g., phase diversity, to retrieve the wavefront. Although phase diversity is technically image-based, here we use 

the term "image-based" to refer to correction methods that do not require the wavefront information. In this sense, phase 

diversity is not an image-based method. Our image-based method evaluates the image of the science camera and adapts 

the surface of the active element to increase a merit function. It can handle large aberrations, in contrast to wavefront 

sensing that has limited dynamic range. Using an image-based method, active optics would allow image optimization for 

different objectives, e.g., for maximization of contrast in high or in low spatial frequencies, depending on the science 

target. 

In this paper we discuss the landscape of an image-sharpness metric used as merit function when we control the surface of 

the active element with Zernike modes. Zernike modes are orthogonal to each other over a unit circle with respect to the 

wavefront. They are also orthogonal to each other with respect to our merit function for small aberrations, but we 

demonstrate that this is not valid for aberrations of more than 𝜆/8 RMS. We aim at the optimization of severely aberrated 

systems with several 𝜆 of aberration and low Strehl ratio. This is represented by the second transition in the graphic 

representation in Fig. 1. Once the optical system is near the Maréchal limit, the Zernike modes become orthogonal to each 

other with respect to the merit function. 

 

*kazasidis@fh-muenster.de; Telephone: +49 2551-962-116; photonics-lab.de 

ICSO 2018 
International Conference on Space Optics

Chania, Greece 
9 - 12 October 2018

Proc. of SPIE Vol. 11180  111807Z-2



 

 
 

 

 

 

 

Figure 1. Graphical representation of the stages for the wavefront correction in a space telescope. 

 

2. IMAGE-BASED WAVEFRONT CORRECTION 

Our image-based wavefront correction without wavefront sensing is a blind optimization of a merit function that evaluates 

the quality of the image of the science camera. The configuration parameters for the correction are: 1. the merit function, 

2. the control domain, and 3. the algorithm. In this section we discuss our selection of the merit function (2.1) and of the 

control domain (2.2). The design of the algorithm is determined by these parameters but is outside the scope of this paper. 

2.1 Merit function 

It is often desirable to state the performance of an optical system by a single number. This immediately allows ranking of 

different optical systems, optimization of an optical system during its design, or finding the optimum state of an active or 

adaptive optics system. Examples of performance metrics that deliver a single numerical value are the Strehl ratio (𝑆), the 

RMS wavefront error (𝜎), and image-sharpness metrics. Examples of performance metrics that deliver more than a single 

number, and thus contain more information, are the point spread function (PSF), the modulation transfer function (MTF), 

wavefront maps, and spot diagrams. 

Since all single-number performance metrics lack detailed information about the performance of an optical system, the 

question arises, which single-number metric is most suitable for a certain imaging scene (e.g., for Earth observation typical 

imaging applications are urban areas, forests, and maritime surveillance) and for a certain task (e.g. tracking fast moving 

objects), and what its limitations are. An image-based metric can be applied in different image regions and thus achieve 

optimal performance for different field angles. For example, when trying to resolve a double star, the region of interest 

will be a small region of the image. Thus the active optics should correct a narrow field of view. On the other hand, when 

observing star clusters and nebulas, a larger image region should be corrected, and the correction of the active optics should 

be balanced over a wide field of view. 

We use the image-sharpness metric 𝑆1 introduced by Muller and Buffington1. This is a single-number metric: 

𝑆1: =  ∫ 𝐼(𝑥, 𝑦)2 𝑑𝑥 𝑑𝑦, where 𝐼(𝑥, 𝑦) is the irradiance at the point (𝑥, 𝑦) of the image plane. Our merit function (𝑀𝐹) is 

a discretized adaptation of 𝑆1: 

 𝑀𝐹 = −
∑ ∑ 𝐼(𝑛𝑥,𝑛𝑦)2𝑁𝑦

𝑛𝑦=1
𝑁𝑥
𝑛𝑥=1

[∑ ∑ 𝐼(𝑛𝑥,𝑛𝑦)
𝑁𝑦
𝑛𝑦=1

𝑁𝑥
𝑛𝑥=1 ]

2 𝑁𝑥𝑁𝑦 . (1) 

In the above formula 𝑥 and 𝑦 are the axes of the image plane, 𝑁𝑥 and 𝑁𝑦 are the numbers of pixels in each axis, and 𝐼 is 

the pixel value. The minus sign converts the sharpness maximization to a minimization problem. 𝑀𝐹 balances the 

influences from the contrast of all spatial frequencies. 

