
 
 

Leader-follower security games in UAV communication with deception 

Boyang Hea, Jian Gaob, Xiangmin Guan*cd and Zhaoyang Cheng#e 
aZhengzhou Aerotropolis Institute of Artificial Intelligence, Zhengzhou, Henan, China; bShenzhen 

High Great Innovation Technology Development Co., Ltd., Shenzhen, Guangzhou, China; cCAAC 

Key laboratory of General Aviation Operation Civil Aviation Management Institute of China, 

Beijing 100102, China; dKey Laboratory of General Aviation Operation Technology of Zhejiang 

Province, Hangzhou, Zhejiang, China; eAcademy of Mathematics and Systems Science, Chinese 

Academy of Sciences, Beijing, China 

ABSTRACT 

In this paper, we study the leader-follower unmanned aerial vehicle (UAV) security game with deception. The robustness 

under the UAV game with deception describes the model’s ability to maintain players’ profits. We propose a UAV security 

model with one-leader and multi-followers and define the deception strong Stackelberg equilibrium (DSSE) in the game 
with deception. Besides, we analyze the robustness of the DSSE to find the boundary that the leader can not improve its 

utility from deception.   
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1. INTRODUCTION 

In recent years, due to the rapid development of Unmanned aerial vehicles (UAVs), UAVs have been widely used in 

military, rescue, and topographic reconnaissance1,2. Civilian UAVs are widely used in commercial performance, video 

photography and other fields. The competition among UAVs is also widely adopted in military reconnaissance and 
academic competitions. The confrontation among UAVs models the interaction between a UAV defender and UAV 

attackers. In fact, the UAV defender often has a defensive advantage that ensures that UAV attackers observe its strategy3. 

Thus, the UAV defender is always a leader and chooses a strategy first, while UAV attackers make decisions with the 

knowledge of the defender’s strategy. 

There are many uncertain phenomena in the confrontation among UAVs4,5. For example, the random communication 

among drones may be not synchronous. Also, different UAVs may have different cognition of unstructured environment 

information. Actually, deception is one of the most important reasons for this uncertainty6,7. The equilibrium in the leader-

followers UAVs security game with deception can be defined as the deception strong Stackelberg equilibrium (DSSE)8. 

These phenomena have been studied extensively in recent years. For example, Bakker9 and Cheng10 considered a case that 

the attacker and defender have a misperception of a parameter, while the attacker can manipulate the attacker’s perception 

of parameters. Xu11 studied how to deceive the attacker by exploiting the defender’s knowledge.  

Moreover, whether players have motivations to explore the different cognitions among them is a crucial question in security 

games. It was also widely discussed in References12,13. Concretely, if the different cognitions have little influence on 

players’ profits, revealing or utilizing the cognitive differences will not bring players benefits, and then players may not 

have motivations to explore the fact even if they realize the existence of different cognitions.  

Fortunately, hypergame theory provide a framework to analyze the equilibrium’s robustness. Hypergame theory extends 

game theory by allowing for an unbalanced game model that each player has a different view of the game14. It allows 

players to play different games and can account for the strategies of each player in deception. In addition, the hypergame 

framework has advantages in analyzing whether players have motivations to explore the different cognitions among them 

since the robustness under hypergame frameworks can describe the different cognitions’ influences on players’ profits. 

The robustness under hypergame frameworks describes the model’s ability to maintain players’ profits15. Thus, these 

inspire us to analyze the different cognitions with hypergame frameworks. 
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Therefore, the motivation of this paper is to model and analyze the leader-followers UAV security games with deception 

based on hypergame theory.  Main contributions are summarized as follows. We propose a UAV hypergame model with 

one-leader and multi-followers and define the DSSE in the game with deception. Besides, we analyze the robustness of 

the DSSE in hypergame framework to find the boundary that the leader can not improve its utility from deception. 

Moreover, we provide several experiments to show the validity of our resluts.  

