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ABSTRACT 

As a brain-inspired artificial neural network computational model, a recurrent spiking neural network is composed of 

biologically plausible spiking neurons, which has taken on increasing importance in this study mainly include complex 

network structure and implicit nonlinear mechanism. This paper presents a learning algorithm with synaptic delay-weight 

plasticity for recurrent spiking neural network, which may enable real-time communication of complex spatiotemporal 

spike trains simulating organisms. First, by copying the hidden layer between the input and output layers, a context layer 
can be created. A total error for spatiotemporal pattern is then introduced, along with the learning rule for synaptic 

weights with synaptic delay plasticity. Moreover, by using synaptic delays of spike train from postsynaptic neuron, the 

proposed algorithm defines the learning rules for synaptic weights. In addition, the performance of the learning algorithm 

has been successfully tested to achieve high-precision learning with limited iterative resources. Finally, the main factors 

have been evaluated qualitatively and quantitatively, such as different lengths and frequencies for desired output spike 

trains. 
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1. INTRODUCTION 

Spiking neural networks (SNNs) establish interoperability properties at the artificial neural network level by simulating 

the communication mechanism of firing spike trains in real time1,2. Biological neuron signals can be converted into 

continuous functions by SNNs2,3, which are widely used for spatial-temporal data analysis in research fields. Several 

categories of SNNs architecture have been developed in recent years based on different applicability, including single-

layer SNNs, multi-layer feed-forward SNNs, and recurrent SNNs. Compared with the other two network structures, 

recurrent SNNs (RSNNs) are more biologically realistic, and it has the ability to simulate the actual biological activities 

of biological pulse issuance, transmission, processing and feedback in real time. At the same time, RSNNs are the 

artificially constructed structures that are closest to the real biological complex network node links. An artificial neural 

network with recurrent connections is a type of machine learning model with a feedback loop structure that can be used 

to assist in solving parallel processes, such as machine automation4, intelligent recognition5, and textual analysis6. 

A key component of learning and memory is synaptic plasticity. As part of his initial synaptic plasticity hypothesis, Hebb 

presented that synergistic activity between presynaptic and postsynaptic neurons played a vital role in increasing synaptic 

potentiation7. With the in-depth exploration of researchers, excellent results have emerged, including strengthening 

synaptic weights using spike-timing dependent plasticity (STDP)8, weakening them using anti-STDP9, threshold driven 

plasticity rules (TDP)10, precise-spike-driven synaptic plasticity11 and somato-dendritic synaptic plasticity12. 

Consequently, the supervised synaptic plasticity learning mechanism, such as STDP and TDP, missing the characteristic 

of the delay in the propagation of impulse signals in biological synapses, cannot be directly used to express the biological 

communication mechanism of RSNNs. From this point of view, it focuses more on the exploration of neural dynamics 

rather than just analyzing the macro variables of neural networks13. On the basis of the comparative study, scientists do 

not emphasize the importance of developing synaptic weights between neuronal connections, which calls for developing 

sophisticated algorithms for RSNNs. 

The aim of this paper is to propose a supervised learning rule based on synaptic delay plasticity with a spike train 
weighting adjustment operation in all layers, which can improve the learning ability for complex spatiotemporal patterns. 

The update method of synaptic weights is defined in combination with the synaptic delay, and then a supervised learning 

rule is constructed to realize the spatiotemporal communication of spike train. In Section 2 we mainly introduce the 
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network structure of RSNNs and the simplified neural information processing flow by introducing the context layer. In 

Section 3 we give the construction process of learning rules for each layer of the network. In Section 4 we show the 

learning performance of the spike train and the effect of different element variations. A summary of the work in paper is 

presented in Section 5. 

2. RELATED WORK 

This section mainly describes the linear network structure and conceptual network introduction of RSNNs in detail. 

Besides, spike train function is introduced through mathematical expressions. 

2.1 The network structure 

In this study, a multi-layer spiking neural network is recursively constructed using random coupling and intrinsic 

connectivity. As shown in Figure 1, the network structure consists of three main layers, namely input, hidden and output, 

and each layer consists of neuronal connections. It is obvious that the processing process between the layers for spike 

train is a sequential recursive feed-forward structure, while the randomly coupled real-time communication of the 
neurons within the hidden layers forms recurrent connections. To achieve a recurrent connection approach as shown in 

Figure 1 by the dotted line, a connectivity degree (Cd) is applied to indicate the tightness of the coupling within the 

hidden neurons. In fact, the hidden neurons are connected in an intricate way, which is more reflected by random 

coupling, so we just artificially abstract to facilitate the construction of network model. 
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Figure 1. The constructed network structure. 

