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ABSTRACT 

Human action video recognition focuses on discussing the theories and new algorithms to make computers understand the 

meanings of variety videos, such as those from TV, sports or family videos, and recently it plays an important role in 

advanced human-machine interface, security monitor, video retrieval and so on. The step-by-step process of traditional 

computational algorithm for human action recognition from videos are described in this paper, and some important deep 

learning models are also addressed by which some advantages and disadvantages of each approach in different tasks are 

analysed. Finally, some current trends and prospects of video recognition models are concluded. 
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1. INTRODUCTION 

Human action recognition from video (HARfV) is one of the most popular tasks of computer vision, which refers to 

extracting features from video clips and recognizing the behaviours that the video shows, and this moment it plays a 

significant role in many aspects such as human action detection, pedestrian detection, AI-assisted healthcare, sports live 

streaming and so on1-3.  

The computational framework of HARfV often is composed of three steps: feature extraction, feature encoding, and the 

computing of cluster and classification. The approaches of feature extraction are usually classified into two different 

aspects: global feature-based extraction and local feature-based extraction. Global features refer to those overall features 

such as the shape of different objects, while local features refer to local points of interests, such as local spatio-temporal 

areas where their grayscale information changes drastically. The feature encoding step normalize those extracted feature 
vectors so as to be used in further computing. Thus, the HARfV problem could be transformed into a cluster and 

classification problem in which features play a crucial role in final recognition, so the quality of features might determine 

the quality of HARfV results. 

Traditional methods for HARfV focuses on obtaining coding features of the appearance of objects and extracting the 

features of motion information by using hand-made features to describe the shape of the main object to be recognized. 

Commonly used methods include Histograms of Oriented Gradients (HOG)4 and Histogram of Optical Flow (HOF)5. The 

Motion Boundary Histogram (MBH)6, which is the trajectories of dense points are obtained through optical flow-based 

tracking in a dense grid. A global video-level descriptor is generated for the acquired features through the method of Bag 

of Words7 or Fisher vector-based coding8. With the feature extraction task completed, the pattern classification methods 

such as Support Vector Machine (SVM), Hidden Markov Model (HMM) and Dynamic Bayesian Network (DBN) are 

usually used to classify and recognize the videos. 

In recent years, helped by the rapidly boosted computing power, deep learning-based models could improve the overall 

accuracy greatly compared to most of traditional methods, though there are also some problems and challenges remaining. 

The following are some commonly used datasets or benchmarks in HARfV listed in Table 1. 
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Table 1. Benchmark datasets of HARfV. 

Dataset Introduction Categories Samples 

ImageNet Static images for pretraining 21,000+ 14 million 

Sports-1M Sports-related video clips 487 1113158 

Sth-Sth-v2 Videos of human actions on objects 174 220847 

UCF101 Videos of real-world actions 101 13320 

Kinetics-400 Videos of real-world actions 400 ~300000 

Kinetics-600 Videos of real-world actions 600 ~500000 

Kinetics-700 Videos of real-world actions 700 ~650000 

Kinetics-700-2020 A refined version of K-700 700 ~650000 

AVA actions dataset Video clips from movies, for action recognition 80 430 

AVA-Kinetics AVA protocol for K-700 videos 80 ~230000 

HMDB51 Collected from public videos 51 6849 

Charades Indoor activities videos 157 9848 

Charades-Ego 
Newer Charades dataset with both first and third-person 

videos 
157 7860 

EPIC-Kitchen-55 55 hours video taken in Kitchen - 35594 

EPIC-Kitchen-100  100 hours video taken in Kitchen - ~90000 

YouTube-8M Collected from YouTube 4716 7 million+ 

YouTube-8M segments Human validated videos from YouTube-8M 1000 237000 

The following content of this survey will be arranged in this order: Section 2 will introduce the traditional HARfV methods 

and their research progress. In Sections 3, several deep learning networks for HARfV are addressed, and they are 

categorized according to their types, respectively. Different models are compared horizontally not only in the aspect of 
their accuracy but also their inference latency, and their characteristics are analyzed and summarized. The current situation 

of research in HARfV is outlined, and the outlook on future research is also proposed in the conclusion of Section 4. 