The remainder is organized as follows. Section 2 formulates UAV security game with deception by hypergame theory. 

Then Section 3 analyzes the robustness of DSSE in hypergame framework. Moreover, Section 4 presents numerical 

examples for illustration of the validity of the robustness in real UAV applications. Finally, Section 5 concludes the paper. 

2. PROBLEM FORMULATION 

In this section, we model a leader-follower hypergame with resource allocation constraints to study the UAVs’ interactions 

between a defender and multiple attackers. 

We consider a single-leader-multiple-follower UAV security game. Followers are UAV attackers and allocate resources 

to attack some targets.  The leader is a UAV defender and allocates resource to protect targets, as shown in figure 1.  

We consider that 𝜃0is is a fixed parameter generated by nature and each player may have a different observation of  𝜃0. 

All possible observation of  𝜃0 is Θ. We take 𝐺(𝜃′) = {𝑃, Ω, 𝑈, 𝜃′} as the security game under the observation 𝜃′, where 

𝜃′ ∈ Θ . 𝑃 = {𝑙, 1, … , 𝑛}  is the player set, 𝑙  is the leader UAV and 1, … , 𝑛  represents for follower UAVs. Ω =
Ω𝑙 × Ω1 × ⋯ × Ω𝑛 is the strategy of all players, where Ω𝑙 ⊆ ℝ𝐾  is the leader UAV’s strategy set and Ω𝑖 ⊆ ℝ𝐾  is the 

follower UAVs’ strategy set. 𝑈 = {𝑈𝑙 , 𝑈1, … , 𝑈𝑛} is the utility function set of all players, where 𝑈𝑙 : Ω𝑙 × Ω1 × ⋯ × Ω𝑛 →
ℝ is the leader’s utility function and  𝑈𝑖 : Ω𝑙 × Ω𝑖 → ℝ is the 𝑖th follower UAV’s utility function.  

Now, we give the concrete formalization of the leader-followers UAV security game by formalize the strategy sets and 

utility functions. We take 𝑇 = {𝑡1, . . 𝑡𝐾} as the target set, where each UAV attacker choose to attack the target and the 

UAV defender tries to prevent attacks by covering targets. The UAV defender has 𝑅0 resources and assign them to each 

target, i.e., 𝑥𝑘  is the resources that the defender assign to target 𝑘. Then the defender’s strategy is 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐾]𝑇 . 

Similarly, the 𝑖 th UAV attacker has 𝑅𝑖  resources and attack target 𝑘 with 𝑦𝑖
𝑘  resources. Then the 𝑖 th UAV attacker’s 

strategy is 𝑦𝑖 = [𝑦𝑖
1, 𝑦𝑖

2, … , 𝑦𝑖
𝐾]𝑇. The player’s strategy sets can be wrote as Ω𝑙 = {𝑥| ∑ 𝑥𝑘 = 𝑅0

𝐾
𝑘=1 , 𝑥𝑘 ≥ 0}, and Ω𝑖 =

{𝑦| ∑ 𝑦𝑖
𝑘 = 𝑅0

𝐾
𝑘=1 , 𝑦𝑖

𝑘 ≥ 0}, for all 𝑖 = 1, … , 𝑁. 

Then we consider the utility functions of all the players. In this leader-followers UAV security game,  𝐶𝑙(𝑡𝑘) is the UAV 

defender’s utility when the UAV defender allocates each unit of resource to target 𝑡𝑘 and the UAV attackers allocate each 

unit of resource to target 𝑡𝑘. 𝑄𝑙(𝑡𝑘) is the UAV defender’s utility when the UAV defender does not allocate each unit of 

resource to target 𝑡𝑘  and the UAV attackers allocate each unit of resource to target 𝑡𝑘 . 

