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ABSTRACT 

To reduce noise and background distractions, we propose a detection algorithm based of Gaussian curvature filtering 

(GCF) and partial sum of singular values (PSSV). Above all, aiming at the false alarms caused by noise, using the prior 

knowledge of natural image have the characteristics of approximate developable, GCF utilizes the variation model to 

obtain an approximately noise-free image. Secondly, we adopt PSSV to suppress the background by pointing out that the 

reason why Robust PCA is inaccurate in the background estimation is that the hypothesis at the edge of the background 
does not match the reality, and we present a model solving algorithm on the ground of imprecise augmented Lagrangian 

multiplier method (IALM). At last, we use an adaptive threshold segmentation algorithm to segment the target. The 

model has better noise clutter suppression and detection accuracy than other representative methods. 
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1. INTRODUCTION

Infrared detection technology, as an indirect contact-type non-active detection related technology, has better 

concealment, stronger anti-interference ability and ability to work around the clock than visible light systems and radar1. 
The detection methods of infrared small target on the ground of single frame image mainly use the spatial information of 

single frame image to give a decision whether the target exists or not2. Existing infrared small target detection method on 

the ground of single frame image are mainly divided into three types3. 

Firstly, in target-based detection methods, the characteristics of the target are mainly used for target screening, such as 

grayscale, contrast, local difference, and gradient4. For example, the method on the ground of local contrast (Local 

Contrast method, LCM)5 first calculates the enhancement factor, the rate of a local center and its neighborhood in the 

image, and then multiplies the local center value and the enhancement factor. This makes it easier to distinguish the 

target and background6. To improve the detection rate in complex scenes, Qin et al. proposed a novel local contrast 

measure (novel local contrast measure, NLCM)7 method. Liu8 et al. uses a gradient vector field, combining target’s 

gradient and sink characteristics to complete the precise positioning of the target. In highly complex contexts, clutter is 

mixed with small and medium targets, which inevitably leads to a serious false alarm rate. 

Secondly, the detection method based on background features mainly estimates the background signal of the image from 

the perspective of the spatial domain and the transform domain, and then use the initial image and the estimated 

background. Hadhoud et al. proposed the TDLMS method9 on the ground of LMS (least mean square), from one 

dimension to two dimensions. The method first performs error function calculation on the template parameters 

according to the content of the input image, when the error function value is less than the threshold, stop the iteration and 

output the background image predicted by this method. 

Thirdly, the detection method on the ground of image data structure uses the different structure characteristics such as the 
sparsity of the target and the low rank of the background10. Among them, the representative method is based on Infrared 

patch-image (IPI) model11, recovering sparse matrix components and low-rank matrix components from the data matrix.  

However, for infrared small targets in complex environment, the target is mixed with strong clutter signals, which 

increases the false alarm rate12. 

In accordance with these problems, from the perspective of noise and clutter background, this paper takes the noise that 
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is very similar to the target in terms of gray scale and other features, and adopts the Gaussian curvature variational model 

to de-noising infrared images according to the prior conditions that natural images can be developed everywhere. Then, 

aiming at the defect of poor segmentation performance based on IPI model in complex background, the analysis 

concluded that the reason was the mismatch between the implicit assumption of IPI model for many observations and the 

insufficiency of strong edge observations. Therefore, the constraint of the singular value part of infrared block image and 

(IPPS) was used to repair the defect, and IALM was used to solve it. 

2. GAUSSIAN CURVATURE FILTERING

Generally speaking, a single frame infrared image is modeled as: 

( , , ) ( , , ) ( , , ) ( , , )
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f x y t f x y t f x y t N x y t= + + (1) 

where, ( , , )Bf x y t  and ( , , )Tf x y t  represent the gray value of background and target at point ( , )x y  respectively, and ( , , )N x y t

refers to the gray value of noise. 

It is a morbid problem to restore the real image from the discrete infrared noise image. Therefore, additional prior 

knowledge assumptions must be made on the real image. Our aim is to restore unknown estimates of potential perfect 

images from observed discrete samples. The reconstruction problem can be expressed in a variational form as: 
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where 
0 is a data fitting cost function, which measures the approximate degree of the estimated infrared image and 

infrared observation image after transformation. 
1  constitutes a priori, namely the regularization function on U , scalar 

weighted coefficient   is the regularization coefficient, which regulates the trade-off between fitting term and 

regularization, and   is the image domain space.

