Kinematic analysis of imaging seekers with roll-over-nod gimbal and a folded electro-optical layout (Erratum)

Kutlu D. Kandemir, 1 Yigit Yazicioglu, 2 Bulent Ozkan3

¹ASELSAN A.S. (Turkey), ²Middle East Technical Univ. (Turkey), ³TÜBITAK SAGE (Turkey)

<u>Proceedings Volume 11159, Electro-Optical and Infrared Systems: Technology and Applications XVI; 111590S (2019) https://doi.org/10.1117/12.2532791</u>

Event: SPIE Security + Defence, 2019, Strasbourg, France

Online Publication Date: 9 October 2019 Erratum Published: 20 February 2020

A revised version of this manuscript was published on 20 February 2020. Details of the revision are provided in the text that accompanies this Erratum. The original paper has been updated.

Revisions to Equations (28) and (29)

Original

$$D_s(\vec{r}_{t/s}) + \overrightarrow{\omega}_{s/o} \times \vec{r}_{t/s} = \overrightarrow{V}_t - \overrightarrow{V}_m - \overrightarrow{\omega}_{m/o} \times \vec{r}_{s/m}$$
(28)

$$D_{s}(\vec{r}_{t/s}) + \vec{\omega}_{s/o} \times \vec{r}_{t/s} = \vec{\nabla}_{t} - \vec{\nabla}_{m} - \vec{\omega}_{m/o} \times \vec{r}_{s/m}$$
(29)

New

$$(\overrightarrow{\omega}_{s/m} + \overrightarrow{\omega}_{m/o}) \times \overrightarrow{r}_{t/s} = \overrightarrow{V}_t \cdot \overrightarrow{V}_m \cdot \overrightarrow{\omega}_{m/o} \times d\overrightarrow{u}_1^{(m)} \cdot D_s(\overrightarrow{r}_{t/s})$$
 (28)

$$\overrightarrow{\omega}_{s/m} \times \overrightarrow{r_{t/s}} = \overrightarrow{V}_t - \overrightarrow{V}_m - D_s(\overrightarrow{r}_{t/s}) - \overrightarrow{\omega}_{m/o} \times d\overrightarrow{u_1}^{(m)} - \overrightarrow{\omega}_{m/o} \times \overrightarrow{r_{t/s}}$$
(29)

Revisions to Equation (37)

Original

$$F_{\frac{d}{dt}}(\bar{r}_{t/s}^{(0)}) = \begin{bmatrix} -c(\psi) s(\theta) \dot{\psi} - c(\psi) s(\theta) \dot{\theta} \\ c(\psi) c(\theta) \dot{\psi} - s(\psi) s(\theta) \dot{\theta} \\ -c(\theta) \dot{\theta} \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} -s(\eta) \dot{\eta} \\ c(\eta) s(\rho) \dot{\eta} + c(\rho) s(\eta) \dot{\rho} \\ -c(\eta) c(\rho) \dot{\eta} + s(\eta) s(\rho) \dot{\rho} \end{bmatrix}$$
(37)

New

$$F\frac{d}{dt}(\bar{\mathbf{r}}_{t/s}^{(0)}) = \begin{bmatrix} -s(\psi) c(\theta) \dot{\psi} - c(\psi) s(\theta) \dot{\theta} \\ c(\psi) c(\theta) \dot{\psi} - s(\psi) s(\theta) \dot{\theta} \\ -c(\theta) \dot{\theta} \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} -s(\eta) \dot{\eta} \\ c(\eta) s(\rho) \dot{\eta} + c(\rho) s(\eta) \dot{\rho} \\ -c(\eta) c(\rho) \dot{\eta} + s(\eta) s(\rho) \dot{\rho} \end{bmatrix}$$
(37)

Electro-Optical and Infrared Systems: Technology and Applications XVI, edited by Duncan L. Hickman, Helge Bürsing, Proc. of SPIE Vol. 11159, 1115912 · © 2019 SPIE · CCC code: 0277-786X/19/\$21 · doi: 10.1117/12.2569832