As mentioned above, RSNNs are complex in structure, so it is difficult to develop an algorithm for spike train learning in 

terms of synaptic delay-weight plasticity. In order to follow the structural principle and facilitate program design, a copy 
of the recurrent layer (called the context layer) is placed at the bottom with the aim of converting RSNNs into an 

equivalent feed-forward structure, as shown in Figure 2. 
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Figure 2. The network structure conversion with context layer. 
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2.2 The spike train function 

After the biological neuron is stimulated by the presynaptic a spike train si, it will generate the stress response output 

spike train so. A continuous-time linear Poisson neuron model is used to establish the relationship between input and 

output spike trains, which can be shown as: 
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where the number of presynaptic neurons is denoted by A, and an important part of the spike train processing between 

neuron i and another neuron o is the synaptic weight woi. Based on the results in References14,15, learning rules can be 

constructed using a simplified linear summation mechanism of smooth spike trains.

 

 

In addition, a smoothing function h is chosen for mathematical convenience, which allows discrete spike trains to be 

converted into continuous functions. On R2() space, si and sj are defined as follows16: 
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where an autocorrelation between smoothing function u and the kernel function , and the kernel can be defined as 
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3. SUPERVISED LEARNING ALGORITHM WITH SYNAPTIC DELAY-WEIGHT 

PLASTICITY 

In this case, we can define 
a

os , as the desired spike train, and 
d

os , as the actual spike train, respectively. By combining 

equations (1) and (2), we can interpret the total error of RSNNs at time t as the error train in output spikes:  

2

1 1

1

1 1
( )d ( ) ( ) d ( ) ( ), ( ) ( )

2 2

1
( , ) 2 ( , ) ( , )

2

o o

a d a d a d
o o o o o o

o

N N

s s s s s s
o o

N
a a a d d d

o o o o o o

o

E E t t f t f t t f t f t f t f t

F s s F s s F s s


= =

=

 = = − = − −
 

 = − + 

  



                             (3) 

For all output neurons, the error function can be transformed into the inner product of spike trains, facilitating the 

adjustment of real-time spike train for an efficient learning process. 

By backpropaguing network errors to synaptic weights through error backpropagation, a generalized delta update rule is 

used to modify synaptic weights. As a result of synaptic connections, the synaptic weight w is calculated as follows:  

iw E d =−  +                                                                                (4) 

where   is the learning rate, E  is the error function for adjusting the learning efficiency of spike train, and di is synaptic 

delay, which can be expressed as: 

f

i id d D= −

                                                                                 

(5) 

where d
 is the synapse   that need to be adjusted, and f

iD  denotes the distance between the time interval when the 

maximum postsynaptic potential occurs between the input and the desired after the generation of spike trains, which can 

be represented as: 

  f f f
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(6) 

If 
f

i it t d  + + , the synaptic delay di is assigned as f

i id d D= + . Otherwise, di is assigned as f

i id d D= − . The 

mathematical expression for the gradient E  is: 
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As demonstrated in Figure 2, synaptic weight learning rules for the network layer can be separated into three layers: 

output, context, and input. 

3.1 Learning rule in output layer (NO) 

Using equation (7) and the corresponding partial derivative transformation operation, the gradient Eoh is associated 

with the recurrent neurons at time t, which can be shown: 
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Accordingly, the rule for updating the synaptic weight ohw  based on the inner products of adjacent layer relationships 

and spike train conversion transitions is: 
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where the spike train counts of the actual and the expected are denoted by a

oF  and d

oF , both as continuous values. 

3.2 Learning rule in context layer (NC) 

From equation (7) and the partial derivative operation, the gradient Ehr is associated with the recurrent neurons at time 

t, which can be represented as: 
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The rule for updating the synaptic weight hrw  of adjacent layer relationships and spike train conversion transitions is: 
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3.3 Learning rule in input layer (NI) 

In the same way, the gradient Eoh is associated with the recurrent neurons at time t, which can be show as: 
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Similarly, the rule of the synaptic weight hiw  updated is: 
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Finally, a summary of the learning rules for synaptic weights is given in equations (9), (11), and (13) corresponding to 

each layer of the RSNNs. 

