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ABSTRACT 

In this study, an analytical solution of elliptical Kepler's equation, which gives the position of a celestial body moving in 

orbit as a function of time, is designed by using artificial intelligence techniques. For the eccentric anomaly, Kepler’s 

equation is a transcendental equation with no precise analytical solution. In this paper, a high precision approximate 

analytical solution is presented to determine eccentric anomaly. The proposed method is based on machine learning 

where a non-iterative accurate solution is learned from training data. The solution to Kepler’s solution is created using an 

artificial neural network based on the universal approximation theorem. Simulation results show that this solution is 

computationally efficient and has a constant complexity. 
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1. INTRODUCTION 

Kepler’s equation (KE), which describes how a body moves under the influence of gravity, is derived in orbital 

mechanics. In his book Astronomia Nova [1], Johannes Kepler first discovered it. The elliptical KE is 

 sinM E e E= −                                                                    (1) 

where M , E  and e designate mean anomaly, eccentric anomaly and eccentricity, respectively. Both M , E  are 

fundamental parameters for determining the position of a moving celestial body in an elliptical orbit. KE is a 

transcendental equation because it involves a sine function. The exact analytical solution is unknown. It’s simple to 

calculate M  for a given value of E . However, because there is no closed-form solution, the inverse issue, which 

involves finding E  while M  and e is known, can be far more difficult. Usually, E  needs to be estimated by series 

expansions or numerical methods. Kepler himself approximate his equation by simple iteration in 1621 in his book 

Epitome of Copernican Astronomy [1]. KE is one of the core equations and has a lot of applications in orbital mechanics, 

therefore even though many academics have developed several ways to solve it, this subject continues to draw attention. 

For KE, finding a simple, accurate, and analytical solution is still of practical importance. 

In this paper, the inverse problem is transformed to a machine learning (ML) problem, more exactly a supervised 

learning problem. By solving the supervised learning problem, a new solution is learned from the pre-calculated data. 

The proposed method, called ML-based method, takes the advantage of the great flexibility of neural networks (NNs). 

The approach is appropriate for extensive and quick orbit propagation since the complexity of the suggested algorithm is 

constant and independent of the eccentricity and transition time.  

The rest of this paper is structured as follows. Existing approaches to resolving KE are carefully compiled and reviewed 

in Section 2. The primary idea behind the suggested machine learning-based solution is described in Section 3. And in 

Section 4, the effectiveness of the suggested strategy is verified using numerical simulation. Finally, Section 5 provides a 

summary of the result. 

2. METHODS FOR SOLVING KEPLER’S EQUATION 

Many academics have looked into the inverse problem of KE. Finding approaches to arrive at the solution with high 
accuracy and minimal computational expense is the aim. Figure 1 illustrates how the various approaches to solving KE 

can be categorized. In this section, some very efficient and classical methods are introduced firstly as shown in Table 1. In 

Section 4, several of these techniques will be contrasted with our new technique in terms of their effectiveness and precision. 
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Figure 1. Classification of ways to solve KE. 

Table 1. Ways to solve Kepler’s equation. 

Categories Methods Advantages Disadvantages 

Iterative 

method 

Kepler’s method [6] The algorithm is simple Low convergence speed; initial value required 

Newton’s 

Method and it’s 

variants 

Newton’s 

method [2] 
Quadratic convergence Convergence depends on initial value 

Halley’s 

method [4] 
Third degree convergence 

Second-order derivative is needed; Convergence 

depends on initial value 

Danby’s 

method [5] 
Fourth degree convergence 

Third-order derivative is needed; Convergence 

depends on initial value 

Conway’s method [7] Convergence is guaranteed 
Convergence is slow; runtime depends on e and 

M 

Mortari’s method [8] 

High computational 

efficiency; convergence is 

guaranteed 

Runtime depends on e and M 

Sequential 

method 
Davis et al. [9-11] 

Taking the information of 

the neighborhood point. 

