
Research on cloud computing resource scheduling strategy based on

genetic ant colony fusion algorithm

Jun Nie*

Computer College, Guangdong University of Science and Technology, Dongguan 523083, Guang-

dong, China

ABSTRACT

In this paper, ant colony algorithm and genetic algorithm are combined to improve the stability and efficiency of cloud

computing resource scheduling. The strategy of this algorithm is to use the local optimal solution of genetic algorithm as

the initial pheromone of ant colony algorithm, and introduce load balancing adjustment factor and transfer probability into

ant colony algorithm. The experimental results show that the genetic ant colony fusion algorithm in this paper has better

advantages in the number of iterations, time cost, power cost and load balancing, and achieves the goal of uniform dis-

tribution of cloud computing resources.

Keywords: Cloud computing, resource scheduling, fusion algorithm

1. INTRODUCTION

Cloud computing resource allocation can be explained as a process of reasonably allocating resources for different

customers in a characteristic cloud environment, following some resource allocation rules1. With the increasing maturity of

cloud computing technology, the allocation of cloud computing resources has become the focus of attention. At present,

the related research on resource allocation strategy has achieved good results. For example, Reference2 optimized the task

scheduling and evaluated each task, but the results deviated greatly due to the different adaptation functions of genetic

algorithms. The algorithm proposed in Reference3 will cause search stagnation due to the lack of initial paths. In this paper,

the two algorithms are fused together to give full play to their respective advantages. The experimental results show that

the genetic ant colony fusion algorithm is very effective for resource allocation.

2. GENETIC ALGORITHM

Genetic algorithm originated in the early 1960s. It is a computational model based on the genetic and evolutionary

mechanism of nature4. It searches for the optimal solution in real engineering problems by simulating the crossover and

mutation of chromosomes in the evolution of natural organisms5. It has three elements: parameter coding, initial population

setting and genetic operator. However, the traditional genetic algorithm has some defects, such as premature convergence,

decreasing population diversity and weak local search ability.

3. ANT COLONY OPTIMIZATION

Ant colony optimization is a simulation and optimization algorithm that simulates the swarm intelligence behavior of ants

foraging6. Ants release a certain amount of pheromones on the path they pass to release information to other ants. Ant Tong

ant colony algorithm is only suitable for a certain scale of calculation. In the initial stage of the implementation process, it

is prone to stagnation due to the small number of paths recorded in the tabu table. After a long period of time, the

pheromone on the better path can be significantly higher than that on other paths7. With the passage of time, the difference

becomes more and more obvious, and finally converge. By perceiving the strength of pheromones to choose the path to go

next, groups cooperate with each other to better adapt to the environment.

* 13739149@qq.com

Third International Conference on Computer Science and Communication Technology (ICCSCT 2022)
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12506, 1250618

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2661806

Proc. of SPIE Vol. 12506 1250618-1

4. DESIGN OF GENETIC ANT COLONY FUSION ALGORITHM

4.1. Fusion point design

By analysing the characteristics of genetic algorithm and ant colony algorithm, the fusion point design of these two

algorithms is shown in Figure 1:

Figure 1. Design of genetic ant colony fusion point.

In Figure 1, in the start time period 𝑇0 , 𝑇𝑎, genetic algorithm maintains a high evolution rate, but in 𝑇𝑏. After time, because

genetic algorithm cannot effectively use heuristic information, its individual evolution rate begins to decrease gradually.

On the contrary, the ant colony algorithm performs the following tasks in the time period 𝑇0 , 𝑇𝑎 Due to the lack of early

pheromones, the individual evolution rate is low, but in 𝑇𝑏 After time, the individual evolution rate of ant colony algorithm

is improved. Therefore, Ta is the best time point for the end and start of these two algorithms.

The algorithm steps are as follows:

(1) The minimum number of operations 𝐺𝜑𝑚𝑖𝑛 and the maximum number of operations 𝐺𝜑𝑚𝑎𝑥 are defined.

(2) At the minimum evolution rate, 𝐺𝑒𝑚𝑖𝑛 is the individual evolution rate of the actual iteration process of genetic

algorithm.

