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ABSTRACT 

Mixup is a learning principle that trains a neural network on convex combinations of pairs of examples and their labels. 

Despite of its good performance, there is an inherent inconsistency between training and testing in mixup, which makes 

theoretical understanding difficult and hurts the performance in some cases. In this work, we propose λ-mixup to alleviate 

this inconsistency. Specifically, λ-mixup reformulates the model to take the interpolation coefficient (𝜆) as input as well, 

so that a class of models indexed by 𝜆 is learned and we can select one specific coefficient or multiple coefficients for 

ensembles depending on the testing distribution. We theoretically demonstrate that, with enough data and model capacity, 

λ-mixup can recover the original conditional distribution. Moreover, we conduct image classification tasks on multiple 

datasets, including CIFAR-10, CIFAR-100 and Tiny-Imagenet, showing that comparing with mixup, λ-mixup exhibits 

better generalization, calibration and robustness to adversarial attacks and out-of-distribution transformations. 

Keywords: Image classification, mixup, calibration, robustness 

1. INTRODUCTION 

Data augmentation1,2 is a widely used method for generating more data to improve the generalization performance and 

robustness. Generally, data augmentations are simple transformations designed by experts with specific domain 

knowledge to keep the labels unchanged in supervised setting. For images as inputs3, such transformations include 

rotation, cropping, translation, and color jittering, etc. Different from this, mixup4 is proposed to use the convex 

combinations of pairs of inputs and their labels to train deep models. And extensive experiments have shown that mixup 

improves the generalization performance, increases the robustness to adversarial examples and improves model 

calibration5. 

Despite of its effectiveness, mixup is inherently inconsistent between training and testing. Specifically, we use 𝜆 ∈ [0,1] 
to denote the interpolation coefficient between samples, and 𝑃𝜆 to denote the data distribution induced by interpolating 

samples with 𝜆. Without loss of generality, 𝜆 can be limited in [0.5,1] for that 𝑃𝜆 is identical to 𝑃1−𝜆 by symmetry. 

In mixup, we force the model 𝐹 to fit the data distribution 𝑃𝜆   for all 𝜆 ∈ [0.5, 1] during training and test the model 

usually on original data distribution, which is identical to 𝑃1 . This inconsistency brings some problems. Firstly, it makes 

theoretical analysis more difficult. Building connection between the training distribution and the testing distribution in 

mixup is tricky. It is hard to answer the question of when and why mixup works. Additionally, the inconsistency in mixup 

may restrain its power in practice. It is more difficult for the model to fit all interpolation distributions instead of just one. 

And the possible overlap between these distributions could cause performance degradation or even failure. Recently, 

Reference6 also found that mixup, despite improving calibration, tend to be under-confident. So combining it with 

ensembles can harm calibration. 

In this paper, we propose a method, termed λ-mixup, to tackle the problem of inconsistency. As in Figure 1, λ-mixup 

reformulates the model 𝐹 to explicitly take interpolation coefficient 𝜆 as input as well. On the one hand, with proper 

design of the model architecture, such as parameter sharing across different 𝜆s, λ-mixup retains the regularization effect 

brought by fitting the interpolation distributions. On the other hand, λ-mixup reduces the inconsistency between training 

and testing, for that different interpolation distributions are fitted with different models essentially. During training, a 

class of models indexed by 𝜆 are learned to fit different 𝑃𝜆 respectively. Then different models can be chosen depending 

on test distribution. For in-distribution testing, we can simply set 𝜆 to be equal to 1. For out-of-distribution testing, we 

can use a model with a smaller 𝜆 or use ensembles of models with different 𝜆s to further boost the performance. Through 

experiments on image classification tasks, we show that λ-mixup is better than mixup on fitting the original data 
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distribution, which leads to higher classification accuracy and better calibration performance. Furthermore, λ-mixup 

increases the robustness against adversarial examples and out-of-distribution transformations. 

 

Figure 1. Overview of 𝜆-mixup.  

