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ABSTRACT 

Despite the impressive improvements of Visual Question Answer (VQA), it still remains a challenge of how to avoid the 

suffering of spurious correlations from textual content to answer. Previous researches have shown that due to the 

existence of language bias in the VQA dataset, VQA models may tend to capture superficial statistical correlation and 

suffer from the poor generalization capability in the out-of-distribution data. To alleviate the biases caused by language 

modality, we propose a method of context augmentation and adaptive loss adjustment, which can alleviate shortcut 
learning behavior of VQA models. Specifically, the existence of language bias is due to the high co-occurrence 

frequency of categories and the words in “Question”, therefore, we propose to use “Paraphrase Generation” to produce 

paraphrases with diverse contexts, so as to mitigate such correlation. Secondly, we use adaptive loss adjustment to adjust 

the importance of samples, that is, reduce the importance of bias-aligned samples and improve the importance of bias-

conflicting samples, so as to guide the model to capture the intrinsic attributes that are beneficial to generalization. The 

experiments have demonstrated the feasibility and validity of our method on a variety of VQA models. 
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1. INTRODUCTION 

Visual Question Answering1 is one of the fundamental tasks of multi-modal learning, which requires the AI systems to 

perceive the features of an image and a question, and answer the questions according to the visual clues. With the 

increasing interest, impressive improvements have been achieved in VQA. However, due to the existence of the 

language bias2,3, VQA models tend to capture the superficial statistical correlation, rather than intrinsic attributes that 

have better generalization. Therefore, VQA models may suffer from the poor generalization capability in the out-of-

distribution data, such as the VQA-CP4, whose priors are quite different in training and test sets2. Language bias is 

manifested in that for some types of questions, certain answers occupy the majority, which leads to good performance of 

the VQA model using only unimodal information for prediction. For example, the answer to about 40% of the questions 

beginning with “what sport” is “tennis”5, and the answer to about 90% of the questions beginning with “Do you see a ...”  

is “yes”2. 

There have been efforts to tackle the language bias issue, such as those methods based on annotated data6 or 

counterfactual method2. Those methods based on annotated data, would encourage the model to focus on the regions 

(annotated by human annotators) on the picture that are most relevant to the question. Those counterfactual-based 

methods would construct a structural causal model to formulate VQA, and use the method of causal intervention to 

remove the spurious correlation between the question and the answer. However, the annotation-based method requires 

expensive labor, and the ensemble-based method cannot ensure that the “language bias” is fully captured. Therefore, the 

“bias” may still exist in the multi-modal information, which means that the model may still have the behavior of shortcut 

learning. 

In this paper, we consider the unimodal shortcuts that come from language bias and the multimodal shortcuts that involve 

both visual and textual contents. For language bias, we consider that it originates from two aspects, i.e., keyword bias7 

and label bias. Keyword bias issue occurs in such a scenario that the categories and the words in “Question” have a high 

co-occurrence frequency, e.g., “White” and “red” are common answers to questions beginning with “what color” in the 
VQA-CP v1 training set4. Besides, when some categories appear significantly more frequently than others in a training 

set, the problem of label bias issue occurs. In addition, the textual and visual attributes exhibited by most of the samples 

in the dataset are not inherently intrinsic, but their high co-occurrence frequency with specific labels leads the model to 
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incorrectly treat such bias attributes as an intrinsic attribute of the samples. For example, in the training set, the answer to 

a “what sport” type question has a high probability of being “tennis” when there is a racket in the corresponding picture, 

but in the validation set, this phenomenon does not necessarily hold8. Following Reference9, we define the bias-aligned 

samples as data items that contain strong correlations between the bias attributes and the labels, and the bias-conflicting 

samples as other rarely occurring cases. Therefore, we suggest using “Paraphrase Generation”10 to generate “Paraphrase” 
as new “Questions” with more diverse contexts, then we then follow the contrastive framework to introduce diverse 

information into the model. In this way, we can alleviate the “co-occurrence relationship” the categories and the words in 

“Question” to a certain extent. In addition, to guide the model to focus more on learning the intrinsic properties of the 

samples, we propose to use the mean classification score as the indicator of the model’s learning status, then we use the 

mean classification score to re-weight different samples so as to emphasize bias-conflicting samples and de-emphasize 

the bias-aligned ones. 