It is proved that it is as difficult to choose proper prior knowledge as to solve the original problem. Improper prior 

knowledge may blur the features in the image or lead to wrong results. Natural images have a good developable surface 

property, that is, the Gaussian curvature of natural images is approximately 0, as shown in Figure 1, and the existence of 

noise will weaken this property. The representation of Gaussian curvature is as follows: 
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where 
xU  and yU are the first partial derivatives of the initial picture, 

xxU , xyU and yyU  are the second partial 

derivatives of the initial picture. 

It can be seen from Figure 1 that Gaussian curvature is an ideal prior condition. As a prior knowledge, Gaussian 

curvature can better retain the edge part of the image, and the variational problem of the denoising model is changed into 

the following form: 

   2min ( ) | ( ) | ,     . .   | |
U
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where ( )U is gaussian curvature energy, and is a very small evolutionary termination threshold. from the Angle of 

differential geometry, this paper uses gaussian curvature property of the image to solve the variational model. 

Based on the property that noiseless images are piecewise developable, there is the theorem that for any point on a 

developable surface, it lies on the section of a point in its neighborhood. For infrared images with noise, it is necessary to 
reduce the Gaussian curvature to achieve piecewise developable13, so we need to use the image discreteness to strucure 

the section. In the small window of 3*3, all possible sections can be enumerated. By taking advantage of the discreteness 

of data, all possible sections can be traversed, and then the smallest change in the current gray value can be found for 

updating, which completes a Gaussian curvature filter. 

Proc. of SPIE Vol. 12506  125063P-2



(a1) (b1) (c1) (d1) 

(a2) (b2) (c2) (d2) 

Figure 1. In Infrared image (top) and normalized frequency of Gaussian curvature (bottom). (a): Infrared image without noise under 
ground background; (b): infrared image with noise under ground background; (c): infrared image without noise under sea surface 

background; (d): infrared image with noise under sea surface background. 

The updating process of Gaussian curvature filter can be divided into four stages: image domain decomposition, 
enumerating all tangent planes and projection distances, and finding the minimum projection operator. The whole pixel 

is divided into four parts, which can be represented by (black triangle), (white triangle), (white circle) and (black circle) 

respectively. 

Based on any point on a developable surface is located in its neighborhood within a certain point on the plane of the prior 

conditions, in this article the tangent plane is based on eight areas, with a triangular configuration tangent plane 

projection operator is a total of 12, as shown in Figure 2, the black circle is a center pixel, white circle represents the 

adjacent pixels, and dotted line is the neighborhood of tangent plane14. In fact, there are only four types from the center 

point to the eight tangent planes. For example, the distance from the center BC to the two triangle tangent planes formed 

by two WT and one WC  is the same, and so on, so there are a total of 8 effective tangent planes. The distance between 

the center pixel and the eight minimum triangular tangent planes{ , 1,2, ,9}iI i = is calculated, the minimum projection 

distance 
minI  is selected to represent the distance between the current image ( )U x and the target image

1( )U x , and

1 min( ) ( )U x U x I= + is used to complete an update. 

Figure 2. Tangent plane type. 

3. IPPS MODEL

An infrared block image model (IPI) is presented by Gao C et al.15, transforming the original image into an block image 

model. IPI divides the original infrared image into overlapping blocks with a sliding window and pull it into a column 

vector. The IPI-based method segments well for relatively simple and smooth background. However, for relatively 
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complex background, it is easy to mistake the edge of the thick cloud layer as a sparse part and segment it into the target 

block.  

We think the background changes slowly. That is to say there is a high correlation between the divided images and the 

divided images. The traditional low-rank model hypothesizes that the background block comes from a low-rank 

subspace, and kernel norm is used to describe it, which is only suitable for describing background block images when 
there are a large number of samples. In a complex background, considering the unavoidable structure of defective 

examples, the partial sum of singular values is used to describe the background patch image, shown in the following 

formula: 

min( , )
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In the formula, 
i is the i -th maximum singular value of background B , and r is the biggest limitation of the ratio of 

N to
i . For infrared images, since the complexity of the background is unknown, we can not point out a fixed rank 

limitation. But at the same time, because the small target is only a small part, no matter how the background changes, we 

can install a fixed energy rate limitation. Given g, the retained rank can be easily calculated. 