Note: The model takes λ as input explicitly during training and choose proper λ(s) for testing. 

2. RELATED WORKS 

2.1 Mixup 

Mixup, introduced in Reference4, augments data using convex combinations of pairs of inputs and their labels. Several 

works have tried to theoretically build connections between mixup training and empirical risk minimization and explain 
why mixup improves generalization and robustness. References7,8 showed that mixup training can be viewed as 

minimizing the empirical loss along with a data-dependent regularization term. Reference9 characterized a practical 

failure case of mixup, and also identified conditions under which mixup can provably minimize the original risk. 

Reference10 proposed the concept of boundary thickness to analysis mixup. 

Moreover, inspired by mixup, researchers come up with various methods of interpolating. Reference11 introduced 

manifold mixup to apply mixup on intermediate representation as well. CutMix12 cuts a rectangular region from one 

image and pastes it onto another, and generates label based on the area of each image. Instead of choosing regions 

randomly, saliency can be used to guide the interpolation to generate more meaningful data13-15. Reference16 proposed 

AutoMix, learning to interpolate simultaneously. Reference17 aligns features of two images before interpolating. 

Additionally, Reference10 proposed to interpolate samples with noise for better robustness. Similarly, Reference18 

combines mixup and noise injecting. Different from the methods mentioned above, our method λ-mixup focuses on 

reducing the inconsistency between training and testing other than new ways of interpolation. 

2.2 Calibration  

Modern neural networks are poorly calibrated, which means there is a gap between model’s confidence and its true 

correctness. Let 𝑋, 𝑌 denote input and label random variable, 𝑌̂, 𝑃̂ denote the class prediction and associated confidence 

(predicted probability). One notion of miscalibration is the difference in expectation between confidence and accuracy: 

𝐸𝑃̂[|𝑃(𝑌̂ = 𝑌| 𝑃̂ = 𝑝) − 𝑝|]. To approximate the calibration error in expectation, Expected Calibration Error (ECE)19 

discretizes the probability interval into a fixed number of bins, and computes a weighted average of the bins’ 

accuracy/confidence difference. More precisely, 

ECE = ∑
𝑛𝑏

𝑁

𝐵
𝑏=1 |acc(𝑏) − conf(𝑏)|                                                                        (1) 

where B denotes the number of bins, and each bin is indexed by 𝑏 ∈ {1, 2, ⋯ , 𝐵}. 𝑛𝑏 is the number of predictions in bin 

b, N is the total number of data points, and acc(b) is the fraction of predictions in bin b that are correct (accuracy) and 

conf(b) is the mean of the probabilities in the bin (confidence)20. partitions probability interval into equally spaced bins. 
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For a trained model, most of the samples lie within the highest confidence bins, which cause the imbalance between bins. 

So an alternative is to partition probability interval so that each bin have the same number of samples. In this paper, we 

adopt the latter one to measure the calibration performance. 

Recently, many variants of ECE have been proposed to measure calibration more properly21-24. Other methods measuring 

calibration include likelihood measures, Brier score25, Bayesian methods26, and conformal prediction27. 

Post-hoc transformations of predictions20,28, model ensembles29,30, and data augmentation have been shown to improve 

calibration. Specifically, Reference5 showed that mixup can improve calibration. Furthermore, Reference6 found that 

mixup usually makes model under-confident. We show that our method λ-mixup can further improve model calibration. 

3. METHOD 

Let 𝒳 ⊂ ℝ𝑛 be input space and 𝒴 = {1,2, ⋯ , 𝐾} the output space. 𝑋 and 𝑌 are random vectors(variables) on 𝒳 and 𝒴 

respectively, with 𝑃(𝑋, 𝑌) as the joint distribution. Given a set of training data 𝒟 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where (𝑥𝑖 , 𝑦𝑖) ∼ 𝑃, for 

𝑖 = 1, ⋯ , 𝑛, 𝑃(𝑋, 𝑌)  can be approximated by the empirical distribution 𝑃̂(𝑥, 𝑦) =
1

𝑛
∑ δ(𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑖)

𝑛
𝑖=1  ), where 

δ(𝑥 = 𝑥𝑖 , 𝑦 = 𝑦𝑖) is a Dirac mass centered at (𝑥𝑖 , 𝑦𝑖). 

