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ABSTRACT 

In this paper, we study a distributed resource allocation scheme for unmanned aerial vehicle (UAV) communication 

systems with parameter uncertainty. A game-theoretic framework is proposed to describe the UAVs’ interactions. 

Specifically, a distributed robust game is modeled, where the parameters in resource allocation constraints have polyhedral 

convex uncertainties, which are not exactly known by UAVs. We aim to solve this uncetain problem in the worst case. In 

this view, we first convert the original robust game into an extended certain game by virtue of the idea in robust 

optimization. Then we consider distributed dynamics of this certain game to seek generalized Nash equilibrium (GNE) by 

gradient descent and projected output feedback. Finally, we show serveral numerical examples to present the feasibility of 

the proposed dynamics.  
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1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) have been widely emerged and employed in many areas such as military, scientific and 

civilian scenarios in the past decade. Because of their excellent manoeuvrability, the aerial communication system based 

on UAVs has been regarded as a new promising paradigm, which can promote rapid and flexible deployment1, 2. Moreover, 

resource allocation is a crucial communication issue in UAV system. The discussion of resource allocation issue 

includes but is not limited to transmission power, service users and subchannels. It is important to solve these issues to 

improve the energy efficiency and coverage of UAV system. For these resource allocation problems, using a competitive 

way to deploy multiple UAVs has become an emerging research topic. Particularly, game theory is naturally a tool to 
model such an interactive mechanism between UAVs and enable us to study their complicated behaviors3, 4. In this way, 

such shared resources between UAVs are frequently considered as coupled constraints in non-cooperative games.  

As a reasonable solution to non-cooperative games, a generalized Nash equilibrium (GNE) refers to a strategy profile 

satisfying local and coupled constraints, in which no one can benefit from unilaterally changing its own strategy. 

Significant theoretic and algorithmic achievements of GNE seeking have been made5. Furthermore, a lot of research has 

been done to deploy multiple UAVs in a distributed manner to carry out tasks in various applications. This motivates the 

interest to seek GNE distributedly in UAV games, where the UAVs obtain a GNE by making decisions with local 

information and communicating with their neighbors through networks. Various distributed algorithms have been 

investigated, including asymmetric projection algorithms6, projected algorithms via non-smooth projected tracking 

dynamics7, and approximate projection-free algorithms8. 

 On the other hand, most references on UAV allocation are based on a fundamental assumption that all UAVs exactly share 

the resource allocation constraints information. Whereas, this argument is not always held in practical situations due to the 
underlying uncertainty. The uncertainty is usually due to many factors such as heavy communication burden2 or 

environmental noise interferences9. Hence, the robustness of UAV allocation games needs to be considered.  
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One way to deal with uncertainties is by robust optimization, which provides a paradigm that relies on worst-case analysis. 

Specifically, computing the worst case means evaluating the solution by realizing the uncertainty that is most unfavourable. 

By employing the idea of robust optimization in games, the concept of robust game was first proposed in Reference10. This 

idea is not only limited to theoretical research, but also applied to other practical scenarios11, 12. 

The motivation of this work is to model a robust game to investigate the resource allocation issues among UAVs, and seek 
a GNE under the worst case via a distributed environment. The main technical contributions are listed as follows. Firstly, 

we employ game theory to build a robust model with polyhedral uncertain parameters for describing the competition among 

UAVs. Secondly, we convert the original robust game into an extended certain game by employing the idea of robust 

optimization. Then we investigate a novel continuous-time dynamics for seeking GNE of this certain game in a distributed 

way by gradient descent and projected output feedback. Finally, we illustrate several examples to present the feasibility of 

the distributed dynamics.  

The remainder is organized as follows. Section 2 formulates a distributed robust game with parameter uncertainties in 

coupled constraints. Then Section 3 provides a distributed dynamics by considering a robust counterpart. Moreover, 

Section 4 presents numerical examples for illustration of the proposed dynamics in real UAV applications. Finally, we 

summary the results obtained in this paper in Section 5. 

2. PROBLEM FORMULATION 

We first model a distributed robust game with resource allocation constraints to study the UAVs’ interactions in this section. 

We consider an 𝑁-UAV communication system where UAVs take the optimal resources allocation. This formulates a non-

cooperative game. We denote 𝒢 = (𝛪, ℰ) as a connected network graph, where 𝛪 ≜ {1,…𝑁} is the UAV set and ℰ is the 

edge set. Also, we take 𝐴 = [𝑎𝑖𝑗] ∈ ℝ
𝑛×𝑛  as the connected matrix of 𝒢. If the pair (𝑗, 𝑖) ∈ ℰ, then we have 𝑎𝑖𝑗 > 0, which 

indicates that UAV 𝑗 can exchange the information with 𝑖, as shown in Figure 1. 