Only suitable for the orbit propagation 

performed at constant time step 

Expansion 

method 

Lagrange expansion [2] 
More efficient than Fourier-

Bessel expansion 

Diverge for some value of M when e < 

0.662743419 

Fourier-Bessel expansion [2] 
Convergence for all 

eccentricity values 

Need to compute Bessel functions of the first 

kind of order n; many terms are needed for large 

e and make it very computational expensive 

AD Method [12, 13] 
Convergence is faster than 

Fourier-Bessel expansion 

nth-order derivative should be calculated; many 

terms are needed for large e; and make it very 

computational expensive 

Two-steps 

method 

Bezier curve method [14] 
Complexity of the algorithm 

is constant 

Cubic algebraic equations should be solved and 

select the solution satisfying the condition 

P-C method [15] 
Complexity of the algorithm 

is constant 
The expression of the solution is very complex 

Data-based 

method  

Fukushima [16] and 

Feinstein [17] 

High computational 

efficiency 
Need pre-computed data and iterative process 

ML-based 

method 

The method proposed in this 

paper 

High efficiency; constant 

complexity; non-iterative; 

concise expression 
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Kepler himself created the first method for resolving his equation, and Newton’s method came next. The idea of 

Newton’s method [2, 3] (or Newton-Raphson’s Method) is to approximate the KE by the first two terms in a Taylor 

series expansion. By extending the series to the n-term, a generalized Newton’s method is obtained. When 3n = , the 

generated solution has an equivalent form to Halley’s method [4]. When 4n = , the generated solution is same to 

Danby’s method [5]. Moreover, truncating the series to the first-order leads to a method which is identical to Kepler’s 

method [6]. Thus, Kepler’s method can also be seen as a variant of Newton’s method. In order to finding E  while M  

and e is known, the initial value of E  should be searched first. Then the repetition is continued until accuracy is 

satisfied. On the other hand, Newton’s technique and its variations may diverge if the original guess is not sufficiently 

close to the solution. According to Danby [5], as the degree of convergence increases, so do the initial value’s sensitivity 

and the risk of divergence. Although Newton’s approach and its variations perform well close to the solution, they lack a 

feature that would allow them to converge worldwide. The convergence of Conway’s method [7] and Mortari’s method 

[8] is guaranteed. However, these methods, like Newton’s method and its variants, has different iteration steps for 

different M  and e  which means the runtime is dependent on M  and e . Except the classification result as shown in 

Table 1, the methods can also be divided into two categories: single-point method and sequential method. KE is solved 

using the single-point method, but this method does not benefit from the fact that KE has been computed at the previous 

neighborhood point. While sequential method [9-11] calculates the present value using the value from the previous 

moment, making full use of the previous calculation. However, this kind of methods are only applicable to orbit 

propagation problems with fixed time steps. In addition, the propagation of the initial error causes such algorithms to be 

sensitive to the error of initial step. Expansion method, including Lagrange expansion [2], Fourier-Bessel expansion [2] 

and Adomian Decomposition (AD) Method [12, 13], expands the solution of KE into a polynomial consists of N  terms. 

This kind of algorithms are more suitable for the case of small eccentricity, because when the eccentricity is large, more 

terms need to be reserved in order to improve the accuracy, which leads to low calculation efficiency. The two-step 
method is a non-iterative method which divides the problem of solving KE into two steps. First, calculate an initial 

estimate by using a technology, such as Bezier Curve [14] and series expansion [15]. Then correct the initial value to a 

high accuracy using a generalized Newton’s method which is applied only once, rather than in a loop. Data-based 

method [16, 17] determines a start value according to the pre-computed data and then using iterative method to correct it. 

For a number of issues in Celestial Mechanics, KE must be solved numerous times. Due to this, it is crucial for these 

applications to efficiently compute mean anomaly. For instance, in trajectory planning problems of the relative motion, 

the true anomaly should be calculated repeatedly which involves solving KE. The accuracy and speed of trajectory 

planning are significantly impacted by the effectiveness and stability of the eccentric anomaly calculation solution. 