The classification task is to learn a function 𝐹: 𝒳 → 𝛥𝐾−1 , where 𝛥𝐾−1 = {𝑝 ∈ ℝ𝐾: 𝑝𝑖 ≥ 0, ∑ 𝑝𝑖 = 1}  is probability 

simplex, to approximate the conditional distribution 𝑃(𝑌|𝑋). One way to learn F is to directly minimize the mean KL 

divergence between the empirical conditional distribution 𝑃̂(𝑌|𝑋) and 𝐹(𝑥): 

min
𝐹

𝔼𝑥∼𝑃̂(𝑥)KL(𝑃̂(𝑌|𝑥)‖𝐹(𝑥))                                                                     (2) 

which is equivalent to Maximum Likelihood Estimate: 

max
𝐹

𝔼(𝑥,𝑦)∼𝑃̂log (𝐹𝑦(𝑥))  =  
1

𝑛
 ∑ log (𝐹𝑦𝑖

(𝑥𝑖))𝑛
𝑖=1                                                     (3) 

Given 𝜆 ∈ [0,1], we denote 𝑃λ̂(𝑋, 𝑌) on 𝒳 × 𝒴 as the data distribution interpolated by 𝜆. Specifically, the sampling 

process from 𝑃𝜆̂(𝑋, 𝑌) is as follow: two data points (𝑥1, 𝑦1), (𝑥2, 𝑦2) are first sampled from 𝑃̂(𝑋, 𝑌), then 𝑥λ is generated 

by interpolating 𝑥1 and 𝑥2, and 𝑦𝜆 is chosen from {𝑦1, 𝑦2} with probability 𝜆. Mathematically, 

𝑥𝜆 = 𝜆𝑥1 + (1 − 𝜆)𝑥2                                                                              (4) 

𝑦𝜆 ∼ 𝑃𝑦𝜆
= 𝜆𝑃𝑦1

+ (1 − 𝜆)𝑃𝑦2
                                                                    (5) 

where 𝑃𝑦𝜆
, 𝑃𝑦2   denote the one-hot label corresponding 𝑦1  and 𝑦2 . Obviously, 𝑃λ̂(𝑋, 𝑌)  is identical to 𝑃1−λ̂(𝑋, 𝑌)  by 

symmetry, and 𝑃1̂(𝑋, 𝑌) (with λ equals to 1) is 𝑃̂(𝑋, 𝑌). The mixup training objective is: 

𝑚𝑎𝑥
𝐹

𝐸(𝑥1,𝑦1),(𝑥2 ,𝑦2)∼𝑃̂,𝜆∼𝑝(𝜆)[𝜆 log (𝐹𝑦1
(𝑥𝜆)) + (1 − 𝜆) log (𝐹𝑦2

(𝑥𝜆))]                                       (6) 

which is equivalent to: 

min
𝐹

𝔼𝜆∼𝑝(𝜆)𝔼𝑥𝜆∼𝑃̂(𝑥𝜆)KL(𝑃̂(𝑌|𝑥𝜆)‖𝐹(𝑥𝜆))                                                            (7) 

We can see that mixup training is actually minimizing the KL divergence between F and all the interpolated conditional 

distribution 𝑃λ̂(𝑌|𝑋). Intuitively, data interpolation may lose some information, which forces the model to focus on more 

robust features. So making classifier F to approximate 𝑃λ̂  for different 𝜆s may regularize each other, which could benefit 

the learning. However, it brings problems too. Apparently, this causes the inconsistency between training and testing. 

