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ABSTRACT 

Existing vehicle detection has the problem of unbalanced detection accuracy and speed. Aiming at this problem, this 

paper proposes a new real-time vehicle detection model named YOLOv3 Tiny Vehicle. The proposed network replaces 

the Maxpooling layers of the original network with the convolutional layers to ensure that the characteristic information 

of the vehicle was preserved to the greatest extent. On this basis, our work adds a dense connection structure to the 

original network, which greatly reduces or even eliminates the overfitting problem during network training. The 

experimental results show that the mean Average Precision (mAP) of the model on the Beijing Institute of Technology 

vehicle (BIT-Vehicle) dataset can reach 96.80%, the Frames per second (FPS) can reach 188. At the same time, it also 

shows that our model has preeminent generalization ability. 
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1. INTRODUCTION 

Vehicle detection usually extracts vehicle information from pictures or video sequences containing vehicles. It is one of 

the typical examples of object detection applied in intelligent transportation systems. It can be used for vehicle 

identification, detection, tracking, capturing vehicle violations, and controlling traffic. Therefore, researchers have 

proposed a great many vehicle detection methods. The existing vehicle detection methods can be divided into traditional 

methods and deep convolutional neural network-based methods. 

Traditional vehicle detection algorithms generally combine machine learning classifiers with feature extractors. Wei et 
al.1 used the Histogram of Oriented Gradients (HOG) for feature extraction and, on this basis, used Support Vector 

Machine (SVM) for classification to achieve vehicle detection and tracking in complex urban backgrounds. A vehicle 

detection method based on HOG and Local Binary Pattern feature fusion (LBP) 2 was proposed. This method utilizes 

HOG-LBP fusion features to train vehicle classifiers and improve vehicle detection accuracy in terrible weather 

conditions. The methods based on feature extraction can perform well in vehicle detection. However, this method has 

complicated steps, low detection accuracy, and poor generalization ability. 

The object detection algorithms based on the deep convolutional neural network are mainly divided into two-stage and 

one-stage target detection algorithms. In the first step, the two-stage algorithm usually presents the candidate regions, 

and the second step conducts the subsequent classification and positioning based on the candidate regions. Typical two-

stage detection algorithms include R-CNN3, Fast R-CNN4, and Faster R-CNN5. Unfortunately, the detection performance 

of these methods will greatly decrease when the size of the vehicle changes dramatically due to rapid vehicle movement. 

The second-stage detection algorithm performs well in accuracy overall, but its time cost is vast.  

To enhance the detection speed, You Only Look Once (YOLO)6, a one-stage target detection algorithm that is 

emblematic, was proposed by Redmon et al. YOLOv16 is very fast but is less accurate than Faster R-CNN, especially for 

small targets. Due to the poor detection effect of YOLOv1 on small targets, Redmon et al. investigated YOLOv27 and 

mainly made some improvements on YOLOv1, which can balance the speed and accuracy well and accurate detection of 

precise small targets. To further improve object detection accuracy, Redmon et al. proposed YOLOv38, which 

significantly improved the detection accuracy while maintaining the speed. Due to the apparent superiority of this 

algorithm, the majority of scholars have applied YOLOv3 to vehicle detection. Xu et al.9 increased the depth of YOLOv3 

and used the network for vehicle detection to enhance the detection accuracy at the expense of the detection speed of the 
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network. Luo et al.10 presented the Dense YOLOv3 algorithm, reducing the overfitting phenomenon and achieving good 

detection results. 

Tiny YOLO is one of the most widely used algorithms in the YOLO family, with fewer parameters and a faster learning 

speed. A real-time model for vehicle detection, Little YOLO-SPP, based on YOLOv3 tiny was proposed11. This model 

can detect vehicles more accurately, but the detection types are limited, only divided into buses and cars. A YOLOv3 
tiny-based vehicle detection method was investigated for reaching 17 FPS on a general configuration computer with an 

accuracy of 95.05%12. Recently, Bochkovskiy et al. proposed YOLOv413 networks, improving their detection accuracy 

and processing speed. However, the YOLOv4 networks showed poor detection performance against nighttime scenarios. 