 

Figure 1. Multi-UAV communication network. 

For 𝑖 ∈ 𝛪, UAV 𝑖 chooses a decision variable 𝑥𝑖 from a compact and convex set 𝐶𝑖 ⊆ ℝ
𝑛 . We denote 𝐶 ≜ ⨅𝑖=1

𝑁 𝐶𝑖 ⊆ ℝ
𝑛𝑁, 

𝑥 ≜ 𝑐𝑜𝑙{𝑥1, … 𝑥𝑁} ∈ 𝐶 as the strategy profile for all UAVs, and 𝑥−𝑖 ≜ 𝑐𝑜𝑙{𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑁} as the strategy profile 

for all UAVs except 𝑖. The convex cost function for UAV 𝑖 is 𝐽𝑖(𝑥𝑖 , 𝑥−𝑖): ℝ
𝑛𝑁 → ℝ, which is continuously differentiable 

with respect to 𝑥𝑖, 𝐽𝑖(𝑥) is Lipschitz continuous in 𝑥.  Since the shared resources such as spectrum and power resources 

are usually limited, there exists a coupled allocation constraint in the UAV communication network. Moreover, considering 

the inevitable uncertainties in practice, the allocation constraint has uncertain parameters, which come from polyhedral 

uncertain convex sets. These uncertainties are usually caused by many factors, such as heavy transmission burden in 

communication channels2 or noise interferences in complex environments10. We denote 𝑈 ⊆ ℝ𝑁𝑛  as the set for this 

allocation constraint. All UAVs should satisfy  

𝑥 ∈ 𝑈 ≜ {𝑥 ∈ ℝ𝑁𝑛|∑ 𝜃𝑖
T𝑥𝑖 ≤ 𝑏

𝑁

𝑖=1
, 𝜃𝑖 ∈ Ξ𝑖 ⊆ ℝ

𝑛 , ∀𝑖 ∈ 𝛪} 

where Ξ𝑖  is a polyhedral uncertain set, defined as Ξ𝑖 = {𝜃𝑖 ∈ ℝ
𝑛:  𝑃𝑖 𝜃𝑖 ≤ 𝑑𝑖} , 𝑃𝑖 ∈ ℝ

𝑞𝑖×𝑛 , 𝑑𝑖 ∈ ℝ
𝑞𝑖 . For all 𝜃𝑖 ∈ Ξ𝑖 ,  

∑ 𝜃𝑖
T𝑥𝑖 ≤ 𝑏

𝑁
𝑖=1  must be satisfied. Denote 𝒳 ≜ 𝑈⋂𝐶 as the feasible set of this game.  

The feasible set of UAV 𝑖 is  
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𝒳𝑖(𝑥−𝑖) ≜ {𝑥𝑖 ∈ 𝐶𝑖: 𝜃𝑖
T𝑥𝑖 ≤ 𝑏 − ∑ 𝜃𝑗

T𝑥𝑗
𝑗≠𝑖,𝑗∈𝐼

, 𝜃𝑖 ∈ Ξ𝑖} 

In a nutshell, given 𝑥−𝑖, UAV 𝑖 aims to solve  

𝑚𝑖𝑛
𝑥𝑖∈ℝ

𝑛 
 𝐽𝑖(𝑥𝑖 , 𝑥−𝑖)

s.t. 𝑥𝑖 ∈ 𝒳𝑖(𝑥−𝑖) 
                                                                (1) 

For a reasonable solution of equation (1), a generalized Nash equilibrium (GNE) can be regarded an action profile 𝑥∗ that 

satisfies 

𝐽𝑖(𝑥𝑖
∗, 𝑥−𝑖

∗ ) ≤ 𝐽𝑖(𝑥𝑖 , 𝑥−𝑖
∗ ),  ∀𝑖 ∈ 𝛪, ∀𝑥𝑖 ∈ 𝒳𝑖(𝑥−𝑖) 

in which no UAV can profit from unilaterally deviating from its own action5. On the other hand, each UAV may only 

access its local cost function 𝐽𝑖  and action set Θ𝑖  in the multi-UAV network, since these are private information. Also, UAV 

𝑖 can only know 𝜃𝑖
T𝑥𝑖 rather than ∑ 𝜃𝑖

T𝑥𝑖
𝑁
𝑖=1 . To fulfil cooperation, all UAVs exchange their local information through the 

network graph 𝒢.  In this way, this paper studies the approach to find a GNE of equation (1) via a distributed environment. 