After all, we care about the original 𝑃(𝑌|𝑋) the most. Also, the objective is much harder. In fact, we can see from 

experiments 4.1 that the closer 𝜆 is to 0.5, the harder it is to approximate 𝑃λ̂ with F. More importantly, for different 𝜆s, 

𝑃𝜆̂  may overlap with one another, which causes contradictions, leading to under-fitting or total failure in some cases. To 

alleviate the problems, we propose λ-mixup, which reformulates F as a mapping from 𝒳 × [0,1] to 𝛥𝐾−1, which takes 𝜆 

as input as well. The training objective remains the same as mixup: 

max
𝐹

𝔼(𝑥1,𝑦1),(𝑥2 ,𝑦2)∼𝑃̂,𝜆∼𝑝(𝜆)[𝜆 log (𝐹𝑦1
(𝑥𝜆 , 𝜆)) + (1 − 𝜆) log (𝐹𝑦2

(𝑥𝜆, 𝜆))                                           (8) 
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Instead of using one model to approximate all 𝑃𝜆̂, λ-mixup learns a class of models indexed by 𝜆 to approximate 𝑃𝜆̂ 

respectively. For simplicity, 𝜆 can be limited in [0.5, 1] due to symmetry. 

Theorem 1. Suppose training data 𝒟 contains infinite many data, which implies P̂ equals to P, and F is continuous with 

respect to λ. Let F∗ be the optimal solution of equation (8), with p(λ) is uniform distribution on [0, 1]. Then F∗(x, 1) =
P(Y|x), almost surely for x ∼ P(x). 

Proof. Because 𝐹∗ is the optimal solution, we have that for λ in almost everywhere in [0, 1], 𝐹∗(𝑥, 𝜆) = 𝑃(𝑌|𝑥) almost 

surely for 𝑥 ∼ 𝑃𝜆. Then by continuity of 𝐹∗ and𝑃𝜆, we have 𝐹∗(𝑥, 1) = 𝑃(𝑌|𝑥) almost surely for 𝑥 ∼ 𝑃(𝑥).  

Theorem 1 shows that ideally λ-mixup can recover the true conditional distribution with 𝜆 set to be 1. So during testing, 

we use 𝐹 ∗ (𝑥, 1) for in-distribution data, and for out-of distribution data, because the model with smaller 𝜆 may focus on 

more robust features, we use smaller 𝜆 or use multiple different 𝜆s to further boost performance. 

As for the model architecture, mixup’s superior performance indicates that this type of regularization actually benefits the 

learning process. So we do not want models with different 𝜆s differs too much. We accomplish this by sharing most 

parameters across different 𝜆s. Specifically, we can treat 𝜆 as time 𝑡 in Neural Ordinary Differential Equations (Neural 

ODE)31, and use the same architecture with the ODE function with 𝑡 replaced by 𝜆. 

4. EXPERIMENTS 

In this section, we conduct several experiments on image classification tasks to observe what λ-mixup actually learns and 

evaluate its performance in practice. The datasets we use include CIFAR-10, CIFAR-100 and Tiny-Imagenet. Both 

CIFAR-10 and CIFAR-100 have 50,000 training images and 10,000 testing images of which the resolution is 32×32, 

from 10 classes for CIFAR-10 and 100 classes for CIFAR-100. Tiny-Imagenet is a dataset of 120,000 labeled images 

belonging to 200 classes. Each of the 200 categories consists of 500 training images, 50 validation images, and 50 test 

images, all down-sampled to a fixed resolution of 64 × 64. The model architecture we use in our experiments is based on 

PreActResNet-1832, with convolution layer replaced by ConcatSquashConv2d layer and linear layer replaced by 

ConcatSquashLinear layer in Reference31. Other than comparing with original mixup, for the number of parameters 

increases in the new model, we set another baseline which consistently inputs 1 instead of λ during training, referred as 

1-mixup. 

We set 𝑝(𝜆) to be the uniform distribution on [0, 1], and train the models for 200 epochs with Stochastic Gradient 

Descent with momentum = 0.9. The initial learning rate is set to be 0.1, and factored by 0.1 on 100 epoch and 150 epoch. 

Without specification, we set 𝜆 = 1 for testing as the default choice. 