An improved YOLOv4 vehicle detection network was proposed14, but the detection effect has yet to be improved. Soon 

after YOLOv4, Jocher presented the YOLOv515, which improved detection speed. Wu et al.16 introduced the ghost 

module based on YOLOv5, which significantly improved the vehicle detection speed, but the detection accuracy 

decreased. 

An improved YOLOv3 tiny network came up with seemly set the problems of detection accuracy, unbalanced detection 

speed, and poor model generalization ability of the current algorithm. The mAP of our method reaches 96.80%, and the 

FPS goes 188. Compared to Faster R-CNN+ResNet17, our mAP improves by 5.52% and is faster. 

The remainder of the article is roughly organized as follows: The basic theoretical method of the article and improved 

YOLOv3 tiny network are presented in Section 2. Experiments were performed as shown in Section 3. For Conclusions, 

see Section 4. 

2. METHODOLOGY 

2.1 YOLOv3 tiny  

YOLOv3 tiny is a plain version derived from YOLOv3, with fewer parameters and running faster than YOLOv3, but its 

detection accuracy is slightly worse than YOLOv3. The dataset used in the paper was collected from high-speed 

intersections, with little background change, and did not require much processing, so it is more suitable for the YOLOv3 

tiny algorithm. 

YOLOv3 tiny follows the grid idea of the YOLO series. The input image is divided into S×S grids by the network. If the 

center of an object falls within a grid interval, the task of predicting this object falls on the grid. Each grid is responsible 

for predicting B bounding boxes, and each bounding box is responsible for predicting four position parameters x, y, w, h, 

and one confidence degree. In addition to this, each grid also indicates scores for C categories. From this, the calculation 

formula of the network is obtained: 

( )CBS + 5S                                                                 (1) 

where (x, y) is the central coordinate of the predicted bounding box, which is relative to the grid, the width of the 

predicted bounding box is denoted by w, the height of the predicted bounding box is denoted by h, and w and h are 

relative to the entire image. Confidence means the accuracy of the positioning, that is, the intersection ratio between the 

predicted bounding box and the truth bounding box. The formula for the confidence is as follows: 

truth

predr IOUobjectPConfidence = )(
                                                   

(2)
 

In equation (2), )(objectPr
 represents the probability of detecting an object, 1 if an object is detected, and 0 otherwise. 

2.2 K-means++ Clustering 

The original network YOLOv3 tiny anchors are primarily tall and thin bounding boxes. At the same time, the image size 

of the BIT-Vehicle dataset is too large, and most of the bounding boxes are close to square or wide and high; the original 

anchor is not fit for the BIT-Vehicle dataset. The method of this paper of K-means++ clustering redefines a new set of 

anchor boxes on the BIT-Vehicle dataset to predict the coordinates of the bounding boxes, and the size of the new anchor 

box is more suitable for vehicle detection. In equation (3), the intersection ratio between the boundary box and the 

corresponding anchor represents the distance between samples. 

                                    ( ) ( )centroidbboxIOUcentroidbboxd ,1, −=                                                
(3)
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Since there were six different vehicle types in the dataset, the K was set to 6. The final calculated anchor boxes sizes are 

[81, 98], [135, 128], [147, 144], [157, 165], [168, 197], and [233, 191]. The shape of the new anchor box is more suitable 

for the shape of the vehicle, making the network training faster and better, and improving the positioning accuracy. 

2.3 YOLOv3 tiny vehicle 

Inspired by the YOLOv3 tiny network, this part, of this paper optimizes it. The improved YOLOv3 tiny network 
addresses two defects, adequately, of the primordial network: 1) Misclassification of confusing vehicles is easy. Due to 

the different camera positions, angles and distances, the network can easily confuse different types of vehicles, such as 

SUV and Sedan, during detection. 2) The original network has a simple structure and cannot fully use all feature 

information. Based on the YOLOv3 tiny network, the paper primary put forward the improvement approach: 

(1) Convolutional layers replace all Maxpooling layers in the original network with stride 2 and size 3×3. At the cost of 

slightly increasing network parameters, the improved network effectively reduces inter-class confusion, and the detector 

trains better. 