2.2 Control domain 

In optical systems design, the optimization variables are parameters of the optical elements, e.g., material, diameter, 

thickness, surfaces’ curvatures, and position. Examining the performance of sets of values for all the parameters, the 

designer tries to optimize a merit function. In an adaptive optics system, the adaptive element offers additional degrees of 

freedom to compensate for aberrations. The optimization variables are the inputs of the adaptive element, i.e., the voltages 

of the electrodes for a deformable mirror or a spatial light modulator. But the relation of the voltages of a deformable 

mirror with the optical performance is complex. For this reason, we wish to transform the space of the voltages of the 
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deformable mirror to wavefront shapes, which can be expressed, e.g., as Zernike modes. Assuming a linear deformable 

mirror†, this is done with the influence functions. Using the Zernike modes as variables, we gain insight into the 

optimization procedure and can possibly reduce the number of the variables in order to speed up the optimization. The 

Zernike modes used in this paper are listed in the Appendix. Having selected the merit function and the control domain, 

an algorithm to search the space of Zernike modes should be designed. 

 

3. IMAGE SHARPNESS WHEN VARYING ZERNIKE MODES 

3.1 Simulation method 

We simulate the pupil wavefront of an imaging system with a uniformly circular aperture in MATLAB over a 

300 pixels ×  300 pixels grid. We obtain the PSF by using the 2-D fast Fourier transform of the wavefront. We choose 

the width of the diffraction-limit PSF to be 40 pixels, significantly larger than the required width of 5 pixels, according to 

the Nyquist sampling theorem. To reduce the computational cost, we limit the total grid of the PSF to 

1201 pixels ×  1201 pixels, 30 times larger than the diffraction-limited PSF. The error caused by this truncation is 

negligible. Finally, we generate the MTF of the system by the 2-D fast Fourier transform of the PSF. 

We assume that the corrective active element is placed in a plane conjugate to the pupil and that it is controlled with 

Zernike modes. We normalize the aberrated PSFs to the maximum of the diffraction-limited PSF, to allow comparison 

among PSFs with different aberrations. Throughout the paper we use the Zernike notation of Wyant and Creath3. We call 

𝑍𝑖 the 𝑖-th Zernike mode and 𝑧𝑖 its coefficient. 

3.2 RMS wavefront error and Strehl ratio 

The RMS wavefront error (𝜎) is a common merit function in optical systems design. For small aberrations, the RMS 

wavefront error is directly related to the Strehl ratio and to the modulation transfer function (MTF). Maréchal formulated 

the following relation with the Strehl ratio: 𝑆 ≈ [1 − 2𝜋2𝜎2/𝜆2]2, where 𝜆 is the wavelength. Shannon formulated an 

empirical formula with the MTF4: MTF(𝜈) = DTF(𝜈){1 − (𝜎/0.18)2[1 − 4(𝜈 − 0.5)2]}, where 𝜈 is the normalized 

spatial frequency and DTF(𝜈) the diffraction-limited MTF. The Zernike modes are balanced with respect to the RMS 

wavefront error for every aberration. Therefore, for small aberrations, the Zernike modes are also balanced with respect to 

the Strehl ratio and to the MTF. This means that, as long as the total aberration is sufficiently small, adding any aberration 

to the wavefront leads to deterioration of all image quality metrics: increase of the RMS wavefront error, decrease of the 

Strehl ratio, and decrease of the MTF for all spatial frequencies. 

For large aberrations, the Strehl ratio and the MTF can be multiple-valued for the same RMS wavefront error5,6. Higher 

RMS wavefront error may thus lead to lower or higher Strehl ratio depending on the aberration modes contributing to the 

aberration. The same is also true for the MTF4. The term "large aberrations" commonly refers to 𝜎 > 𝜆/4 or 𝑆 < 0.4. To 

illustrate the complex relation between the RMS wavefront error and the Strehl ratio for large aberrations, we calculate 

them when defocusing (Zernike mode 𝑍3) in the presence of different values of astigmatism 0° (Zernike mode 𝑍4) and 

show the results in Fig. 2. The RMS wavefront error (Fig. 2a) increases monotonically when the aberration increases, 

because the Zernike modes are balanced with respect to the RMS wavefront error. On the other hand, the Strehl ratio (Fig. 