On the other hand, 𝐶𝑖(𝜃′, 𝑡𝑘) is the 𝑖-th UAV attacker’s utility when the defender allocates each unit of resource to the 

target 𝑡𝑘 and the UAV attacker allocates each unit of resource to target 𝑡𝑘.  𝑄𝑖(𝜃′, 𝑡𝑘) is 𝑖-th UAV attacker’s when the 

defender does not allocate each unit of resource to target 𝑡𝑘 and the UAV defender allocates each unit of resource to target 

𝑡𝑘. Then if strategy profile [𝑥, 𝑦1, … , 𝑦𝑛] is played under observation 𝜃′, each player’s utilities is computed as follows: 

𝑈𝑙(𝑥, 𝑦1, … , 𝑦𝑛) = ∑ (∑ 𝑦𝑖
𝑘

𝑛

𝑖=1

) (𝑥𝑘  𝐶𝑙(𝑡𝑘) + (𝑅0 − 𝑥𝑘)𝑄𝑙(𝑡𝑘))

𝐾

𝑘=1

, 

𝑈𝑖  (𝑥, 𝑦𝑖 , 𝜃′) = ∑ 𝑦𝑖
𝑘(𝑥𝑘𝐶𝑖(𝜃′, 𝑡𝑘) + (𝑅0 − 𝑥𝑘)𝑄𝑖(𝜃′, 𝑡𝑘)).

𝐾

𝑘=1

  

Each UAV always hopes to maximize its own utility. There are also some other practical communication networks16-20, 

while we consider a star communication network. Actually, as a key property of UAV security problems, we always 

suppose that 𝐶𝑙(𝑡𝑘) > 𝑄𝑙(𝑡𝑘), for all 𝑘 = 1, … , 𝐾. It means that the unit utility from defending a target is greater than it 

from not defending the same target for the defender. Besides, we also suppose that 𝐶𝑖(𝜃, 𝑡𝑘) < 𝑄𝑖(𝜃, 𝑡𝑘), for all 𝑖 = 1, … , 𝑛, 

𝑘 = 1, … , 𝐾, 𝜃 ∈ Θ. It denotes that the unit utility from attacking a target is greater than it from not attacking the same 

target for each UAV attacker. Both of them has been widely consider in the UAV security problem, since the UAV attackers 

tend to invade vulnerable targets, and the UAV defender prefer to prevent the invasion. Besides, we always suppose that 
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Θ is compact, convex, and nonempty, and there exists 𝑘 such that 𝐶𝑖(𝜃0, 𝑡𝑘) ≥ 𝑄𝑖(𝜃0, 𝑡𝑙) for 𝑖 ∈ 𝑃, 𝑙 ≠ 𝑘. We mainly 

consider that there exists a most attractive target to the UAV attacker.   

 

Figure 1. Leader-followers UAV security game. 

Moreover, in order to describe the deception in leader-followers UAV security games, we use the hypergame framework 

to help us analyze. We consider that the UAV defender deceives all UAV attackers such that the UAV attackers think the 

value of 𝜃0 is 𝜃′ where 𝜃′ ∈ Θ. Take 𝐺𝑖𝑗  as the game of 𝑖-th UAV attacker as it is perceived by 𝑗-th UAV attacker, where 

𝑖, 𝑗 ∈ 𝑃. In the UAV defender’s perceptive, 𝐺𝑙𝑙 = 𝐺(𝜃0) since it knows the real value of the parameter, and 𝐺𝑗𝑙 = 𝐺(𝜃′) 

since it deceives all UAV attackers such that the UAV attackers think the value of 𝜃0 is 𝜃′. Similarly, In the 𝑖-th UAV 

attacker’s perceptive, 𝐺𝑗𝑖 = 𝐺(𝜃′) since it is not conscious of the deception. Thus, 𝐻𝑖 = {𝐺𝑗𝑖 , 𝑗 ∈ 𝑃}  is the first level 

hypergame observed by 𝑖 -th UAV. The second level hypergame under deception can be denoted as 𝐻(Θ) =
{𝐻𝑙 , 𝐻1, … , 𝐻𝑛}, which is a set of first level hypergame perceived by each UAV. 