The major contributions of this paper can be summarized as follows: (1) Through the contrastive framework, we 

introduce “paraphrases” with diverse con- texts into the training process of the model, reduce the frequency of co-

occurrence of the categories and the words in “Question”, thereby alleviating the model’s memory of the priors in 

dataset. (2) We introduce mean classification score to indicate the learning status of the model, and adaptively adjust the 

importance of differ ent samples. 

2. RELATED WORK

2.1 Paraphrase generation 

Paraphrase generation10 is a fundamental task in natural language processing, which aims to generate a new, semantically 

identical sentence given a source sentence, which has a different structure or choice of words than the source 

sentence, i.e., has a different context. An important property of paraphrase generation is diversity, which makes it useful 

for data enhancement, improving model robustness, etc. Reference11 introduces Diverse Paraphraser using Sub-

modularity to obtain diverse paraphrases for data augmentation on multiple down-stream tasks. Reference12 combines 
pretrained Language Models (LMs) with a novel retrieval-based target syntactic parse selection module to augment the 

training data, which can effectively improve the robustness of the classification models against syntactic attacks. Based 

on the diversity of paraphrase generation, we obtain more contextually diverse “Questions” through paraphrase 

generation, thus reducing the co-occurrence frequency of categories and the words in “Questions” in the VQA dataset to a 

certain extent. 

2.2 Contrastive learning 

As a representation learning method, contrastive learning has been widely used in computer vision13,14. Recently, there 

have been several efforts to apply contrast learning to the field of natural language processing, such as sentence 

representation learning15,16, and unsupervised clustering17. The goal of contrastive learning is to draw similar samples 

closer and dissimilar samples farther. Given a sample, and its augmented sample, the contrast loss will pull them closer 

together, while pulling the original sample and the augmented samples of other samples farther apart. In this way, the 

different instances in the representation space can be sufficiently separated, while the local invariance of each sample can 
be retained17. When using more contextually diverse “Questions” generated by “Paraphrase Generation” for context 

augmentation, we want to introduce richer contexts while avoiding introducing additional noise, so we use contrast 

learning to allow the VQA model to learn sentence representations that are more contextually rich and robust to the 

linguistic variations. 

2.3 Alleviating shortcut learning behavior 

When biases exist in the dataset, neural networks tend to capture spurious associations and exploit dataset biases as 

shortcuts to obtain higher evaluation performance instead of truly understanding the language and images, i.e., the models 

may not learn the intrinsic attributes of better generalization and the ability of reasoning. Recently, several research 

works18,19 have shown that intrinsic attributes are usually more difficult to learn than bias attributes, and that in the early 

training phase of the model, the model first learns shortcut features for fast loss reduction, and only after that the model 

gradually learns intrinsic attributes for further loss reduction. In short, in the early training stage, the model will first learn 
to fit the bias-aligned samples, and then gradually fit the bias-conflicting samples. A straightforward approach to alleviate 

the shortcut learning behavior of the model is to increase the diversity of bias-conflicting samples in the dataset9. For 

instance, to improve the generalization of the domain, Reference20 mixed the style of different source domains. However, 
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this method requires knowledge of the type of bias and additional manual collection of samples. Another approach of 

alleviating the shortcut learning behavior is model design. Reference21 introduced a question-only branch to capture 

superficial statistical correlation from the textual modality and re-weight samples. Reference22 introduced multiple 

biased models and make the biased models preferentially over-fit the biased data distribution by a greedy strategy, 

allowing the base model to learn those examples that are difficult for the biased models to solve, resulting in unbiased 

predictions. 

Table 1. An example of “paraphrase generation”. 

Original 

question 
What color pants is the man wearing? 

Paraphrases 

Which color is the man’s pants? 

Can you name the color of the pants you’re wearing? Tell me the color of pants that the man is 

wearing? 