2b) decreases monotonically for increasing |𝑧3| only as long as 𝑧4 ≤ 0.4𝜆 (dark blue, orange and yellow curves). For 

𝑧4 ≥  0.6𝜆 (violet, green and light blue curves), the Strehl ratio has two maxima away from 𝑧3 = 0. The multiple-valued 

Strehl ratio with respect to the RMS wavefront error is shown in Fig. 2c for 𝜎 > 0.2𝜆. 

3.3 Merit function for combinations of Zernike modes 

We recently showed7 that for large aberrations the Zernike modes are not orthogonal to each other with respect to the merit 

function defined by (1). Here, we further explore this dependence by running simulations for combinations of two Zernike 

mode aberrations. Incoherent images of extended objects can be generated by the 2-D convolution of an extended object 

and the PSF. Using an extended object would restrict the validity of the results in the spatial frequencies that are present 

in the object. However, the PSF contains all spatial frequencies and can be used to draw conclusions for every spatial 

 

† Deformable mirrors often employ actuators which suffer from hysteresis, e.g., piezoelectric actuators. Hysteresis can be eliminated in 

closed-loop operation with a wavefront sensor. If no wavefront sensor is used, hysteresis can be reduced by using a nonlinear model. 

The control algorithm should cope with the residual hysteresis, caused by modelling errors2. 
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Figure 2. a) The total RMS wavefront error (𝜎) when varying defocus (𝑍3) for different values of astigmatism 0° (𝑍4) is 

monotonically increasing. b) The Strehl ratio (𝑆) may decrease or increase adding defocus (𝑍3) in the presence of astigmatism 

0° (𝑍4). c) Combined representation of plots a) and b). The Strehl ratio becomes multiple-valued with respect to the total RMS 

wavefront error for 𝜎 > 0.2𝜆. Each curve has a different constant value 𝑧4, and |𝑧3| increases for increasing total RMS 

wavefront error. 

frequency that may be present in the object. Therefore, we calculate the merit function for the 1201 pixels ×  1201 pixels 

image of the PSF. The combinations of Zernike modes shown in this paper are characteristic examples to investigate the 

physical causes for the non-orthogonality of the Zernike modes with respect to the merit function. To this end, we use 

wavefront maps, the PSF, and the MTF. 

In section 3.3.1 we discuss the combination of defocus (𝑍3) and astigmatism 0° (𝑍4). In section 3.3.2 we discuss the 

combination of astigmatism 0° (𝑍4) and secondary astigmatism 0° (𝑍11), as an example for the combination of Zernike 

modes with the same azimuthal order. The next two sections discuss combinations of trefoil 0° (𝑍9): the section 3.3.3 with 

coma x (𝑍6), and the section 3.3.4 with astigmatism 0° (𝑍4). The global minimum (optimum) of the merit function is for 

zero aberration, as expected, in all cases. We show that for large aberrations, the merit function can be improved by adding 

a Zernike mode, despite the fact that this increases the RMS wavefront error. 

3.3.1 Defocus and astigmatism 

Figure 3 shows our merit function calculated for the PSF under the same conditions as in Fig. 2, that is when defocusing 

in the presence of different values of astigmatism 0°. The merit function has a single minimum at 𝑧3 = 0 as long as 

𝑧4 ≤  0.2𝜆, but has two minima for opposite values of 𝑧3 when 𝑧4 ≥ 0.4𝜆. Although the progression of the curve resembles 

that of the Strehl ratio (Fig. 2b), it is different, because the Strehl ratio is just the maximum of the PSF, i.e., the value at a 

single point, whereas the merit function takes into account the whole PSF. 

We examine two aberrations, marked as "Aberration 1" and "Aberration 2" in Fig. 3. They both have 𝑧4 = 0.6𝜆. Aberration 

2 has additional defocus 𝑧3 = 0.3𝜆 and lower (better) merit function than aberration 1. Figure 4 shows the wavefront maps, 

the PSF and the MTF for these aberrations. 