Now, we denote 𝐵𝑅(𝑥, 𝜃′) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈Ω𝑖
𝑈𝑖(𝑥, 𝑦, 𝜃′)  as the set of all UAV attackers’ best response to the UAV 

defender’s strategy 𝑥 under the deception 𝜃′. In the hypergame framework with deception, the leader chooses the strategy 

first, and the followers choose the strategy by observing the leader’s choice. Actually, the leader also knows that followers 

make decisions based on their strategy. Then the standard solution concept is Deception Strong Stackelberg Equilibrium 

(DSSE). A strategy profile (𝑥∗, 𝑦∗) is said to be a DSSE in 𝐻(Θ) if  

(𝑥∗, 𝑦∗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈Ω𝑙,𝑦∈𝐵𝑅(𝑥,𝜃∗)𝑈𝑙(𝑥, 𝑦), 

where 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃′∈Θ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈Ω𝑙,𝑦∈𝐵𝑅(𝑥,𝜃∗)𝑈𝑙(𝑥, 𝑦). 

3. MAIN RESULTS 

In this section, we mainly discuss the robustness of DSSE under hypergame frameworks. The robustness of DSSE focus 

on players’ motivations to explore the different cognitions among them 

We take (𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸)  as the DSSE of 𝐻(𝜃)  and 𝜃∗  as the corresponding deceptive parameter. Also, we take 

(𝑥(𝜃0), 𝑦(𝜃0)) as the strategy when all players’ observations are 𝜃0, which is actually no deception in the UAV security 

games. We aim to find whether there exists a deceptive set 𝛿, where 𝛿 ⊂ Θ, such that  

𝑈𝑙(𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸) = 𝑈𝑙(𝑥(𝜃0), 𝑦(𝜃0)). 

Then the following theorem shows the robustness of the DSSE.  

Theorem 1: There exists a convex nonempty set 𝛿 such that  𝑈𝑙(𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸) = 𝑈𝑙(𝑥(𝜃0), 𝑦(𝜃0)). 

Proof: We take Γ𝑖(𝑥, 𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=1,…𝐾𝑥𝑘𝐶𝑖(𝜃, 𝑡𝑘) + (𝑅𝑖 − 𝑥𝑘)𝑄𝑖(𝜃, 𝑡𝑘). According to Reference10, for any 𝑘 ∈ Γ𝑖 , 

𝑙 ≠ Γ𝑖 , we have  𝑥𝑘𝐶𝑖(𝜃, 𝑡𝑘) + (𝑅𝑙 − 𝑥𝑘)𝑄𝑖(𝜃, 𝑡𝑘) ≥ 𝑥𝑙𝐶𝑖(𝜃, 𝑡𝑙) + (𝑅𝑖 − 𝑥𝑖)𝑄𝑖(𝜃, 𝑡𝑖). Since 𝐶𝑖(𝜃, 𝑡𝑘) and 𝑄𝑖(𝜃, 𝑡𝑘) are 

continuous with respect to 𝜃 ∈ Θ for any 𝑘. There exists a convex set 𝛿 such that for all 𝜃 ∈ 𝛿𝑖, we have 
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𝑥𝑘𝐶𝑖(𝜃, 𝑡𝑘) + (𝑅𝑙 − 𝑥𝑘)𝑄𝑖(𝜃, 𝑡𝑘) ≥ 𝑥𝑙𝐶𝑖(𝜃, 𝑡𝑙) + (𝑅𝑖 − 𝑥𝑖 )𝑄𝑖(𝜃, 𝑡𝑖). 

We take 𝛿 =∩𝑖=1
𝑛 𝛿𝑖  and then 𝛿 is nonempty. Then for any 𝜃 ∈ 𝛿, when the 𝑖-th UAV attacker still invades targets in 

Γ𝑖  (𝑥(𝜃0), 𝜃0), which leads to the same profits as 𝑦𝑖(𝜃0). According to Reference21, the UAV defender does not change its 

strategy under 𝛿.  