(2) A dense module is added to the backbone to fully extract features without increasing the complexity of the network, 

effectively reducing overfitting and improving detection accuracy. 

(3) YOLOv3 Tiny Vehicle contains 22 convolutional layers deeper than the original YOLOv3 tiny network. Still, only 

about 7.28M parameters need to be trained due to the dense module, the network complexity is lower than the YOLOv3 

tiny. 

The improved network structure, as a whole, is made up of a Backbone and Head, which is shown in Figure 1. Our 

network has 22 convolutional layers. Backbone is used to extract features. Backbone is used to extract features. It is 

composed of a convolutional layer and 5 Dense blocks. Except for the number of convolution kernels, each Dense 

block’s size of the blocks’ convolutional layers is all the same. The Head comprises different convolutional layers for 

predicting object categories and bounding boxes. Table 1 shows the specific improved network model. 

 

Figure 1. YOLOv3 Tiny Vehicle network structure diagram. 

3. EXPERIMENTS 

3.1 Experimental environment 

The experiments in this paper were performed using the PyTorch deep learning framework on an Ubuntu 18.04.6 64-bit 

PC equipped with an Intel ® Xeon (R) CPU E5-2680 v3 @ 2.50GHz 48 and Nvidia GeForce GTX TITAN X GPU. The 

specific experimental environment is shown in Table 2. 

3.2 Performance evaluation indicators 

This paper uses the following three evaluation metrics to assess and compare the proposed models, namely average 

precision (AP), mAP, and FPS. AP defines the average accuracy of a single class, and its calculation formula is:
 

                                               
( ) iiii dRRpAP =

1

0                                                                    
(4) 
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Table 1. The difference between the YOLOv3 tiny network structure with the proposed network. 