3. DYNAMICS DESIGN 

Based on the formulated robust game, we then consider a distributed dynamics for seeking a GNE of equation (1) under 

the worst case, that is, the solution satisfies all possible constraints,  

𝑥∗ ∈ {𝑥 ∈ 𝒳| ∑  𝑁
𝑖=1 𝑚𝑎𝑥

𝜃𝑖∈Ξ𝑖
 𝜃𝑖
T𝑥𝑖 ≤ 𝑏 } 

Due to the parameter uncertainty, we first utilize the idea in robust optimization to handle the coupled constraint10. 

Recalling that Ξ𝑖 is a polyhedral uncertain set for 𝑖 ∈ 𝐼. The independent optimization problem separated from equation (4) 

is 

                   
𝑚𝑎𝑥
𝜃𝑖
 𝜃𝑖
T𝑥𝑖

s.t. 𝑃𝑖 𝜃𝑖 ≤ 𝑑𝑖  
                                                                          (2) 

By introducing a dual variable 𝜏𝑖 ∈ ℝ+
𝑞𝑖 , equation (2) becomes 

𝑚𝑖𝑛
𝜏𝑖
 𝑑𝑗
T𝜏𝑗

s.t. 𝑃𝑗
T𝜏𝑗 − 𝑥𝑗 = 0𝑛 ,  𝜏𝑖 ≥ 0𝑞𝑖 .

 

We adopt the similar analysis for other UAVs. Whereupon, the robust game of equation (1) is transformed into a certain 

game with resource allocation constraints  

                                                          
𝑚𝑖𝑛
𝑧𝑖∈ Ω𝑖 

 𝐽𝑖(𝑧𝑖 , 𝑧−𝑖),

s.t. ∑  𝑁
𝑗=1 𝑀𝑗𝑧𝑗 ≤ 𝑏,∀𝑗 ∈ 𝐼

                                                         (3) 

where 𝑧𝑖 = col{𝑥𝑖 , 𝜏𝑖} ∈ ℝ
𝑛+𝑞𝑖 , 𝑀𝑖 = [0𝑛

T , 𝑑𝑖
T] ∈ ℝ1×(𝑛+𝑞𝑖) , 𝐷𝑖 = [−𝐼𝑛 , 𝑃𝑖

T] ∈ ℝ𝑛×(𝑛+𝑞𝑖),  Ω𝑖 = {𝐶𝑖 ×ℝ+
𝑞𝑖} ∩ {𝐷𝑖𝑧𝑖 =

0𝑛}, 𝐽𝑖(𝑧𝑖 , 𝑧−𝑖) = 𝐽𝑖(𝑥𝑖 , 𝑥−𝑖).  

We denote 𝑔𝑖(𝑧𝑖 , 𝑧−𝑖) ≜ col {∇𝑥𝑖𝐽𝑖(⋅, 𝑥−𝑖), 0𝑞𝑖} ∈ ℝ
𝑛+𝑞𝑖  as the pseudo-gradient. We decompose 𝑏 = ∑  𝑁

𝑖=1 𝑏𝑖. We define 

the projection operator Π𝐾: ℝ
𝑛 →  𝐾 on a closed and convex set 𝐾 as  

Π𝐾(𝑠) ≜ argmin
𝑟∈𝐾

‖𝑠 − 𝑟‖ 

For designing a distributed dynamic, we introduce auxiliary variables 𝑦𝑖 ∈ ℝ
n , 𝜈𝑖 ∈ ℝ, 𝜔𝑖 ∈ ℝ for each UAV 𝑖 ∈ 𝐼 . 

Moreover, we employ ΠΩ𝑖(∙), Πℝ+(∙) as two projection operators on  Ω𝑖  and ℝ+ , respectively. Then we propose the 

following distributed dynamics for game of equation (3): 
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{
 
 

 
 
𝑦�̇� = −𝑔𝑖(𝑧𝑖 , 𝑧−𝑖) −𝑀𝑖

T𝜆𝑖 + 𝑧𝑖 − 𝑦𝑖 ,                                                            

𝜈�̇� = 𝑀𝑖𝑧𝑖 − 𝑏𝑖 −∑  𝑁
𝑗=1 𝑎𝑖𝑗(𝜆𝑖 − 𝜆𝑗) − ∑  𝑁

𝑗=1 𝑎𝑖𝑗(𝜔𝑖 −𝜔𝑗) + 𝜆𝑖 − 𝜈𝑖 ,

𝜔𝑖̇ = ∑  𝑁
𝑗=1 𝑎𝑖𝑗(𝜆𝑖 − 𝜆𝑗),                                                                                  

𝑧𝑖 = ΠΩ𝑖(𝑦𝑖),                                                                                                       

𝜆𝑖 = Πℝ+(𝜈𝑖),                                                                                                      

                     (4) 

with the initial condition  𝑧𝑖(0) ∈ ℝ
n, 𝑦𝑖(0) ∈ ℝ

n, 𝜔𝑖(0) ∈ ℝ, 𝜆𝑖(0) ∈ ℝ,  𝜈𝑖(0) ∈ ℝ. Besides, 𝑎𝑖𝑗  represent the entries of 

the connected matrix 𝐴.   