Thus for any 𝑈𝑙(𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸) = 𝑈𝑙(𝑥(𝜃0), 𝑦(𝜃0)).                                                                         

Theorem 1 shows that there is always a nonempty subset of the observation parameter such that the leader does not 

implement deception in this region, since tiny deception does not bring the leader more benefits. 

Moreover, we also hope to find the bound of the subset δ and the following theorem give a Quantized boundary of the 

deceptive set.  

Theorem 2: For all 𝑘 = 1, … , 𝐾, 𝑖 ∈ 𝑃, if 𝐶𝑖(𝜃, 𝑡𝑘) and 𝑄𝑖(𝜃, 𝑡𝑘) are 𝜆-Lipschitz continuous in 𝜃 ∈ Θ, then there exists 

𝛿 = {𝜃 ∈ Θ: ||𝜃 − 𝜃0|| < Δ}, where Δ = min
𝑖∈𝑃

𝐿𝑖
1−𝐿𝑖

2

2𝜆𝑅𝑖
,  

𝐿𝑖
1 = 𝑥𝑘𝐶𝑖(𝜃, 𝑡𝑘) + (𝑅𝑖 − 𝑥𝑘)𝑈𝑖

𝑢(𝜃, 𝑡𝑘), 𝑘 ∈ Γ𝑖(𝑥(𝜃0), 𝜃0),  

𝐿𝑖
1 = max

𝑙∉Γ𝑖(𝑥(𝜃0 ),𝜃0)
 𝑥(𝜃0)𝑙𝐶𝑖(𝜃0, 𝑡𝑙) + (𝑅𝑖 − 𝑥(𝜃0)𝑘)𝑈𝑖

𝑢(𝜃0, 𝑡𝑙), 

such that for all 𝛿, 𝑈𝑙(𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸) = 𝑈𝑙(𝑥(𝜃0), 𝑦(𝜃0)). 

Proof: According to Reference10, Γ𝑖(𝑥(𝜃0), 𝜃0) is the set with a unique element. We take 𝑘1 ∈  Γ𝑖(𝑥(𝜃0), 𝜃0) and 𝑘2 ∈
𝑎𝑟𝑔𝑚𝑎𝑥𝑙∉Γ𝑖(𝑥(𝜃0),𝜃0)𝑥(𝜃0)𝑙𝐶𝑖(𝜃0, 𝑡𝑙) + (𝑅𝑖 − 𝑥(𝜃0)𝑘)𝑄𝑖(𝜃0, 𝑡𝑙). Thus, 𝑘1 and 𝑘2 represent the corresponding target set of 

the two most attractive utility to the 𝑖-th UAV attacker under the leader’s strategy 𝑥(𝜃0) and the observation 𝜃0. Since 

𝐶𝑖(𝜃, 𝑡𝑘)  and 𝑄𝑖(𝜃, 𝑡𝑘)  are 𝜆 -Lipschitz continuous in 𝜃 ∈ Θ , take 𝑓𝑖(𝑥, 𝜃, 𝑘) = 𝑥𝑘𝐶𝑖(𝜃, 𝑡𝑘) + (𝑅𝑖 − 𝑥𝑘)𝑄𝑖(𝜃, 𝑡𝑘) . 

According to Reference10, 𝑓𝑖(𝑥, 𝜃, 𝑘) is 𝑅𝑖𝜆- Lipschitz continuous in  𝜃 ∈ Θ. Thus, for any 𝑘 ∉ Γ𝑖(𝑥(𝜃0), 𝜃0) 

||𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘) − 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘)|| ≤ 𝑅𝑖𝜆||𝜃 − 𝜃0||. 

Then 𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘) − 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘) ≤ 𝑅𝑖𝜆||𝜃 − 𝜃0||.  