YOLOv3 tiny YOLOv3 tiny vehicle 

Type Filters Size/stride Output Type Filters Size/stride Output 

Input  416*416*3 Input  416*416*3 

Conv-1 16 3*3 416*416*16 Conv-1 16 3*3 416*416*16 

Maxpool-1  2*2/2 208*208*16 Conv-2 32 3*3/2 208*208*32 

Conv-2 32 3*3 208*208*32 Conv-3 16 1*1 208*208*16 

Maxpool-2  2*2/2 104*104*32 Conv-4 32 3*3 208*208*32 

Conv-3 64 3*3 104*104*64 Route -1,-3  208*208*64 

Maxpool-3  2*2/2 52*52*64 Conv-5 64 3*3/2 104*104*64 

Conv-4 128 3*3 52*52*128 Conv-6 32 1*1 104*104*32 

Maxpool-4  2*2/2 26*26*128 Conv-7 64 3*3 104*104*64 

Conv-5 256 3*3 26*26*256 Route -1,-3  104*104*128 

Maxpool-5  2*2/2 13*13*256 Conv-8 128 3*3/2 52*52*128 

Conv-6 512 3*3 13*13*512 Conv-9 64 1*1 52*52*64 

Maxpool-6  2*2/1 13*13*512 Conv-10 128 3*3 52*52*128 

Conv-7 1024 3*3 13*13*1024 Route -1,-3  52*52*256 

Conv-8 256 1*1 13*13*256 Conv-11 256 3*3/2 26*26*256 

Conv-9 512 3*3 13*13*512 Conv-12 128 1*1 26*26*128 

Conv-10 33 1*1 13*13*33 Conv-13 256 3*3 26*26*256 

YOLO-1  Mask=3,4,5 Route -1,-3  26*26*512 

Route -4  13*13*256 Conv-14 512 3*3/2 13*13*512 

Conv-11 128 1*1 13*13*128 Conv-15 256 1*1 13*13*256 

Upsample Stride=2  26*26*128 Conv-16 512 3*3 13*13*512 

Route -1,8  26*26*384 Route -1,-3  13*13*1024 

Conv-12 256 3*3 26*26*256 Conv-17 256 1*1 13*13*256 

Conv-13 33 1*1 26*26*33 Conv-18 512 3*3 13*13*512 

YOLO-2  Mask=1,2,3 Conv-19 33 1*1 13*13*33 

 YOLO-1 Mask=3,4,5 

 Route                         -4  13*13*256 

    Conv-20 128 1*1 13*13*128 

    Upsample Stride=2  26*26*128 

    Route -1,13  26*26*384 

    Conv-21 256 3*3 26*26*256 

    Conv-22 33 1*1 26*26*33 

 YOLO-2 Mask=1,2,3 
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Table 2. Hardware and software experimental environment. 

Name Version 

OS Ubuntu 18.04.6 64bit 

CPU Intel® Xeon(R) E5-2680 v3 @ 2.50GHz × 48 

GPU Nvidia GeForce GTX TITAN X GPU 

CUDA 10.1.105 

cuDNN 7.6.4 

PyTorch 1.6.0 

PyThon 3.7 

where 𝑃𝑖  is the precision for a single class, and 𝑅𝑖  is the recall for a single class. The mAP is one of the essential 

evaluation metrics in multi-classification tasks, and its definition is as follows: 

                                         
=

n

i iAP
n

mAP
1

                                                                   
(5) 

Where the APi is the average accuracy of a single class and the number of data categories is n, and FPS, a vital 

evaluation indicator for real-time detection tasks, is the number of images the model can be conducted per second.  

3.3 Results and discussion 

3.3.1 Analysis of the Experimental Results. This paper adopts two datasets named Beijing Institute of Technology (BIT)-

Vehicle and CompCars18 which are collected from road monitoring. To further investigate the generalization ability of 

the proposed algorithm, we randomly selected 1200 images on the CompCars dataset and manually annotated them as 

another test set to make it more comprehensive and objective than other model comparisons. 

As shown in Table 3, the proposed network has made three main adjustments. The first adjustment (Step 1) is to replace 

the Maxpooling layer in the original network with the convolutional layer. This improvement increases mAP by about 

1.4% compared to the original YOLOv3 tiny. The second adjustment (Step 2) is to add a dense module to the network, 
which significantly improves the detection accuracy, with mAP reaching 95.60%, which also shows that this 

improvement measure is effective. The third improvement measure (Step 3) is to retrain the anchor boxes that are more 

suitable for vehicles on the BIT-Vehicle dataset, which helps the network to train faster and better, and the mAP of the 

network is also improved by about 1.2%. Overall, the proposed network is less complex than the original YOLOv3 tiny, 

and the detection effect improves by 3.5% compared to the mAP of the YOLOv3 tiny, and the detection speed reaches 

188 FPS, which is about 5 milliseconds of inference time. The frame rate of our algorithm can effortlessly satisfy the 

requirements of real-time vehicle detection. 

Table 3. mAP, AP, FPS and complexity of different models. 

Model 
mAP 

(%) 

Bus 

(%) 

Microbus 

(%) 

Minivan 

(%) 

Sedan 

(%) 

SUV 

(%) 

Truck 

(%) 

FPS 

(%) 

No. of 

Parameters 

(M) 

YOLOv3 tiny 92.50 100 90.77 93.33 98.13 90.03 82.72 142 8.68  

Step 1 93.90 100 87.86 92.90 97.25 92.52 92.60 212 11.83  

Step 2 95.60 99.71 90.32 93.28 97.41 96.53 96.43 188 7.28  

Step 3 (YOLOv3 tiny 

vehicle) 
96.80 100 94.05 96.08 97.55 95.85 97.35 188 7.28  
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To evaluate the proposed model more objectively, Table 4 compares the recently proposed and excellent vehicle 

detection algorithm with the proposed algorithms. The detection performance of the proposed model is almost better than 

all the models in Table 4, except for YOLOv3, although the detection accuracy of the proposed model is slightly inferior 

to that of YOLOv3, its inference speed is better than the latter. 

