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ABSTRACT 

Compared with the Viterbi algorithm, the stack algorithm can provide lower hardware complexity, especially for long 

constraint length convolutional codes. This paper proposes a fast and simple hardware stack sequence decoder with an 

efficient state scheme. The stack decoder structure is mainly composed of RAM and shift register, and three independent 
RAM parts store the path metric, node, and encoder state of each path. Accessing different data items of the same stack 

in the data structure can be achieved by addressing the RAM with the same register value. In the decoding process, the 

paths are sorted according to the rules of the stack algorithm, and the path located at the top of the stack will execute the 

state of path extension in the next clock cycle. In this paper, an FPGA prototype of the stack decoder is constructed, and 

high-speed decoding is obtained by optimizing the state scheme, avoiding additional time-consuming read/write 

operations. 
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1. INTRODUCTION  

The Viterbi algorithm is widely cited as the optimal decoding method for convolutional codes, but its memory 

requirement is proportional to the constraint length of the convolutional codes1. Long constrained length convolutional 

codes can provide strong error correction ability and keep low error probability in the environment of extremely low 

signal-to-noise ratio, and are widely used in ultra-long distance communication. such as satellite communications2-3. In 

order to apply the Viterbi algorithm to convolutional codes with long constraint length, a large Viterbi decoder (BVD) 

built by the Jet Propulsion Laboratory in the United States in 1991 can decode one million bits in one second, making 

Convolutional codes with a constraint length of 15 are used in Mars Pathfinder, Saturn Cassini rover, etc. But to decode 

the convolutional codes with constraint length of 32 or even 64, sequence decoding is the best choice4-6. 

The complexity of the sequence decoding algorithm has nothing to do with the length of the constraint. In addition, the 

structure is simple, and the burden on the communication system is small. Therefore, decoding is performed using a 

sequence decoding algorithm whose decoding complexity and constraint length are independent7-8. Regarding the 
hardware implementation of sequence decoding, there are many FPGA implementations of Fano algorithm and its 

improved algorithm in the literature. However, the hardware implementation of the stack algorithm is relatively small, 

and the time is earlier, and the implementation on FPGA is even less9-12. The stack algorithm is a classical sequence decoding 

algorithm with a simple logical structure. Each node will only be checked once, and sufficient stack size will result in 

good decoder performance. It requires more memory than Fano algorithm, but it is far less than Viterbi algorithm13. 

This paper presents a stack decoder for (2, 1, 31) convolutional codes and soft-decision multilevel quantization. The 

frame length N (including the tail bits in the tail) can vary, but is usually set to 64 bits, including a fixed tail mode of 32 

bits. The stack decoder is constructed by using shift register and RAM, and the corresponding state machine is designed. 

Because the Verilog language is particularly suitable for describing complex combinational logic, group operations and 

state machines, truth tables and parameterized logic, Verilog programming is used. After debugging and simulation, it is 

finally downloaded to the FPGA to run. 

2. DESIGN OF STACK DECODER 

2.1 Stack algorithm flow 

As a kind of sequence decoding algorithm, the stack algorithm has a simpler logical structure than the Fano algorithm, 
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but requires more memory. The memory is mainly used to store all likelihood paths in the decoding process. For the 

fixed tail of the (2,1,31) convolutional code used in this paper, the decoding process is shown in Figure 1. When 

decoding starts, the stack needs to be initialized, and then the decoding process can be roughly divided into three 

steps14-15. 

 

Figure 1. Flow chart of the stack algorithm. 

(1) Extend the current path lcur and delete this path in the stack. In general, the next node symbol is 0 or 1, and the path 

after expansion is l0, l1. But when the node is at the end of the tree, only one possible path l0 needs to be calculated.  

(2) The new path after expansion is stored in the stack according to the size of the path metric using insertion sort, and 

the path at the top of the stack is used as the new lcur. 

(3) Judge the node of the current path lcur in the code tree. If the node is before the fixed tail, go back to step 1 and keep 

two extended paths l0, l1; if the node is between the tail and the end, go back to step 1 and keep only one extended path 

l0, if the node is the end of the tree, then End decoding, and output the current path lcur. 

2.2 Structure of stack decoder 

The stack decoder structure is mainly composed of RAM and shift register, and three independent RAM parts store the 

path metric, node, and encoder state of each path16-17. The shift register stores the height in the stack, and addresses the 

path metrics, nodes, and encoder states of the RAM through the same shift register value, so as to realize the access of 

different data items in the same stack in the data structure. According to the stack algorithm flow design, its structure is 

shown in Figure 2. 