(3) Algorithm end condition. In one case, if the number of iterations 𝐺𝜑 of the genetic algorithm is controlled within the

range of 𝐺𝜑𝑚𝑖𝑛 , 𝐺𝜑𝑚𝑎𝑥 , and its chromosome evolution rate is smaller than the minimum evolution rate 𝐺𝑒𝑚𝑖𝑛 for N

consecutive generations, the genetic algorithm is ended. In another case, when the number of runs 𝐺𝜑 of the algorithm is

greater than the maximum number of runs 𝐺𝜑𝑚𝑎𝑥 , the genetic algorithm is also terminated.

4.2. Transformation of initial pheromone

After the fusion point design is completed, the local optimal solution of the first algorithm needs to be converted into the

initial pheromone of the second algorithm. The method adopted in this paper is: after the first algorithm runs the harness,

the chromosome individuals with the highest fitness function value are screened out according to the set proportion (the set

value here is 25%), the screened chromosomes are converted into the number of each resource point of cloud computing,

and each resource point is converted into the pheromone path (m, n) of ants. The formula is as follows:

𝜑𝑖
𝐺𝐴(𝑡) = 𝜃 ∑ 𝑥𝑗 25%𝑀

𝑗 (1)

𝜑𝑖(𝑡) = 𝜑0 + 𝜑𝑖
𝐺𝐴(𝑡) (2)

In equations (1) and (2), 𝑥𝑗 represents the number of ants retained in resource point I by the individual with the jth genetic

chromosome. θ represents pheromone conversion factor. The algorithm flow design in this paper is shown in Figure 2:

Proc. of SPIE Vol. 12506 1250618-2

Figure 2. Flow chart of fusion algorithm.

4.3. Design of resource scheduling

The resource allocation of cloud computing is based on the reasonable allocation of N pending tasks uploaded by users to
m computing resource nodes in the system under certain constraints. The design of resource allocation model requires that

the task can be completed in a short time, and the power consumption of the system can also be kept at a low level. This

paper designs a resource allocation model, which is specifically defined as follows:

Definition 1: task set 𝐗 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊, … 𝒙𝒏} is the task to be processed, n refers to the number of tasks, 𝒙𝒊is the ith task

to be processed.

Definition 2: the calculation node set 𝐘 = {𝒚𝟏, 𝒚𝟐, … , 𝒚𝒋, … 𝒚𝒎} is the calculation node included in the system, m refers to

the number of calculation nodes, 𝒚𝒋 refers to the jth allocable computing node.

Definition 3: 𝑻𝒆𝒙𝒆(i, j) represents the expected time to complete task I on node j, using 𝑿𝒍(𝒊) represents the data length of

task I, 𝒀𝒄(𝒋) represents the execution rate of the computing node j. Then 𝑻𝒆𝒙𝒆(i, j) can be expressed as:

𝑻𝒆𝒙𝒆(𝒊, 𝒋) =
𝑿𝒍(𝒊)

𝒀𝒄(𝒋)
 (3)

Definition 4: 𝑻𝒅(𝒊, 𝒋) represents the expected time required to transfer task I to computing node j. 𝑿𝒔(𝒊) represents the

amount of data that task I needs to transmit, 𝒀𝒅(𝒋) represents the data transmission rate of computing node j, then 𝑻𝒅(𝒊, 𝒋)

can be expressed as:

𝑻𝒅(𝒊, 𝒋) =
𝑿𝒔(𝒊)

𝒀𝒅(𝒋)
 (4)

Definition 5: 𝑻𝒕𝒊𝒎𝒆(𝒊, 𝒋) represents the expected time required to transfer the task I to the computing node j, and its value

can be expressed as:

𝑇𝑡𝑖𝑚𝑒(𝑖, 𝑗) = 𝑇𝑒(𝑖, 𝑗) + 𝑇𝑑(𝑖, 𝑗) (5)

Since the resource allocation of cloud computing is parallel, each computing node completes its own work alone, then the

expected time cost of the system to complete all tasks is 𝑻𝒄 can be expressed as:

𝑇𝑐 = max(∑ 𝑇𝑡𝑖𝑚𝑒(𝑖, 𝑗)𝑚
𝑖=1) (6)

Proc. of SPIE Vol. 12506 1250618-3

Power cost of completing resource allocation Cc can be expressed as:

𝐶𝑐 = ∑ ∑ (𝑇𝑡𝑖𝑚𝑒 (𝑖, 𝑗)𝑚
𝑖=1

𝑛
𝑗=1 × 𝐶𝑒+𝑇𝑑(𝑖, 𝑗) × 𝐶𝑑) (7)

In equation (7), 𝐶𝑒 and 𝐶𝑑 represents the power consumption of computing nodes in completing computing and

transmission in unit time.