In Table 1, “Original Question” denotes the “Question” from the VQA-CP v2 dataset and the “Paraphrases” are generated 

by the Paraphraser based on the original question. 

3. METHODOLOGY 

3.1 Task definition 

VQA is one of multimodal learning task that can be formulated as a multi-class classification problem. Given a multi-

modal dataset  , ,
N

i i i i
D I Q A= where each sample is a triplet, including a picture  iI I , a question   iQ Q , and an 

answer 
iA A , the task of VQA model is to learn a mapping function :  cfvqa I Q R → . Specifically, given a picture

and a question, VQA model will output a probability distribution on the candidate answers according to the input. 

We hope that VQA model can make the correct choice among the candidate answers by comprehensively considering the 

visual and textual information. Unfortunately, VQA model may tend to capture the superficial statistical correlation, 

instead of the intrinsic attributes that have better generalization. Therefore, in this section, we will introduce the Context 

Augmentation and Adaptive Loss Adjustment to alleviate shortcut learning behavior of VQA models. 

3.2 Context augmentation 

The existence of data bias leads to models that can achieve higher evaluation metrics by using bias as shortcut. As 

discussed in Section 1, data bias in VQA dataset is due in part to the high frequency co-occurrence relationship. Such 

co-occurrence relationship occurs not only in unimodal information, that is, the category and the words in the 

“question” have high co-occurrence, but also in multimodal information. For example, for “what sport” type questions, 

when “racket” appears in the picture, the answer is often “tennis”. It is because of this that VQA models tend to capture 

such spurious statistical correlations rather than intrinsic features with better generalization, which then leads to shortcut 

learning behavior of the model. Therefore, we propose to alleviate the shortcut learning behavior of the VQA model by 

reducing such spurious co-occurrence relationship. Specifically, we want to introduce diverse information, and 

considering that paraphrase generation can yield semantically identical but more contextually rich sentences, we decided to 
use paraphrase generation to generate “Paraphrase” as a new “Question” with more diverse contexts to mitigate such 

correlation. 

Paraphrases refer to text (often sentences) that share the same meaning but use different choices of words and their 

ordering. For each “question” in the VQA dataset, we used the “Paraphraser”23 to generate multiple sentences with different 

contexts. In Table 1, we selected a sample of question type “What color” as an example. Compared with the original 

“question”, the paraphrases have more context words and different ways of expression. After obtaining the paraphrases 

to the “questions” of all samples in the VQA training set, we selected two paraphrases (pi0 and pi1) for each sample xi as 

the enhanced views of the “Questions”. Then we follow the contrastive framework in Reference13 and use the 

paraphrases to construct (xi, ix+
) pairs, where xi = (Ii, Qi) denotes the original sample, which consists of a picture iI I

and a question iQ Q , and ix+
= (Ii, pi) denotes the positive in- stance, which consists of a picture iI I and a 
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paraphrase pi. For a mini-batch with N pairs, the training objective of context augmentation is: 
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 where hi denotes the representation of xi, and τ is a temperature hyper-parameter and ( ),,  i j ksim h h+
 indicates cosine 

similarity. Finally, we calculate the contrastive loss through the following formula: 
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3.3 Adaptive loss adjustment 

The shortcut learning behavior of the model occurs not only because of the bias in the dataset itself, but also because the 

model over-fits the bias-aligned samples during the training process, and thus learns some of the bias features of the bias-

aligned samples, especially when the bias features are easier to learn than the intrinsic features. As discussed in Section 

2.3, increasing the diversity of bias-conflicting samples during the training of the model is crucial to improve the 

robustness of the model. Considering that increasing the diversity of bias-conflicting samples may change the 

distribution of the dataset itself, as well as being labor-intensive, we adopted the adaptive loss adjustment method. Based 

on this intuition, the model tends to learn some features that are better learned but not needed in the biased alignment 

sample, so the model may ignore some features that are harder to learn and that we want the model to learn. Therefore, 
we propose to guide the model to focus more on learning the intrinsic properties during training. We implement this idea 

by emphasizing bias-conflicting samples and de-emphasizing bias-aligned samples during the training process. It is 

unrealistic to let the model focus on the bias-conflicting samples by artificially labeling the data, and it is even more 

unreasonable to directly emphasize those tail data, so we hope to let the model adaptively complete the weight 

adjustment by monitoring the learning state of the model.  