The Zernike modes of defocus (𝑍3) and astigmatism 0° (𝑍4) contribute to the first-order field-independent aberration of 

focus3: 𝑊20 = 2𝑧3 − 6𝑧8 ± √𝑧4
2 + 𝑧5

2. If only 𝑍3 and 𝑍4 exist in the system, the first-order field-independent focus 

becomes zero when |𝑧3| = 𝑧4/2, the ratio of the coefficients for the aberration 2. Then the system suffers only from first-

order field-independent astigmatism (𝑊22). 
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Figure 3. The merit function for the same conditions as in Fig. 1, that is when varying defocus (𝑍3) for different values of 

astigmatism 0° (𝑍4). 

Aberration 1 

𝑧3 = 0, 𝑧4 = 0.6𝜆 

Aberration 2 

𝑧3 = 0.3𝜆, 𝑧4 = 0.6𝜆 

 

 

 

 

Figure 4. Plots for the aberrations 1 and 2 marked in Fig. 3. The aberrations have the same value of astigmatism 0° (𝑍4), but 

different values of defocus (𝑍3). From upper left to bottom right the plots show: the wavefront, the PSF, the PSF profiles in x 

and y axes, and the MTF in x and y axes.  

Adding defocus of |𝑧3| = 𝑧4/2 in the presence of astigmatism 0° slightly increases the width of the PSF in one axis of the 

image plane (the axis x for the aberration 2). This leads to deterioration of the contrast and of the resolution for spatial 

frequencies oriented in the direction of this axis. At the same time, this significantly shrinks the PSF in the other axis of 

the image plane, leading to diffraction-limited contrast and resolution for spatial frequencies oriented in the direction of 

that axis (the axis y for the aberration 2). This principle is applied to astigmatic systems which are focused differently 

depending on the object. 
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3.3.2 Zernike modes with the same azimuthal order 

In our recent publication7, we showed that for large aberrations the Zernike modes for defocus (𝑍3) and spherical aberration 

(𝑍8) are not orthogonal to each other with respect to the merit function. Here, we show another example for combination 

of Zernike modes with the same azimuthal order, 𝑍4 and 𝑍11, i.e., the Zernike modes for astigmatism 0° and secondary 

astigmatism 0°, both of azimuthal order of +2. Figure 5 shows the merit function calculated for the PSF, when varying 𝑧4 

in the presence of different values of 𝑧11. 

  

Figure 5. The merit function when varying astigmatism 0° (𝑍4) for different values of secondary astigmatism 0° (𝑍11). 

For 𝑧11 = 0 there is a single minimum for the merit function at 𝑧4 = 0. For 𝑧11 > 0 the global minimum shifts towards 

positive values of 𝑧4. Due to our step size for the Zernike coefficients, we first resolve this shift of the global minimum 

when 𝑧11 = 0.4𝜆 (yellow curve). In Fig. 6 we examine the aberrations marked as "Aberration 1" and "Aberration 2" in 

Fig. 5. Both have 𝑧11 =  0.6𝜆 (violet curve), but aberration 2 has additional astigmatism 0° 𝑧4 = 0.6𝜆 and lower (better) 

merit function than aberration 1. 

The addition of astigmatism 0° increases the wavefront deviation at the edges of the aperture, but smoothens the wavefront 

in the central part. This becomes obvious in Fig. 7 that shows the wavefront profiles for the aberrations 1 and 2 along the 

red dotted lines in Fig. 6. The wavefront with only secondary astigmatism 0° (aberration 1) has smaller variance, but the 

addition of astigmatism 0° (aberration 2) leads to a flatter wavefront in the central region of the aperture. We can calculate 

the Zernike modes over a smaller radius. Using the formulas for scaling the Zernike modes from the aperture where they 

are defined (radius 𝑟) to a smaller radius8, we find that for the aberration 2 there exists a radius 𝑟′ = 0.86𝑟 on which 

𝑧4
′ =  0. On this radius the scaled Zernike modes comprise only 𝑧11

′ = 0.44𝜆. For comparison, for the aberration 1 the 

scaled Zernike modes on the radius 𝑟′ comprise 𝑧4
′ = −0.45𝜆 and 𝑧11

′ = 0.44𝜆. The calculations are shown in the 

Appendix. 