4.4 Improvement of ant colony algorithm

4.4.1 Improve Pheromone. In order to reduce the ant colony algorithm falling into local optimization, we set the
pheromone Volatilization Coefficient to achieve the adaptability of the ant colony algorithm. The adaptive pheromone

coefficient volatilization formula is:

ρ(t) = {
0.8𝜌(𝑡 − 1) 0.8𝜌(𝑡 − 1) ≥ 𝜌𝑚𝑖𝑛

𝜌𝑚𝑖𝑛 𝑜𝑡ℎ𝑒𝑟
 (8)

In formula (8), 𝛒(𝐭) is the pheromone coefficient at time t. And 𝝆𝒎𝒊𝒏 is the minimum value of the pheromone coefficient.

The minimum value is set to avoid the algorithm convergence speed from falling too fast.

4.4.2 Design Load Balancing Adjustment Factor. In order to avoid that too many tasks are assigned to the same node,

resulting in overload of the node, a load balancing adjustment factor F is introduced here, as shown in equation (9):

F = 1 − (
𝐸𝑗−𝐸𝑎𝑣𝑔

∑ ∑ 𝑇𝑠𝑢𝑚𝑖⊂𝑇𝑎𝑠𝑘𝑗𝑗⊂𝑣 (𝑖,𝑗)
) (9)

The value of F in equation (9) can be calculated according to equations (3) and (4).

When the task 𝑿𝒊 is assigned to the computing resource 𝒀𝒋 for execution, the pheromone of the computing resource 𝒀𝒋 is

updated by the method of formula (10) here, and the other computing resources that are not assigned tasks are updated by

the method of formula (11).

𝝉𝒊𝒋(𝒕 + 𝟏) = ((𝟏 − 𝝆(𝒕))𝝉𝒊𝒋(𝒕) + ∑ △ 𝝉𝒊𝒋
𝒌𝒎

𝒌=𝟏 (𝒕)) × 𝑭 (10)

𝝉𝒊𝒙(𝒕 + 𝟏) = 𝝉𝒊𝒋(𝒕) × 𝑭 (11)

4.5 Design of genetic algorithm

Using genetic algorithm in resource allocation of cloud computing requires the design of fitness function in combination

with the actual resource allocation. The larger the fitness function value, the more likely the genetic chromosome will be

retained to the next generation. In order to achieve the premise of shorter task execution and completion time, we also need

to ensure low power consumption of the system. The fitness function of completion time is designed Time and power cost

fitness function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑜𝑤𝑒𝑟.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑖𝑚𝑒(𝑆) =

∑ ∑ 𝑇𝑠𝑢𝑚
𝑚
𝑖=1

𝑛
𝑗=1 (𝑖,𝑗)

(𝑛×𝑇𝑐)
⁄

𝑇𝑐
 (12)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑜𝑤𝑒𝑟(𝑆) =
1

𝐶𝑐
 (13)

In order to find a balance between completion time and power cost, the fitness function of genetic algorithm is:

Fitness(𝑆) = 𝑎 × 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑖𝑚𝑒(𝑆) + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑖𝑚𝑒(𝑆) (14)

In equation (14), a represents the completion time weight value, and B represents the power consumption cost weight value.

Between a and b, a + b=1, a & b ∈ 0, 1 is required.

5. SIMULATION EXPERIMENT

5.1. Experimental environment and parameter setting

The specific parameter settings of datacenter, virtual machine and cloudlet in cloud sim3.0 are shown in Table 1.

Proc. of SPIE Vol. 12506 1250618-4

Table 1. Experimental environment settings.

Name Parameter name Value

Data center
Number of hosts 1-5

Number of data centers 6

virtual machine

Number of virtual machines 45

Number of processors 1-2

Processing speed 100-1000MPIS

Virtual machine memory 1024-2048MB

Network bandwidth 200-500MB

Cloud task
Task length 1000-5000MI

Number of tasks 30-450

The parameter settings of fusion algorithm are shown in Table 2:

Table 2. Parameter settings of this algorithm.