Also, 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘) ≤ 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘2)  since 𝑘2 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∉Γ𝑖(𝑥(𝜃0),𝜃0)𝑥(𝜃0)𝑙𝐶𝑖(𝜃0, 𝑡𝑙) + (𝑅𝑖 − 𝑥(𝜃0)𝑘)𝑈𝑖
𝑢(𝜃0, 𝑡𝑙). 

Thus,  

𝑓(𝑥(𝜃0), 𝜃, 𝑘) − 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘2) ≤ 𝑅𝑖𝜆||𝜃 − 𝜃0||. 

Besides, 𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘1) − 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘1) ≥ 𝑅𝑖𝜆||𝜃 − 𝜃0||. Thus,  

𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘1) − 𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘) ≥ 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘1) − 𝑓𝑖(𝑥(𝜃0), 𝜃0, 𝑘2) − 2𝑅𝑖𝜆||𝜃 − 𝜃0||. 

Therefore, for any  𝜃 ∈ 𝛿, 𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘) < 𝑓𝑖(𝑥(𝜃0), 𝜃, 𝑘1). According to Reference10, for 𝑥𝐷𝑆𝑆𝐸, the equation also holds. 

Thus, the UAV defender has no will to change its own strategy. Then 𝑈𝑙(𝑥𝐷𝑆𝑆𝐸 , 𝑦𝐷𝑆𝑆𝐸) = 𝑈𝑙(𝑥(𝜃0), 𝑦(𝜃0)).                                                              

Theorem 2 gives a lower bound if the utility function is Lipschitz continuous. In addition, if the leader wants to benefit 

more from deception, it needs to pay no less energy than the lower bound 𝛿. Therefore, it can be regarded as a trade-off 

for the leader. 

4. NUMERICAL EXPERIMENTS 

In this section, we provide several experiments to show the validity of theorems.  

We consider a UAV security problems with 1 UAV defender and 5 UAV attackers. We take 𝑅𝑙 = 𝑅1 = ⋯ = 𝑅5 = 1. And 

we sample 𝐶𝑙(𝑡𝑘), 𝑄𝑙(𝑡𝑘), 𝐶𝑖(𝑡𝑘), 𝑄𝑖(𝑡𝑘)  from [0,4]. Then we take 𝜃0 = 0 , Θ = [−1,1] , 𝐶𝑖(𝜃, 𝑡𝑘) = 𝐶𝑖(𝑡𝑘) , and 

𝑄𝑖(𝜃, 𝑡𝑘) = 𝑄𝑖(𝑡𝑘) + 𝑑𝑘𝜃2, where 𝑑𝑘 is generaed in the range 𝐴 ⊂ ℝ.  
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(a) 𝐴 = [0,1]                                                        (b) 𝐴 = [0,2] 

Figure 2. Utilities of the UAV defender in different ranges 𝐷. 

As shown in figure 2, to show the validity of our theorem, we take two different range 𝐷, where 𝐴 = [0,1] in Figure 2a 

and 𝐴 = [0,2] in Figure 2b. The blue lines are the UAV defender’s utility if the UAV defender take deception 𝜃′. The light 

blue region represent the value of 𝜃′ such that the utilities of the UAV defender and UAV attackers are invariant. The light 

green region shows that the bounds according to Theorem 2. Actually, the bule line of 𝜃′ = 0 is the utility of the the UAV 
defender if it does not deceieve. Notice that the light green region is always contained in the light blue region. Thus, our 

robust boundary according to Theorem 2 is contained in the invariant region of players’ utilites.  

5. CONCLUSION 

In this paper, we have studied the leader-followers unmanned aerial vehicle (UAV) security game based on hypergame 

theory. The robustness under hypergame frameworks describes the model’s ability to maintain players’ profits. We have 

propoed a UAV hypergame model with one-leader and multi-followers and defind the DSSE in the game with deception. 

Besides, we have analyzed the robustness of the DSSE in hypergame framework to find the boundary that the leader can 

not improve its utility from deception. 
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