Therefore, in this paper a method based on machine learning with low computation cost and constant complexity is 

presented. 

3. MACHINE LEARNING-BASED SOLUTION 

This section presents an innovative method for solving KE. E  is a function of M  and e , defined as ( , )E h M e= . The 

function’s precise formulation cannot be expressed in closed form. Since 2  radians are swept off per period T , the 

eccentric anomaly may be calculated for any M  in an infinite interval [0, )+  by 

([ ], ) [ ]
2 2

M M
E h e M

 
= + −                                    (2) 

where [ ]  denotes the remainder and 0 [ / 2 ] 2M    . In addition, the function ( , )E h M e=  is centrosymmetric 

about E M = = , namely 

(2 , ) 2 ( , ) , 0 , 2 2h M e h M e M M     − = −    −                               (3) 

Therefore, the eccentric anomaly in the whole interval may be derived as long as the function ( , )E h M e=  is computed 

in the interval 0 M   . 

In supervised learning, a machine learning job, an input is mapped to an output using examples of input-output pairings. 

With each training example including an input item and the desired output value, or "labelled training examples," a 
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function is created. A supervised learning algorithm produces an inferred function by looking at the training data. The 

inferred function can be used to approximate the unknown function ( , )E h M e=  in the inverse problem. 

3.1 Feedforward neural network 

Artificial NNs, or NNs for short, are a mathematical algorithmic model for distributed parallel information processing 

that replicates the behavioral properties of animal neural networks. Such networks rely on the system's complexity to 

process information by altering the interaction between a large number of internally linked nodes. 

Universal approximation theory (UAT) [18] pointed out that any bounded and regular function from one finite-

dimension space to another can be approximated by an ordinary multilayer feedforward NN with any required accuracy. 

The network must have a sufficient number of neurons with a linear output layer and at least one hidden layer. 

 

Figure 2. The NN for solving KE. 

As shown in Figure 2, a feedforward NN may be used to estimate an unknown function ( , )h M e  and produce an 

analytical solution with high precision. For the approximation problem of the function ( , )E h M e= , there are two 

inputs and one output. One may think of the network as a composite function ( , )g M e . Thus, the estimate of eccentric 

anomaly is designed as 

ˆ ( , )E g M e=                                 (4) 

In hidden layers, one of the squashing functions, the hyperbolic tangent sigmoid transfer function, is used in this research 

as the active function 

2

2
( ) 1, 1,..., 1

1
l x

f x l L
e−

= − = −
+

                                                         (5) 

and in the output layer, the activation function is 

( )Lf x x=                            (6) 

3.2 Generation of training data 

Due to the lack of an accurate solution to the eccentric anomaly, we are unable to get the exact value E  when given M  

and e . Calculating M  when given E  and e  is, fortunately, simple. As a result, Algorithm 1 is made to acquire the 

training data. 

Algorithm 1: Data generation for training 

 Input: The interval of true anomaly, d uE E E  , and the interval of eccentricity, d ue e e  ; 

 Output: Training data composed by N  training examples ( ),, ..; 1,.k kkM E k Ne = ; 
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1 Discrete the interval of E  into 1EN −  equal parts; 

2 Discrete the interval of e  into 1eN −  equal parts; 

3 1k =  

4 for 1; ;Ei i N i=  ++  

5   for 1; ;ej j N j=  ++  

6     , sini j i j iM E e E −  

7     ,( , ; ) ([ , ], )k k k i j j ie E eM M E  

8     k + +  

9   end  

10 end    

11 Return ( , ; ), 1,... ,k k k E ee E k N N N NM = =   

3.3 Final adjustment 

UAT shows that given enough neurons, we can obtain solutions to KE with arbitrary accuracy. Too many neurons can 

make it difficult to train the network. Therefore, in order to reduce the training difficulty of the network, a small network 

is chosen as the learning model in this paper. In this case, although an estimate Ê  very close to the true value E  can be 

obtained, the accuracy may not be high enough. To improve the accuracy, a single-step adjustment algorithm is applied 

 ˆ ˆE E  = +  (7) 

The single-step adjustment algorithm designed by Halley's method [4] is as follows 

 
2

ˆ ˆ ˆ2( sin )(1 cos )

ˆ ˆ ˆ ˆ2(1 cos ) ( sin ) sin

E e E M e E

e E E e E M e E


− − −
= −

− − − −
 (8) 

To increase the solution’s accuracy, a single-step adjustment is performed. The analytical solution’s complexity does not 

change because there is only one iteration. 