Table 4. Performance comparison of various models. 

Model 
mAP 

(%) 

Bus 

(%) 

Microbus 

(%) 

Minivan 

(%) 

Sedan 

(%) 

SUV 

(%) 

Truck 

(%) 

Time(s) per 

image 

Faster R-CNN 

+ResNet17 
91.28 90.62 94.42 90.67 90.63 91.25 90.07 0.680 

YOLOv312 96.88 98.99 96.54 92.17 96.90 99.99 96.69 0.09 

Trimmed Tiny-YOLOv312 95.05 100 95.38 91.88 99.12 89.59 94.30 0.019 

Step3(YOLOv3 Tiny 

Vehicle) 
96.80 100 94.05 96.08 97.55 95.85 97.35 0.005 

The performance of our algorithm was presented in Figure 2. Figures 2a-2c contain multiple vehicles, indicating that the 

proposed network performs well when detecting various targets. The mAP of Sedan and Microbus in Figure 2a reach 95% 

and 94%, respectively. Figures 2d-2i contain six vehicle types in the dataset, and the results indicate that the proposed 

algorithm can accurately detect the vehicle. 

 

Figure 2. Vehicle detection results of our model. 

3.3.2 Generalization Ability of Proposed Network. To check out the generalization ability of the proposed network, we 

artificially selected some pictures of the CompCars dataset as the new dataset of the paper. Since the dataset is large and 

has no labels, we selected 1200 images from it as the dataset (Random CompCars Dataset). The result of multiple 

methods in vehicle detection was presented in Table 5. It is seen from Table 5 that the generalization power of the 
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proposed algorithm is better than the other algorithms but still performs poorly, with the mAP reaching only 72.9%. The 

possible reason is that the randomly selected pictures have a low recognition degree. The CompCars dataset only 

intercepts the front part of the vehicle and only has the information of the “face”, resulting in insufficient vehicle 

information. It is incredibly tough, even literally impossible, for the human eye to distinguish the vehicle type. Figure 3 

shows some images of the BIT-Vehicle dataset and the CompCars dataset. And it can be seen from Figure 3 that the two 

datasets differ significantly. 

Table 5. The results of model generalization ability. 

Model mAP (%) 

Faster R-CNN+ZF17 68.16 

Faster R-CNN+VGG1617 72.42 

Enhanced YOLOv3 tiny network 72.9 

 

Figure 3. The CompCars dataset is compared with the BIT-Vehicle dataset. (a)-(f): Part of the images in CompCars dataset and BIT-

vehicle dataset respectively. 

3.3.3 Detection Effect in Harsh Environment Terrible. Bad weather and poor lighting conditions are the two main 

reasons that affect vehicle detection performance. Figure 4 shows the vehicle detection performance in harsh 
environments. Figures 4a-4c are the detection results under foggy conditions, Figures 4d-4f are the detection results 

under the condition of strong light irradiation, and Figures 4g-4i are the detection results under the condition of 

insufficient light at night test results. As shown in Figure 4 the proposed model can accurately detect vehicles in harsh 

environments, which is of great significance to driving safety. 
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Figure 4. Detection effect under harsh conditions. 

4. CONCLUSIONS 

We optimize the YOLOv3 tiny network to detect six different types of vehicles in this paper. First, we replaced the 

Maxpooling layer in the backbone network with the convolutional layer, retaining more target information. Second, we 

used a dense module in the backbone network, replacing the original residual structure, significantly improving the 

detection performance of the network. Finally, we retrained the anchor box that is more suitable for vehicle detection to 

help the network train better. The detection performance of our proposed network is more competitive compared to 

YOLOv3 and YOLOv3 tiny. 
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