4.1 Approximation to 𝐏𝛌̂ 

In this experiment, we compare how well the approximation of 𝑃𝜆̂  between 1-mixup and λ-mixup across all 𝜆 s. 

Specifically, we sample 𝜆s equally spaced in [0.5, 1], and construct 𝑃𝜆
𝑡𝑟𝑎𝑖𝑛̂  with training set, 𝑃𝜆

𝑡𝑒𝑠𝑡̂  with testing set. To 

reduce the computational cost, we use Monte Carlo methods to approximate the expected KL divergence: 

𝔼𝑥∼𝑃𝜆̂(𝑥)KL( 𝑃𝜆̂(𝑌|𝑥)‖𝐹(𝑥, 𝜆)) 

The results are shown in Figure 2. From Figure 2, both training approximation error and testing approximation error 

become bigger as λ approaches 0.5, which is in line with the intuition that smaller λ induces harder task. Moreover, when 

λ is around 1, λ-mixup can get better approximation than 1-mixup. It shows that λ-mixup indeed reduces the inconsistency 

brought by mixup and fit the original distribution better. In addition, when λ is around 0.5, these two methods behave 

slightly different between CIFAR-10 and CIFAR100. There is an area near 0.5 that λ-mixup has a bigger error on 

CIFAR-10, whereas it performs better across almost all 𝜆s on CIFAR-100. One possible reason for this is that CIFAR-10 

is a simpler dataset. 1-mixup brings stronger regularization effect, knowledge learned from bigger λ can directly guide 

the learning process for small ones, leading better approximation on relatively small λ. However, on a harder dataset 

CIFAR-100, this stronger regularization brings side effects, leading the performance goes down for all 𝜆s.  

Proc. of SPIE Vol. 12506  1250628-4



 

Figure 2. The estimated expected KL divergence between 𝑃𝜆̂ and learned models across different 𝜆s. (a): CIFAR-10; (b): CIFAR-100. 

4.2 Generalization 

We conduct image classification experiments on CIFAR-10, CIFAR-100 and Tiny-Imagenet datasets to evaluate the 
generalization performance. Specifically, for each method, we train the model with 5 different random seeds and report 

the mean of best accuracy on validation set. The results are summarized in Table 1. From Table 1, 1-mixup performs 

better than mixup, because a slightly bigger model is used in 1-mixup. And λ-mixup consistently outperforms others on 

three datasets, especially gains 1.1% improvement on CIFAR-100 comparing with the model trained without λ. 

Table 1. Classification accuracy (%) of different methods. 

Accuracy mixup 1-mixup λ-mixup 

CIFAR-10 95.93 95.95 96.06 

CIFAR-100 78.35 78.62 79.7 

Tiny-Imagenet 62.49 62.88 63.3 

4.3 Calibration 

To verify the calibration ability of λ-mixup, we compare the expected calibration error (ECE) on CIFAR-10 and CIFAR-

100 with the baselines. 

Table 2. ECE of different methods. 

ECE mixup 1-mixup λ-mixup 

CIFAR-10 0.063 0.063 0.016 

CIFAR-100 0.097 0.095 0.02 

As shown in Table 2, 1-mixup and mixup have similar ECE, but λ-mixup reduces ECE by a large margin. Also, Figure 3 

plots a variant of reliability diagrams33 on 1-mixup and λ-mixup. We bin the predictions into M = 10 intervals based on 

their confidence (probabilities) with each bin contains the same number of predictions and compute the difference 

between the average confidence and the average accuracy for each bin. A positive difference (Accuracy-Confidence) 
implies under-confidence; negative implies over-confidence; and zero implies perfect calibration. From figure 3, we can 

see that 1-mixup causes under-confidence and λ-mixup is slightly over-confident. 
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Figure 3. Reliability diagrams on CIFAR-10 and CIFAR-100. (a): CIFAR-10; (b): CIFAR-100. 