Parameter name Value Parameter name Value

Population size 100 Pheromone heuristic factor 4

Crossover rate 0.55 Expectation heuristic factor 1

Variation rate 0.15 Pheromone intensity 1

Minimum evolution rate 0.15% random number 0.55

Minimum evolutionary algebra 40 Pheromone transforming factor 0.5

5.2 Experimental environment and parameter setting

This fusion algorithm is compared with the algorithms proposed in References8-10. The comparison results of the three

algorithms in terms of iteration times, time cost, power consumption cost, node load rate and so on are as follows:

(1) Algorithm iteration times

In the experiment, when the four algorithms gradually increase the number of tasks to 450, the number of iterations of the

four algorithms also increases. However, the number of iterations of this fusion algorithm is less than that of the other three

algorithms, as shown in Figure 3.

(2) Load balancing comparison

Figure 4 is a comparison diagram of the maximum value of the node load rate. The resource load rate of the four algorithms

increases with the increase of the number of tasks, while the load rate of this fusion algorithm is smaller than that of the

other three algorithms.

Proc. of SPIE Vol. 12506 1250618-5

Figure 3. Comparison diagram of iteration times. Figure 4. Load balancing comparison chart.

(3) Comparison of time cost and power consumption cost

Figure 5 is a comparison of the time cost of the algorithm. When the number of tasks is small, the time cost curve almost

coincides. However, when the number of tasks is large, the fusion algorithm is better than the other three algorithms.

Figure 6 is a comparison of the power consumption cost of the algorithm. When the number of tasks is the same, this fusion

algorithm is better than the other three algorithms.

Figure 5. Comparison of time cost. Figure 6. Power consumption cost comparison.

6. CONCLUDING REMARKS

Based on the research of resource scheduling in cloud computing, this paper proposes a genetic ant colony algorithm with

load balancing, iteration times, time cost and power consumption cost as the research objectives. This algorithm has certain

advantages in time cost, power consumption cost and load balancing. It provides a reference for resource scheduling in

cloud computing.

FUNDING

This research was funded by Scientific research project of Guangdong Provincial Department of Education, grant number

2020KTSCX166, and Key scientific research project of Guangdong University of science and technology, grant number

GKY-2020KYZDK-10, GKY-2021KYZDK-8.

Proc. of SPIE Vol. 12506 1250618-6

REFERENCES

[1] Xiao, Y. T., “Cloud Computing resource scheduling based on improved ant colony optimization algorithm,” Microcomputer

Applications (2), 160-164 (2022).
[2] Ye, C., Yuan, X. P. and Cang, X. H., “Two hypotheses and test assumptions based on Quantum-behaved Particle Swarm

Optimization (QPSO),” Cluster Computing (6), 88-96 (2019).
[3] Jain R. E., “An enhanced ant colony optimization algorithm for task scheduling in cloud computing Int. J. Secur. Appl. 13 (4),

91-100 (2020).
[4] Liu, F., Li, B. and Yang, J., “An improved genetic algorithm for cloud computing resource scheduling,” Computer

Measurement & Control (5), 202-206 (2016).
[5] Liu, K. and Jin, H., “A compromised-time-cost scheduling algorithm for cost-constrained workflows on cloud computing

platform,” International Conference System Modeling (6), 303-308 (2014).
[6] Zheng, Y., Cai, L. and Huang, S., “Cloud testing scheduling based on improved,” ACO International Symposium on

Compuers & Informatics (3), 569-578 (2015).
[7] Wei, S. W. and Deng, W., “Cloud resource scheduling based on multi-elite coevolutionary genetic algorithm,” Computer

Applications and Software (5), 274-280 (2021).
[8] Gao, R. and Juebo, W., “Dynamic load balancing strategy for cloud computing with ant colony optimization,” Future Internet

(4), 465-483 (2015).
[9] Binsack, Y. and Ralf, W., “The intelligent task scheduling algorithm in cloud computing with multistage optimization,”

International Journal of Grid and Distributed Computing 9 (4), 313-323 (2016).
[10] Ren, J. and Liu, M., “Task scheduling strategy for cloud computing based on improved GA,” Journal of Shenyang University

of Technology (5), 320-325 (2019).

Proc. of SPIE Vol. 12506 1250618-7