The Stack decoder control module is the brain of the decoder, and issues instructions to control the start, end and 

sequence of decoding based on feedback. In symbols are symbols to be decoded. After receiving the start command of 

the control module, they are input into the node metric module. In the encoder module, according to the encoder state 

and the input symbol 0 or 1 of the next node, the encoding symbol corresponding to the next node can be obtained. In the 

absence of other conditions, the next node symbol may be 0 or 1, so there are two possibilities for the encoding symbol, 
both of which are input into the node metric module for mapping. In the node metric module, the coded symbols and in 

symbols obtained from the encoder state are mapped in mettab to obtain the next node metric. The path metric is 

accumulated by each node metric, and the new path will be stored in the built stack. The shift register value sth 

represents the position in the stack. As the new path is generated, the encoder state is shifted to the left by one bit from 

the encoder state of the original path, the next node symbol is input, the node value is increased by one, and the two are 

Start 

lcur=0

Delete original path

Compute the next 

node path l0,l1 

metric

lcur at the end of 

tree

Stop and output

current path lcur

Stack’s top

as new lcur

Yes

No

Store  new path into 

stack

lcur at the tail of 

tree

Compute the trailing 

path l0 metric

Yes

No

Proc. of SPIE Vol. 12506  125065W-2



used as the stack. The different data items of the element are stored in the corresponding RAM according to the sth value 

following the path metric. According to the new path metric within the path metric, the input to the compute module is 

sorted. For sorted datasets, insertion sort is a very low time-complexity sorting method, so stack element sorting uses this 

method. The stack decoder control module changes the sth value according to the feedback of the compute module, so 

that the stack elements are exchanged, so as to achieve the purpose of sorting the stack elements. As the decoding 
progresses, the nodes located in different positions of the code tree have different effects, so the Stack decoder control 

module controls the number of new paths and the end of the stack according to the value stored in the node. Finally, 

when the node value at the top of the stack is at the end of the code tree, the Stack decoder control module sends an 

instruction to the encoder state storage part to output the state of the top of the stack to obtain the decoded symbol 

decdata. 

 

Figure 2. Main structure of stack decoder. 

3. THE OPERATION OF HIGH SPEED ARCHITECTURE 

Combined with the state flow chart and the decoder structure diagram, the flow chart shown in Figure 1 is classified and 

merged, and the finite-state machine (FSM) is designed to realize the function of the stack decoder as shown in Figure 3. 

 

Figure 3. FSM describing the RTL. 

The state machine can be divided into three stages, namely start, path extension and stop. The start stage has three states, 

A initializes the stack space, and the shift register value sth takes 0. B pairs the first node of the symbol tree. code 

element to explore. C is successively stored on the stack according to the metric size. 

Then, enter the path extension stage. This is the body of the decoding process, finding the largest possible path to the end 

of the code tree. F takes out the top path of the stack as lcur, and explores the current path to the next node. G judges the 

position of the next node on the code tree. If it reaches the end point, it jumps to the stop stage for decoding, otherwise it 

enters the next state L. L compute the metric of the extended path l0, and judges the position of the next node on the code 

tree. If it reaches the tail of the tree, it jumps to state D, otherwise it jumps to state E. D performs insertion sorting on the 
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input expansion path and stores it in the stack, the path input by L is l0, and the path input by H is l1. E performs 

insertion sorting on the extended path l0, stores it in the stack, and jumps to the H state. H computes the metric of the 

extended path l1and inputs it to D for sorting. 

After multiple path expansions, the current path lcur node reaches the end of the tree, and then jumps from state G to the 

Stop stage. N decodes and outputs the encoder state of lcur, outputs one symbol each time, enters the stop state after 

several cycles, and ends the decoding. 

4. FPGA IMPLEMENTATION OF THE STACK SEQUENTIAL DECODER 

In this study, we set the length of each frame of the (2, 1, 31) convolutional code to 64, including a 32-bit fixed tail, and 

the upper limit of the number of stacks to 500. We use co-simulation to complete the soft-decision stack decoder in 

FPGA work, testbench as shown in Figure 4. We use Dev-c++ to simulate the communication system and generate 

random codewords. The codeword is encoded by a convolutional encoder and modulated into BPSK symbols. The 

modulated data passes through the AWGN channel. Some noise is applied in this channel by taking into account the 
SNR value entered. The demodulated symbols enter the decoder for decoding, and the obtained decoded symbols and the 

original random codeword are input into the statistics module, and the bit error rate under the corresponding 

signal-to-noise ratio can be obtained. The demodulated signal and noise data are input to the test bench written in 

Verilog, after decoding by the written stack decoder, the waveforms of symbols, path metrics, nodes, encoder states and 

the state of the state machine are decoded Shown on Modelsim SE-64 10.7. 
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Figure 4. Simulation setup. 

When the signal-to-noise ratio is 3, the single simulation result in the FPGA is shown in Figure 5. The soft decision stack 

decoder successfully completed the decoding, and only one frame error code appeared in 1000 frames of information 18. 
After modifying the parameters such as the signal-to-noise ratio and testing, it is found that the decoding results are the 

same as the software side. The FPGA design of the soft-decision stack decoder is successful. Download the program to 

the ax7020 development board of xlinx company, and the decoding results observed by the logic analyzer of vivado 

software are shown in Figure 6. 

 

Figure 5. Simulation report of Modelsim-SE 10.7. 
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Figure 6. Decoding result of one million frames. 

5. CONCLUSION 

In this paper, the FPGA prototype of the stack decoder is constructed by using the shift register and RAM, and an 

effective state scheme is given. The architecture of the decoder has been developed into a Verilog core, which is further 

implemented on an FPGA device. High-speed decoding is achieved through an optimized state scheme, avoiding 

additional time-consuming read/write operations. The FPGA implementation of the Stack decoder provides a new 

direction for hardware design using convolutional code decoders. For the follow-up research, the multi-core performance 

of FPGA can be used to decode multiple stack expansion paths at the same time to improve the decoding efficiency. 
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