In the image plane, the relative heights of the side lobes of the PSF decrease from 41% to 13%. Consequently, energy is 

squeezed into the central lobe, slightly increasing its width but also increasing its peak (the Strehl ratio). The narrower 

central lobe of the PSF for the aberration 1 can be interpreted as a higher resolution limit. This is valid, provided that the 

detection routine doesn’t misinterpret the side lobes (with 41% relative height) as distinct objects. Finally, the MTF for 

the aberration 1 falls fast for low spatial frequencies until 30% of the diffraction-limited cutoff frequency (𝜈𝑐𝑢𝑡) and rises 

again with a peak near the diffraction-limited contrast at about 50% of the 𝜈𝑐𝑢𝑡 . The MTF for the aberration 2 is in general 

smoother and achieves better contrast at low and mid spatial frequencies. 
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Figure 6. Plots for the aberrations 1 and 2 marked in Fig. 5. The aberrations have the same value of secondary astigmatism 0° 
(𝑍11), but different values of astigmatism 0° (𝑍4). From upper left to bottom right the plots show: the wavefront, the PSF, the 

PSF profile, and the MTF. The table below the plots records several metrics to compare the optical performance for the two 

aberrations. Improved (deteriorated) performance for each metric is marked with green (red). 

  

Figure 7. The wavefront profiles for the aberrations 1 and 2 along the red dotted lines of Fig. 6. The addition of astigmatism 

0° (blue curve – aberration 2), in the presence of secondary astigmatism 0°, leads to a flatter wavefront in the central region 

of the aperture (marked as 2𝑟′). For 𝑟′ = 0.86𝑟 the wavefront comprises a smaller value of secondary astigmatism 0°, and the 

astigmatism 0° is zero. 

3.3.3 Trefoil and coma 

The Zernike mode of trefoil 0° is 𝑍9 = 𝜌3 cos(3𝜗) = 4𝜌3 cos3 𝜗 − 3𝜌3 cos 𝜗. The first term (4𝜌3 cos3 𝜗) is the fifth-

order aberration of trefoil. The second term (3𝜌3 cos 𝜗) is the third-order coma (neglecting the field dependence) and is 

added to make the Zernike mode orthogonal to the lower order modes on the unit circle and to minimize the RMS wavefront 

error. The fifth-order aberration 𝜌3 cos3 𝜗 (neglecting the field dependence) is called "trefoil" when studying the 

wavefront. It is also called "elliptic coma", based on the image plane intensity: the circles that appear in the image spot for 

third-order coma turn into ellipses when fifth-order aberration of trefoil is added9,10. This relation between trefoil and coma 
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is revealed when we vary the Zernike coma x (𝑍6) in the presence of different values of Zernike trefoil 0° (𝑍9). Figure 8 

shows the merit function calculated for the PSF. 

 

Figure 8. The merit function when varying coma x (𝑍6) for different values of trefoil 0° (𝑍9). 

For 𝑧9 ≤ 0.2𝜆 there is a single minimum for the merit function at 𝑧6 = 0. For 𝑧9 > 0.4𝜆 the global minimum shifts towards 

positive values of 𝑧6. In Fig. 9 we examine the aberrations marked as "Aberration 1" and "Aberration 2" in Fig. 8. They 

both have 𝑧9 =  0.8𝜆, but aberration 2 has additional coma x 𝑧6 = 0.7𝜆 and lower (better) merit function than aberration 1. 

Adding positive coma x in the presence of trefoil 0° (aberration 2) makes the wavefront resemble to a single ripple in the 

u axis. The wavefront is practically uniform in one axis, the v axis of the coordinate system of the aperture. The wavefront 

actually becomes completely independent of v when 𝑧6 = 𝑧9, in which case the wavefront is 𝑊 =  𝑧9(4𝑢3 − 2𝑢) and two 

of the three ripples of the wavefront vanish. 

In the image plane, adding coma x increases the Strehl ratio and shrinks the PSF, for both x and y axes. The PSF width in 

the y axis decreases until the diffraction-limited width. Finally, at the cost of the contrast reduction for low spatial 

frequencies oriented in the x axis, the MTF increases at mid and high frequencies for spatial frequencies oriented in both 

x and y axes. It even reaches the diffraction limit MTF for spatial frequencies oriented in the y axis in the case of positive 

coma x of the same magnitude as the trefoil 0° (𝑧6 = 𝑧9). 
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Figure 9. Plots for the aberrations 1 and 2 marked in Fig. 8. The aberrations have the same value of trefoil 0° (𝑍9), but different 

values of coma x (𝑍6). From upper left to bottom right the plots show: the wavefront, the PSF, the PSF profiles in x and y 

axis, and the MTF in x and y axis. The table below the plots records several metrics to compare the optical performance for 

the two aberrations. Improved (deteriorated) performance for each metric is marked with green (red). 