4.4 Adversarial robustness 

Adversarial robustness measures the performance of a model on adversarial examples. Adversarial examples are inputs 

formed by applying small but intentionally perturbations to examples, such that the model outputs incorrect results with 

high confidence. It has been shown that large neural networks degrade a lot under adversarial attacks. PGD is a simple 

and effective method generating adversarial examples based on the gradients of the targeted model. We evaluate the 

robustness of λ-mixup with λ set to be 1 during testing under PGD attacks on CIFAR10 and CIFAR-100. Specifically, we 

use an l∞ attack with 10 steps and with step size being 2 pixels and report the results of three different attack ranges, 

namely 8-pixel, 6-pixel, and 4-pixel. As shown in Table 3, λ-mixup consistently improves adversarial robustness, 

especially on CIFAR-10. 

Table 3. Classification accuracy (%) under PGD attacks. 

PGD-attack 4 pixels 6 pixels 8 pixels 

CIFAR-10 

mixup 10.32 6.19 4.55 

1-mixup 8.78 5.36 3.96 

λ-mixup 21.92 18.12 17.02 

CIFAR-100 

mixup 0.2 0.04 0.02 

1-mixup 0.26 0.04 0.02 

λ-mixup 0.88 0.3 0.18 

4.5 OOD robustness 

Out-of-distribution (OOD) robustness measures the performance of a model on the data distribution which is different 

from training distribution. In realistic application, test data samples usually have some corruptions, causing mismatch 

between training distribution and testing distribution. So out-of-distribution robustness is important in some cases. 

Following Reference34, we use both CIFAR-10C and CIFAR-100C to evaluate OOD robustness. We design two 

strategies to apply λ-mixup in these circumstances. One is to use a smaller λ, another is to use multiple λs for model 

ensembles. Figure 4 depicts the mean accuracy of models using different λ. We can see that, as expected, the highest 

performance is obtained with λ smaller than 1, around 0.75 for CIFAR-10 and 0.95 for CIFAR-100. And the best 

performance is comparable or better than 1-mixup. As for model ensembles, we choose n λs equally spaced between [0.5, 

1] with 0.5 and 1 being chosen, and use the average of the outputs as the final prediction. 
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Figure 4. Mean accuracy on CIFAR-10C and CIFAR-100C using different λ. (a): CIFAR-10; (b): CIFAR-100. 

Table 4. Mean accuracy (%) on CIFAR-10C and CIFAR-100C. 

OOD mixup 1-mixup λ-mixup λ-mixup (3) λ-mixup (6) λ-mixup (11) 

CIFAR-10 79.31 79.31 78.24 79.35 79.44 79.44 

CIFAR-100 52.07 52,27 52,75 52.72 52.5 52.4 

Note: λ-mixup(n) stands for ensembles with n λs. 

Table 4 reports the results with n taking the value of 3, 6, and 10. From Table 4, we see that model ensembles bring 

improvement comparing with 1-mixup. Noticeably, on CIFAR-100, using more λs degrades the performance comparing 

with the best λ-mixup with λ set to be 0.95. This is probably because that CIFAR-100 is a harder dataset. The model with 

λ near 0.5 loses too much useful information, which brings side effects in model ensembles. 

5. CONCLUSION 

To reduce the inherent inconsistency between training and testing in mixup, we propose λ-mixup, which forces the model 

to explicitly take as input the interpolation coefficient λ as well. We theoretically demonstrate that, ideally, with infinite 

many data and big enough model capacity, λ-mixup can recover the true conditional distribution P(Y |X). During testing, 

different strategies of setting λ can be chosen depending on testing distribution, 1 for in-distribution data and smaller λ or 

multiple λs for out-of-distribution data. We conduct plenty of experiments showing that λ-mixup improves generalization, 

calibration and robustness. 

In this paper, we maintained the regularization effect by parameter sharing across all λs, there could be more 

mathematical ways to realize it. Also, we didn’t change the specific training procedure, it is promising to design more 
sophisticated training procedure to better utilize the mixed samples. Moreover, better methods of using the infinite many 

models trained by λ-mixup could potentially bring further improvements.  
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