To adaptively adjust importance of the samples, we attempt to track the learning state (i.e., classification accuracy) of the 

model, then adjust the importance of the samples during the training process. There was some work24,25, which tried to 

balance the classification loss qualitatively based on the number of samples in each category of the training set, without 

caring about the real learning state of the model for different types of samples. Such methods can not make adaptive 

adjustment according to the learning state of the model. Therefore, similar but different from Reference26, we propose to 

use the dynamic mean classification score S RC (C denotes the numbers of the categories) as the indicator of the learning 

status of the model for each category. We hope that the model can quickly fit those bias attributes first, and then we can 
distinguish the bias-aligned samples with more bias attributes through the average classification score. Then, we make 

the model adaptively adjust the importance of different samples according to the cur- rent learning state in the training 

process, so as to pay more attention to the bias-conflicting samples that are difficult to distinguish. 

Let 
1*ik C

jp R denotes the predicted probability of the k-th sample in the j-th iteration and the i-th epoch of the model. At

the i-th epoch, the dynamic mean classification score of the model can be calculated as: 
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where
iS S , 0 1 1[ , ,..., ,..., ]i i i i i

n cS s s s s −= , 
i

ns denotes the mean classification score corresponding to category n in the

i-th epoch, bs denotes the batch size, N denotes the total number of iterations in one epoch and mj denotes the number of

samples in the j-th iter ation.

After obtaining the dynamic mean classification score Si for each category in the training process, we introduce a 

dynamically loss adjustment to dynamically adjust the importance of the sample. As discussed in Section 2.3, in the early 
training stage, the model will first learn to fit the bias-aligned samples, and then gradually fit the bias-conflicting 
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samples. Therefore, we do not adjust the sample weights in the early training phase of the model, thus allowing the 

model to quickly fit the bias-aligned samples. At this time, we consider that samples with high mean classification score 

are more likely to correspond to bias-aligned samples. Later, we adjust the weights of the bias-aligned and bias- 

conflicted samples according to the mean classification score, so as to guide the model to focus more on the bias-

conflicted samples. To achieve this, we formulate the adaptive loss adjustment as: 

( ( ); )       al vqaL L g p y= (4)

1

,          
( )

(1 ) ,  

i

i

i i i

p i b
g p

p S p otherwise  −

 
= 

+ −
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where 
vqa

L is the cross-entropy, pi denotes the predicted probability of the model in the i-th epoch, b de- notes the 

beginning epoch to start adjusting the importance of the sample, and α is a regulating factor, indicating to what extent the 

model adjusts the importance of samples according to “learning status”. 

3.4 Objective function 

Finally, our training paradigm optimizes both ( clL and alL ) losses together, and the overall objective function is in the

form of: 

total cl alL L L= +  (6) 

where β is a hyper-parameter. 

4. EXPERIMENTS

4.1 Experiment settings 

Datasets: We use VQA-CP v24 dataset to evaluate the performance of our proposed approach. VQA-CP v2 dataset was 

built by reorganizing VQA v2, which is designed to test the robustness of the VQA models. The answer distribution of its 

training set and test set is quite different, so it can usually be used to evaluate the robustness of the VQA models. We 

follow the protocol of3,21 to train and evaluate our model, and use the standard VQA evaluation metrics to evaluate the 

performance of our model. 

Implementation details: The weight of the contrastive loss to the total loss, namely the hyper- parameter β in equation 

(6), is set to 0.4. The value of the hyper-parameter α in equation 5 is set to 0.5. In addition, the setting of “start epoch”, 

namely the b in equation 5, needs to be determined according to the training effect of the first few epochs of the model, 

which is related to the model itself. In the experiment, we set it to 4, which means that in the first four epochs, we did not 

use the mean classification score to adjust the im- portance of the samples. After four epochs of training, the model tends 

to be stable, and we begin to adjust the loss. Other experimental settings, such as dimension of the “Question” features and 

the batch size, are the same as21. 