2. TRADITIONAL COMPUTATIONAL FRAMEWORK OF HARFV 

Traditionally, local feature descriptors are usually be used in dealing with HARfV, and the feature of local spatio-temporal 

regions is extracted first and used in the further steps. It is pointed out that traditional feature extraction methods generally 

be based on artificially designed features, and HOG is a kind of typical feature in describing an image in video frame by 

counting value of gradient which is calculated the value of dense grid, so as to improve total accuracy.  

HOF and MBH on the optical flow are often considered as temporal information. HOF calculates the direction of optical 

flow in each frame and obtains the histogram information, which can be a good feature by not only characterizing the 

motion information, but also being insensitive to the scale of the image and the direction of the motion. MBH is also a 

kind of feature convenient and fast in calculating what decomposes the optical flow image into grayscale images in both 

x-direction and y-direction, extracts their gradient histograms, and obtains the video descriptor by extracting the boundary 

information of the moving object.  

To further increase the effectiveness of HOG, Kläser et al.9 extended HOG features to 3-dimensions, called HOG3D, in 

order to sample spatio-temporal blocks quickly at multiple scales and a linear SVM classifier is used in the following 

classification step. 
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The efficiency of traditional method achieved a great improvement by the approach of DT (Dense Trajectory)10,11 as well 

as the iDT (improved Dense Trajectory). DT analyzes the optical flow information to obtain the motion trajectory of the 

video and extracts features along the motion trajectory, while iDT mainly uses the three main features: HOG, HOF, and 

MBH. iDT also compensates for camera motion and uses additional detectors to detect human motion. Since iDT has high 

feature dimensionality that leading the achieved feature to a much larger data size than the original video, thus the time 
cost might be heavier in some conditions. However, iDT is still one of the best and most effective methods till deep learning 

framework appeared. According to the results of data test12, using iDT and BoW together with the linear SVM, it can get 

a 76.2% average accuracy on UCF101. When using iDT and Fisher vector, the accuracy is 87.9%. Those above methods 

provide excellent prior knowledge and features processing calculation that still have a chance to improve the performance 

as part of the deep learning models13. 

3. SOME DEEP LEARNING MODELS TO DEAL WITH THE PROBLEM OF HARFV 

3.1 2D CNN-based models with temporal information 

2D-CNN is fast but it cannot use temporal information, a representative method is the two-stream CNN14 that processes 

spatial and temporal information with two networks separately. It is trained with frames and optical flows what could add 

the knowledge about how the motion flows in the frames to learn motion features better. The two-stream network requires 

two independent and separated backbone networks, and its structure, compared with the single-backbone network, the 

number of calculations increases, resulting in heavier calculations when training the model, but it performs well on the 

UCF101 dataset and can have an accuracy of 88.0%.  

Feichtenhofer et al.15 presented a two-stream network fusion strategy to improve the performance of the two-stream 

network, and when the spatio-temporal convolutional network uses VGG1616 as the backbone network, its accuracy on 

UCF101 can go up to 92.5%, while if it is combined with iDT, its accuracy can be further increased to 93.6%. 

Wang et al.17-22 also proposed a series of lightweight models based on temporal sequence information, such as Temporal 

Segment Network (TSN), Temporal Enhancement and Interaction Network (TEINet), Temporal Excitation and 

Aggregation (TEA), Temporal Adaptive Module (TAM), and Temporal Difference Network (TDN). 

TSN is an effective model for recognizing actions in the video which proposed a segment-based sampling method. It can 

learn motion features from the entire video and uses an aggregation module to model the long-range temporal structures. 