 

3.3.4 Trefoil and astigmatism 

Apart from "trefoil" and "elliptic coma", the fifth-order aberration 𝜌3 cos3 𝜗 (neglecting the field dependence) is also called 

"triangular astigmatism" in part of the literature10. This is connected to the image plane intensity: in the presence of third-

order astigmatism adding fifth-order aberration of trefoil turns the image spot into a triangle. This motivated us to research 

the combination of the Zernike modes of astigmatism and trefoil. We varied the trefoil 0° (𝑍9) in the presence of different 

values of astigmatism 0° (𝑍4) and show the merit function calculated for the PSF in Fig. 10. 

For 𝑧4 ≤ 0.2𝜆 there is a single minimum for the merit function at 𝑧9 = 0. For 𝑧4 ≥ 0.6𝜆 two equal minima appear, for 

opposite values of 𝑧9. In Fig. 11 we examine the aberrations marked as "Aberration 1" and "Aberration 2" in Fig. 10. They 

both have 𝑧4 =  0.6𝜆, but aberration 2 has additional trefoil 0° 𝑧9 = 0.4𝜆 and lower (better) merit function than 

aberration 1. 

The addition of trefoil 0° partially compensates the ripple caused by the astigmatism 0° at one half of the aperture. For the 

aberration 2 with positive trefoil 0°, it’s the left half of the aperture (𝜋/2 ≤ 𝜃 ≤ 3𝜋/2, negative u). The wavefront 

aberration is 𝑊 = 𝑧4𝑍4 + 𝑧9𝑍9 = (𝑧4 + 𝑧9𝑢)(𝑢2 − 𝑣2) − 2𝑧9𝑢𝑣2 and its v-derivative is 𝜕𝑊/ 𝜕𝑣 =  −  2𝑣(𝑧4 + 3𝑧9𝑢). 

We notice that for 𝑢 = ±0.5, the v-dependence of the wavefront vanishes when 𝑧4/𝑧9 = ∓3/2. This is equal to the ratio 

of the Zernike coefficients of 𝑍4 and 𝑍9 for the aberration 2 (0.6𝜆/0.4𝜆). 

In the image plane, the PSF shrinks and its peak intensity increases. Ripples with relatively small peaks appear, the highest 

being 17% of the peak intensity. Finally, the MTF with additional trefoil 0° is slightly lower for spatial frequencies up to 

about 25% of the 𝜈𝑐𝑢𝑡 , but is significantly higher for mid spatial frequencies between 25% and 70% of the 𝜈𝑐𝑢𝑡 . This 
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Figure 10. The merit function when varying trefoil 0° (𝑍9) for different values of astigmatism 0° (𝑍4). 
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Aberration 2 0.28𝜆 0.23 −282 63% for both 13% for both 
 

Figure 11. Plots for the aberrations 1 and 2 marked in Fig. 9. The aberrations have the same value of astigmatism 0° (𝑍4), but 

different values of trefoil 0° (𝑍9). From upper left to bottom right the plots show: the wavefront, the PSF, the PSF profiles in 

x and y axis, and the MTF in x and y axis. The table below the plots records several metrics to compare the optical performance 

for the two aberrations. Improved (deteriorated) performance for each metric is marked with green (red). 

leads to higher resolution. Setting the limiting resolution at about 10% contrast, the cutoff frequency is about 0.3𝜈𝑐𝑢𝑡 for 

𝑧4 = 0.6𝜆 (aberration 1) and increases to 0.5𝜈𝑐𝑢𝑡 by adding trefoil 0° 𝑧9 =
2

3
𝑧4 = 0.4𝜆  (aberration 2). 
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4. CONCLUSIONS 

We have shown that for aberrations of more than 𝜆/8 RMS the Zernike modes are not orthogonal to each other with respect 

to the common image-sharpness metric of Muller and Buffington1. The non-orthogonality of the Zernike modes should be 

taken into account when designing the algorithm for image-based wavefront correction, because it may slow down the 

process or lead to premature convergence. If the algorithm optimizes the Zernike modes separately, several iterations over 

all Zernike modes are required to ensure that the global minimum is found. 