4. NUMERICAL SIMULATION 

As of October 2020, one hundred and ninety-nine elliptical orbit objects with eccentricity greater than 2 were discovered 

in the publicly accessible data (www.space-track.org). Excentricity is 0.898411 at its highest level. Therefore, the 

greatest limit of eccentricity, according to our assumptions, is 0.9. Decompose [0 , ]E   and [0 , 0.9]e  2 into 

smaller intervals of equal size using eighty points respectively. 6400 training examples are obtained using Algorithm 1. 

In this paper, we verify the performance of the proposed algorithm using a three-layer neural network that contains two 
hidden layers, each with nine neurons. Using Matlab toolbox, train the network with 6400 training examples and the 

residuals of the network at the examples are shown in Figure 3. 

In practical engineering application, the inverse problems are solved with given eccentricities for different mean 

anomalies. Therefore, we take the max error in computed E  under a given eccentricity, as shown in Figure 4, as index of 

accuracy of the algorithm. As shown in Figure 4 the algorithm proposed in this paper has high accuracy with final 

adjustment. When 0.89e = , the worst accuracy of
116.4 10−  is obtained. For 0.7e   the ML-based method has a 

precision of 
1510−

. 
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The series methods and the ML-based method can be classified into one category based on the fact that these two kinds 

of methods both use known models to approximate unknown functions. Figures 5 and 6 show that for small eccentricity 

the Lagrange method and Fourier-Bessel method can obtain same precision with ML-based method even with a few 

terms. For large eccentricity the ML-based method has a higher precision. Additionally, the Lagrange series diverges 

when it surpasses 0.662743419, which suggests that adding additional terms produces poorer outcomes. For large 
eccentricity the number of items of Lagrange method and Fourier-Bessel method is greatly increased. This makes 

Lagrange method and Fourier-Bessel method very computational expensive as shown in Table 2. Table 2 shows that 

ML-based method is more efficient than the Lagrange method and Fourier-Bessel method. With increasing of the 

number of terms used for improving solutions’ accuracy, the mean runtime of ML-based method is nearly constant and 

very small. However, the mean runtime of Lagrange method and Fourier-Bessel method increased dramatically. 

 
 

Figure 3. Errors ˆ| |E E−  in computed E . Figure 4. Maximum of errors ˆ| |E E−  in computed E  

under given eccentricities. 

  

Figure 5. Comparison of the Lagrange method’s accuracy with 
the ML-based approach. 

Figure 6. Comparison of the Fourier-Bessel technique’s 
accuracy with the ML-based approach. 

Table 2. Mean runtime of Lagrange method, FB method and ML-based method. 

Method Mean runtime, ms  

ML-based 0.98 

Lagrange method 38.9( 5N = ) 608.8( 25N = ) 2319.2( 50N = ) 

Fourier-Bessel method 264.2( 5N = ) 1819.2( 25N = ) 4744.7( 50N = ) 
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5. CONCLUSION 

In this paper a non-iterative method based on machine learning for solving KE is presented. Based on neural networks’ 

tremendous flexibility, this technique can offer a high precision solution to KE. It can be seen as an analytical solving 

tool because the new method does not require any iterative computation or numerical integration. It also avoids the 

shortcoming of sensitivity of initial guess in some classical methods for solving KE. Numerical accuracy tests show that, 

the new algorithm behaves better than the most existed methods both in computational efficiency and accuracy. The 

approach outlined in this work, aside from the elliptical instance, may also be used to parabolic case and hyperbolic case. 
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