TSN acts well on multiple datasets such as HMDB51 and UCF101, additionally, TSN has a higher efficiency and can 

process video with a higher frame rate effectively. 

Table 2. Comparison results of average accuracy on the UCF101 dataset. 

Method Accuracy (%) 

iDT+MVSV11 83.5 

iDT+FV11 85.9 

iDT+HSV11  87.9 

Two-Stream CNN14  88.0 

TAM20  91.3 

Two-stream CNN+ iDT15  93.6 

TSN17 94.9 

TSM21 96.0 

TEA19 96.9 

TDN22 97.4 
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The TDN is effective and it explicitly extracts the changes in the timing of motion and adds them to the network, by 

proposing the Long-term Temporal Difference Module (L-TDM) and the Short-term Temporal Difference Module (S-

TDM), which can extract the motion changes from the temporal information through the difference operation.  

Zhang et al.23 proposed a method to calculate the parameter’s value of motion vector as the input of CNN which inference 

speed can reach 390.7 frames per second. They transferred the features and characteristics learned from results of optical 
flow to action vector CNN. It is expected for motion vectors to improve the performance of recognizing fine-grained 

motions and noise processing. The comparison results are shown in Table 2. 

3.2 3D CNN-based HARfV models 

Ji et al.24 proposed 3D CNN-based model to describe the human motion in multiple adjacent frames by extracting attributes 

from both spatial and temporal dimensions. Carreira et al.25 presented a two-stream Inflated 3D ConvNet (I3D) and a large-

scale video dataset: Kinetics. Pre-training a model on this dataset can make those 3D convolution models get better results 

on different datasets. They pointed out that it is better to use a two-stream network to capture information effectively. 

Compared with the two-stream network, the approaches based upon Long Short-Term Memory has lost some temporal 

information during processing, and the training time in the backpropagation step is also very long. By pre-training through 

the Kinetics dataset, and then training on the HMDB51 and UCF101 datasets, I3D can achieve an average accuracy of 

66.4% on HMDB51 and an average accuracy of 93.4% on the UCF101 dataset. 

Many videos usually have a slow or unchanged background and a quickly changing area caused by the motion. 
Feichtenhofer et al.26 presented a SlowFast network what take into calculation from spatial and temporal data respectively. 

They applied two parallel CNN to the same video clip, one of which is a CNN used for the slow but high-resolution 

background (slow channel), which is used to analyze the static content in the video. The other is a fast and low-resolution 

CNN (fast channel), which is used to recognize moving parts in a video. They all use a 3D residual network model and use 

a 3D convolution operation immediately after capturing several frames. The data from the fast channel is sent to the slow 

channel through the side connection. Compared with the C3D, SlowFast processes spatial information and time sequence 

information separately and significantly improves the recognition accuracy on those videos with faster motion. The test 

results are shown in Table 3. 

Table 3. 3D CNN-based networks on Kinetics-400. 

Method Accuracy (%) 

C3D12 62.8 

I3D25 71.1 

X3D24 79.1 

ResNet-10126  79.8 

Models based on 3D CNN usually have many parameters, which result in a heavy computational overhead, longer training 

time, and the delay in inferencing is high27. Feichtenhofer28 also proposed an eXpand 3D (X3D) model. The intent was to 

reduce this problem. This method can gradually expand in the dimension of time, frame rate, space, width, bottleneck 

width, and depth and classify small-scale 2D images. 

X3D achieved similar accuracy to the prior work but significantly reduced the amount of calculation during network 

training. But if compared with 2D CNN-based models, X3D often achieves better results in large-scale scene datasets such 

as Kinetics. On Kinetics-400, X3D can get a top-1 accuracy of 79.1%, a top-5 accuracy of 93.9%. It is comparable to the 

SlowFast model, which has top-1 accuracy of 79.8% and a 93.9% top-5 accuracy. However, the X3D network cannot learn 

temporal changes, so it cannot achieve very good results on video datasets such as Something-Something, which are more 

sensitive to the temporal sequence. 