We discussed several combinations of two Zernike modes and investigated the physical causes for their non-orthogonality 

using wavefront maps, the PSF, and the MTF. We found that in certain cases when adding a Zernike mode, the merit 

function is improved, although the RMS wavefront error increases. In all the examples we discussed, the improvement of 

the merit function comes with an increase of the Strehl ratio. However, we cannot directly connect the merit function to 

the improvement of contrast at a certain range of spatial frequencies. In section 3.3.2 we have shown that for combinations 

of Zernike modes with the same azimuthal order, a flatter wavefront in the central region of the aperture is more important 

than the RMS wavefront error across the full aperture for achieving a low (good) merit function. 

The results indicate that although the RMS wavefront error is an important metric for image quality, it can be misleading, 

especially for optical systems with several 𝜆 of aberration and low Strehl ratio. In this case, image-based active optics can 

improve the image quality by adding a low-order Zernike mode to partially compensate an uncorrectable higher-order 

Zernike mode. An example was discussed in section 3.3.2, where secondary astigmatism 0° (𝑍11) was partially 

compensated by adding astigmatism 0° (𝑍4). This improved the merit function by 58% and the Strehl ratio by 33%, 

although the RMS wavefront error increased by 63%. 
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APPENDIX 

Some low-order Zernike modes 

  Polar coordinates Cartesian coordinates* 

𝑍3 Defocus 2𝜌2 − 1 2(𝑥2 + 𝑦2) − 1 

𝑍4 Astigmatism 0° 𝜌2 cos 2𝜃 𝑥2 − 𝑦2 

𝑍6 Coma x (3𝜌2 − 2)𝜌 cos 𝜃 3𝑥3 + 3𝑥𝑦2 − 2𝑥 

𝑍8 Spherical aberration 6𝜌4 − 6𝜌2 + 1 6(𝑥2 + 𝑦2)2 − 6(𝑥2 + 𝑦2) + 1 

𝑍9 Trefoil 0° 𝜌3 cos 3𝜃 𝑥3 − 3𝑥𝑦2 

𝑍11 Secondary 

astigmatism 0° 
(4𝜌2 − 3)𝜌2 cos 2𝜃 4(𝑥4 − 𝑦4) − 3(𝑥2 − 𝑦2) 

* In the text the Cartesian coordinates of the aperture are (𝑢, 𝑣). (𝑥, 𝑦) are the Cartesian coordinates in the image plane. 

 

Scaling Zernike modes in smaller apertures (according to [8]) 

with reference to Fig. 6 

𝑧𝑖 is the coefficient of the 𝑖-th Zernike mode in the aperture 𝑟 

𝑧𝑖
′ is the coefficient of the 𝑖-th Zernike mode in the aperture 𝑟′ < 𝑟 

𝑧4
′ = (

𝑟′

𝑟
)

2

[𝑧4 − 𝑧11√15 (1 − (
𝑟′

𝑟
)

2

)] 

𝑧11
′ = (

𝑟′

𝑟
)

2

𝑧11 

Aberration 2: 𝑧4 = 0.6𝜆 and 𝑧11 = 0.6𝜆. To find the radius 𝑟′ on which the scaled 𝑧4
′  is zero: 

𝑧4
′ = 0 ⇒ [𝑧4 − 𝑧11√15 (1 − (

𝑟′

𝑟
)

2

)] = 0 ⇒
𝑟′

𝑟
= 0.86 

The scaled 𝑧11
′  on the radius 𝑟′ is: 

𝑧11
′ = (

𝑟′

𝑟
)

2

𝑧11 = (0.86)20.6𝜆 = 0.44𝜆 

Aberration 1: 𝑧4 = 0 and 𝑧11 = 0.6𝜆. The scaled Zernike modes on the radius 𝑟′ are: 

𝑧4
′ = (0.86)2[0 − 0.6𝜆√15(1 − (0.86)2)] =  −0.45𝜆 

𝑧11
′ = (

𝑟′

𝑟
)

2

𝑧11 = (0.86)20.6𝜆 = 0.44𝜆 
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