4. EXPERIMENTS 

This section shows the learning capabilities of RSNNs when trained with a supervised learning algorithm with spike 

weights. The learning algorithm is set up by defining the initial parameters to facilitate testing and verification, and then 

the emulating performance of spike train based on learning rules is analyzed. 

4.1 Experimental setup 

The short-term memory spike response model (SRM)17 is chosen in the experiment with the aim of constructing the 

network as a neuronal model, which has the ability to solve the spatiotemporal spike pattern problems of RSNNs after 

training. 

Table 1. Related parameter settings. 

Sections Parameters Settings 

SRM 

The absolute refractory period 1 ms 

The neuron threshold 1.0 

The number of neurons in each layer 
Ni = Nr = 150 

No= 1 

Initialized synaptic weight distribution interval (0, 0.5) 

The connectivity degree Ch=0.35 

Other variables 

The rate at which Poisson generates spikes 
ri =20 Hz 

rd=50 Hz 

The Gaussian kernel  
2 2( , ) exp( / 2 )x y x y  = − −  

The learning rate 0.001 

The time step 0.1 

The settings of related parameters such as SRM model and other variables are shown in Table 1. Finally, at least one test 

path is satisfied based on the averaged experimental results over 100 trials, specifically applying the learning epoch for 

up to 500 steps or until no network error exists. 

4.2 Elemental analysis 

Figure 3 shows the simulation threads of spike train based learning rules with synaptic delay. Figure 3a illustrates an 

overview of the learning process of the pulse sequence, which is divided into three phases: initial, desired and actual. 

Through supervised learning over about 250 epochs, the learning algorithm produces the desired output spike train in 

150 ms intervals based on the initial output spike train. As shown in Figure 3b, the total network error E evolves over 

time. Following 250 learning epochs, the error function drops to 0 as the network is iteratively learned. This means that 

the spike train achieves the actual-to-expected identicality. 
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Figure 3. The simulation threads of spike train based learning rules with synaptic delay for RSNNs. (a): The efficient iterative process. 

Δ,  and  all denote spike trains, each specific to the initial, desired and actual; (b): The errors on the network evolve over time. 
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Figure 4. The spike trains with varying lengths when iterating through 500 learning epochs. (a): The differences in network errors due 
to spike train lengths; (b): The effect of spike train lengths on errors and learning epochs. 

Figure 4 shows the variation of network errors based on desired output spike train of different lengths. Figure 4a 

illustrates that the optimal expected output spike train length of the algorithm is 150 ms, then high-precision autonomous 

learning can be performed, and the error increases significantly with the length of spike train. It is intuitively evident 

from Figure 4b that the learning epoch number for the algorithm with synaptic delay incorporated is about 250 epochs. 

The main reason is that the occurrence of negative feedback regarding learning accuracy and spike train length, where 

the error rises significantly when the length increases. 

Figure 5 shows the variation of network errors based on desired output spike train of different frequencies. Figure 5a 
illustrates that the network error grows significantly as the frequency of desired output spike train increases, and the 

algorithm can perform high-precision autonomous learning when the output frequency is set to 50 Hz. From Figure 5b, 

the learning epoch of constructed rules is approximately in equilibrium as output spike frequency varies. 
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Figure 5. The spike trains with varying frequencies when iterating through 500 learning epochs. (a): The differences in network errors 
due to spike train frequencies; (b): The effect of spike train frequencies on errors and learning epochs. 

5. CONCLUSIONS 

In this work, we propose a multi-spike learning rule with synaptic delay-weight plasticity based on weighting adjustment 

operation of spike train for RSNNs. The introduction of synaptic delay makes the adjustment of synaptic weights more 

similar to the processing process of biological neurons for spike train. The synaptic weight update rules combined with 

synaptic delay are given mathematical representations on NO, NC, and NI, respectively. The high-precision experimental 

results are obtained in the learning process by integrating the learning algorithm with synaptic delay, including the 

analysis of the optimal learning performance for spike train, the influence of different spike train lengths, and the change 
of the different output frequency for desired spike train. Therefore, the updating of synaptic weights based on the delay 

characteristic may be utilized in various neuron learning rules, neuron models and complex network structures. 
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