3.3 3 RNN-based HARfV models 

The recurrent neural networks (RNN) can record time knowledge from the current and past, thus it can be a pretty good 

solution to calculate time and order-dependent data like video frames29. LSTM (long short-term memory)30 model was 
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introduced to RNN to mitigate this problem that RNN architecture can only handle short-term dependencies in dealing 

with HARfV31.  

Hochreiter et al.32 proposed a method that combines CNN and LSTM, and Ng et al.33 proposed five convolutional temporal 

feature pool architectures, namely: (1) Conv Pooling, which can retain spatio-temporal information; (2) Late Pooling, 

which can combine the temporal information of high-dimensional abstract features; (3) Slow Pooling, which combines 
local temporal motion information before combining high-dimensional abstract features; (4) Local Pooling, which does 

not combine global motion information, thus can reduce the loss of temporal information; (5) Time-Domain Convolution, 

which adds a time convolution layer, which can combine local temporal information in a shorter time window before 

calling the max-pooling layer.  

By using RNN with LSTM, a model can usually get better training results after training on a longer video. The test results 

show that on Sports-1M, this solution is significantly improved compared to the best model of the same period, achieving 

a Top-1 accuracy of 73.1%, and on UCF101 too, achieving a Top-1 accuracy of 88.6%.  

Donahue et al.34 presented a Long-term Recurrent Convolutional Network (LRCN) based on LSTM. LRCN uses a union 

of CNN and LSTM for HARfV and video description. 2D convolution can only process a single frame, and LSTM can 

fuse that information from single frames. It passes each frame of the video to the CNN and uses the output of the CNN as 

the input of the LSTM. Then use the output of the LSTM as the final network output. The parameters of the CNN and 

LSTM are shared along with time. Research also shows that the use of LSTM for fusion usually can achieve better results 

than only using a 2D CNN. 

Most methods of the above are implemented in the form of CNN combined with LSTM, use CNN to extract features from 

a video frame and use LSTM to aggregate multiple video frames directly to obtain temporal dependencies of the video. 

However, the motion learned in this way implicitly assumes that the motion in the video is static at different spatial 

positions. 

4. CONCLUSIONS 

This paper summarizes different HARfV methods based on traditional methods and deep learning. Traditional HARfV 

methods rely heavily on feature designing and its selection. Human intervention is usually required in creating those 

features. On the other side, deep learning-based methods can automatically train and learn features from labeled video 

datasets. They usually have better accuracy compared to traditional methods. 

Among traditional methods, the DT and iDT are effective yet accurate methods. As the DT and iDT act as a certain degree 

of prior expert knowledge, when adopting DT and iDT into deep learning-based methods, some can have a better 

performance. 

3D CNN-based models usually surpass 2D CNN-based models in HARfV tasks. However, it has the problems of many 

parameters and a long training time. Therefore, some use 2D CNN-based models simulating 3D CNN, resulting in reduced 

parameters but they have similar accuracy and improved the overall performance.  

Recently, transformer-based models have quickly become a hot topic in the field of HARfV. Although they have more 

parameters than 3D CNN-based models, they usually act better in those HARfV tasks. The attention mechanism can be 
used to capture the overall characteristics of the video flexibly and enabled them to learn from a longer video. With further 

understanding and the improvement of the efficiency of those models, more deep learning models for video and image 

recognition tasks will be proposed in the future, and it is expected that the current results will be further advanced.  

However, in the real world, the performance of video recording devices is increasing, and the demand for science and 

technology is also changing rapidly. This poses many challenges to the existing research, such as the inference delay and 

accuracy of video with a high frame rate. This is particularly important in some scenarios such as car autopilot. Other smart 

IoT devices, such as the smart doorbell, often have limited resources. This restriction put forward stricter requirements on 

the accuracy and resource consumption of HARfV models. The solution to these problems is to be supported by further 

research and new technical solutions by optimizing models. 
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