4.2 Results and discussion 

In order to verify the effectiveness of our proposed method, we compare our method with the existing methods to solve 

the data bias issue, such as References3,21,27, and we construct experiments based on the baseline “S-MRL+RUBi”21 and 

“S-MRL+LPF”3. As listed in Table 2, the improvement on the VQA-CP v2, demonstrates the effectiveness of our 
method to reduce the impact of data bias on the model and alleviate shortcut learning behavior of VQA model. Among 

them, baseline “S-MRL+LPF” is based on baseline “S-MRL+RUBi”, by using “language prior” to adjust the global 

training target, which has achieved a significant improvement (+11.11%). Our method outperforms baseline “S-

MRL+RUBi” by 1.55%, and outperforms baseline “S-MRL+LPF” by 1.18%. This may seem a bit strange, because our 

method can achieve a 1.18% improvement on baseline “S-MRL+LPF”, but the improvement on baseline “S-

MRL+RUBi” is not obvious, only 1.55%. After analysis, we think this is reasonable, because our method will have 

certain requirements for the learning ability of the model itself. In the introduction of Section 2.3, our “Adaptive Loss 

Adjustment” method depends on the learning state in the process of model training to a certain extent. Therefore, this just 

shows the effectiveness and applicability of our method in different models. 
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Table 2. Comparison on VQA-CP v2 test set. 

Model Overall Yes/no Number Other 

S-MRL15 38.46 42.85 12.81 43.20 

S-MRL+RUBi15 47.11 68.65 20.28 43.18 

S-MRL+VGQE21 50.11 66.35 27.08 46.77 

S-MRL+LPF14 53.38 88.06 25.00 42.99 

S-MRL+RUBi+CAALA (ours) 48.66 73.04 22.42 43.08 

S-MRL+LPF+CAALA (ours) 54.56 88.19 26.07 44.76 

Note: All metric values of all the baselines are taken directly from the original 
paper. 

4.3 Ablation studies 

In this section, we conduct ablation experiments to prove the effectiveness of Context Augmentation and Adaptive Loss 

Adjustment. The results are reported in Table 3, the “base1” indicates the “S-MRL+RUBi” model and the “base2” 

indicates the “S-MRL+LPF” model. The fact that “base1+CA” outperforms “base1” and “base2+CA” outperforms 

“base2” shows that in- creasing the diversity of “language information” can relieve the model’s memory of “co-

occurrence relations” to a certain extent. In addition, by adding “CAL” to the “base1+CA” and “base2+CA” model, the 

performance is improved, which illustrates that adjusting the importance of samples according to the learning state of the 

model during the training process can prevent the model from over learning some bias attributes. 

Table 3. Ablation studies on the VQA-CP v2 test set. 

Model Overall Yes/no Number Other 

Base 1 47.11 68.65 20.28 43.18 

Base 2 53.38 88.06 25.00 42.08 

Base 1+CA 47.74 70.94 20.83 42.96 

Base 2+CA 54.21 87.79 25.45 44.51 

Base 1+CA+ALA 48.66 73.04 22.42 43.08 

Base 2+CA+ALA 54.56 88.19 26.07 44.76 

Note: The “base 1” indicates the “S-MRL+RUBi” model and the “base 2” 

indicates the “S-MRL+LPF” model. “base+CA” indicate the “base” model 
trained with our proposed Context Augmentation, “base+CA+ALA” indicate the 
“base” model trained with our proposed Context Augmentation and Adaptive 
Loss Adjustment. 

5. CONCLUSION

In this work, we propose to use Context Augmentation and Adaptive Loss Adjustment to alleviate short-cut learning 

behavior of VQA model. We increase the diversity of language information through para- phrase generation and 

introduce adaptive loss regulation to adjust the importance of samples according to the learning state of the model. The 

experimental results demonstrate the feasibility and validity of our pro- posed method. 
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