In distributed dynamics of equation (4), UAV 𝑖 calculates 𝑦𝑖 and 𝜈𝑖 by using gradient descent. ΠΩ𝑖(𝑦𝑖) is the projection of 

𝑦𝑖 onto the local constraints  Ω𝑖  and Πℝ+(𝜈𝑖) is the projection of 𝜈𝑖 on the half space ℝ+. The design idea is similar to 

Reference12. The local variable 𝜆𝑖(𝑡) ∈ ℝ+ is calculated as a Lagrangian multiplier to handle the coupled constraints, while 

the local auxiliary variable 𝜔𝑖 is calculated  for the consensus of 𝜆𝑖. The consensus among these 𝜆𝑖 guarantees that the 

decision variables 𝑥 of all UAVs converge to the consensual GNE 𝑥∗. The convergence proof can refer to References8, 12. 

On the other hand, the terms ΠΩ𝑖(∙) and Πℝ+(∙) are regarded as the projected output feedback, which allows that the players’ 

initial variables do not need to restrict by the local constraints13-15. Besides, dynamics of equation (4) avoid the 

nonsmoothness derived by the projection on tangent cones in Reference12. 

4. NUMERICAL EXPERIMENTS 

We show several experiments in this section for the accuracy of distributed dynamics of equation (4).  

Considering a UAV communication system with 𝑁 = 5 UAVs over a ring graph, i.e.,  

1 ⇄ 2 ⇄ 3 ⇄ 4 ⇄ 5 ⇄ 1. 

These UAVs are regarded as decision-making units to adopt optimal strategy to achieve effective coverage value. For 𝑖 ∈
𝛪 ≜ {1,…5}, the action set for UAV 𝑖  is 𝐶𝑖 = {𝑥𝑖 ∈ ℝ

2: 𝑢112 ≤ 𝑥𝑖 ≤ 𝑢212}, with 𝑢1 = −30 and 𝑢2 = 30. Given 𝑥−𝑖 , 
UAV 𝑖 aims to address 

                               
𝑚𝑖𝑛
𝑥𝑖∈𝐶𝑖 

1

2
(𝑥𝑖 − 𝜌𝑖)

T(𝑥𝑖 − 𝜌𝑖) − 𝑥𝑖
T ∑  𝑥𝑗

5
𝑗=1 ,

 s.t.  ∑  𝜃𝑇𝑥𝑗 ≤ 𝑏
5
𝑗=1 ,   𝜃 ∈ Ξ , ∀𝑗 ∈ 𝐼,

.                                         (5) 

where 𝜌𝑖 = (15 − 𝑖)12 ∈ ℝ
2. All UAVs meet the allocation constraint with  the parameter satisfying an octagonal set, 

defined as   

Ξ = {𝜃 ∈ ℝ
2: 𝑃 𝜃 ≤ 𝑑 },  𝑃 ∈ ℝ

8×2, 𝑑 ∈ ℝ
8 

Meanwhile, we set tolerance as 𝑡𝑡𝑜𝑙 = 10
−4. Figure 2 provides the trajectories along dynamics (4) of each UAV’s decision 

variables 𝑥𝑖. 

            

(a)Trajectory flow of 𝑥𝑖1                                               (b) Trajectory flow of 𝑥𝑖2 

Figure 2. Trajectories of all UAVs’ strategies. 
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Also, Figure 3 shows the Lagrangian multipliers 𝜆𝑖 reach consensus. Together with Figure 2, we present the correctness 

and feasibility of distributed dynamics of equation (4). 

 

Figure 3. The trajectories of 𝜆𝑖's. 

Next, we show the effectiveness of dynamics of equation (4) by comparisons. The number of UAVs is increased to 𝑁 = 

20. Figure 4 presents the performance of dynamics of equation (4) and the algorithms in References8, 16. The horizontal 

axis denotes the running time and the vertical axis denotes the optimal error ‖𝑥 − 𝑥∗‖ under different algorithms. As shown 

in Figure 4, dynamics of equation (4) converge with a faster rate.  

 

Figure 4. Comparison of different algorithms. 

5. CONCLUSION 

A distributed robust game model has been considered to model the interactions among multiple UAVs. These UAVs share 
an allocation constraint, where parameters endowed with the constraint have general uncertainties. By adopting the idea 

of robust optimization, the original game has been handled under the worst case, and transformed into an associated fixed 

game. Then a distributed dynamics has been proposed to seek GNE for the converted game by utilizing gradient descent 

and projected output feedback. Finally, numerical experiments have been illustrated to show the correctness and 

effectiveness of the dynamics. 
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