The object is only a small part of the image, so we consider the target sub-image as a sparse matrix, that is, the value of 
most elements is 0. In addition, the target is brighter than the surrounding area, that is, the real the value of the target is 

usually positive. Thus, an additional non-negative constraint should be introduced to the target patch image. So the 

overall constraint equation is explained as: 
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 is a weight parameter, thus, the original detection becomes optimization, and its augmented Lagrangian function is

expressed as:

2

*, 1, 0
( , , , ) ,( )

2

T

F
L B T Y B T Y D B T D B T




 

 
= + + − − + − −  (7) 

The linearized alternating direction method IALM with adaptive penalty is used to solve the problem. 
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We use the following Theorem 1 and Theorem 2 to solve the above problem. As followed, Algorithm 1 gives the 

solution process. 

Theorem 1: Let 0  and *, m nX Y R , transform non-negative 
1l -norm minimisation into 2

1

1
arg min

2 F
X

X Y X− + can 

be solved by a non-negative soft threshold operator 
0( ) max( ,0)S x x  = − . 

Theorem 2: Let 0  , min( , )l m n= *, m nX Y R , Y  can be written as
1 1 1 2 2 21 2

T T

Y Y Y Y Y YY Y Y U S V U S V= + = + , where 
1Y

U and 

1Y
V are the singular vector matrices in keeping with the -n th maximum singular values, 

2Y
U and 

2Y
V  are the matrices 

from the smallest singular value to the 1N + -th maximum singular value. Thus, we transform the partial sum 
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minimisation of singular values into: 
21

arg min
2 F p N

X
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− + , the above optimal solution can be solved by partial 

soft threshold operators: 
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The entire algorithm flow is as follows: 

Algorithm 1: IALM-based NIPPS solution 

Input: original block image, weight factor , singular value ratio   

Output: background image kB , Target image kT . 

initialization: 0 0 0 7 7

0 max

2

1.25
0; ; 10 ; 1.5; 10 ; 0B T Y k

D
    −= = = = = = = = ; 

1. First calculate N  according to the given singular value ratio  ;

When the algorithm does not converge: 

2. Fixed other parameter updates B ,
1

k+1 1

,
( )

k

k k

kN
B D D T Y


−

−= − +

3. Fixed other parameter updates T , 
1

k+1 1 1

, 0
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k
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4. Fixed other parameter updates Y ,
k+1 1 1( )k k k

ky Y D T B + += + − −

5. Update  , 1 min( , )k k max  + =

6. Check convergence conditions:

1 1k k

F

F

D B T

D


+ +− −


7. Update k , 1k k= +

end 

4. EXPERIMENTAL TEST

4.1 Experimental data 

This paper tested the effectiveness of the algorithm model on 5 real data sets. Figure 3 shows several representative 

images, and Table 1 lists the detailed information. The selected image has large fluctuations, complex composition, and 

strong the edge of the background, the contrast of weak and small targets is poor, and the pixels are few. The selection of 

such images can better demonstrate the robustness of the proposed method . 

(a) (b) (c) (d) (e) 

Figure 3. Five kinds of typical infrared data. 
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Table 1. Infrared image data information. 

Data amount Data size Target size Background type 

Data a  399 256×256 3×3 Mountains, trees, roads, houses 

Data b  500 256×256 2×3 Ground, roads, trees 

Data c  399 192×192 2×2 Complex cloud 

Data d  178 256×256 2×4 The waves of the sea 

Data e  399 320×240 2×1 Sky, clouds 

4.2 Comparison method 

To prove the availability of the algorithm proposed by us, the simulation results of this algorithm are compared with the 

classic infrared weak and small target detection methods such as LCM method. More advanced method such as RPCA 

method is compared. It mainly evaluates the capability of several detection methods from the result graph and 

quantitative indicators such as false alarm rate (FA), detection rate (PD), and SCR.  

(a1) (a2) (a3) (a4) (a5) 

(b1) (b2) (b3) (b4) (b5) 

(c1) (c2) (c3) (c4) (c5) 

Figure 4. Diagram of the detection results of different methods. (a1)-(a5): detection results using LCM method; (b1)-(b5): detection 
results based on RPCA method; (c1)-(c5): detection results based on the proposed method . 

Table 2. Detection results of various algorithms. 

Detection algorithm Detection accuracy (%) False alarm rate (%) 

LCM 84.4 21.6 

RPCA 91.2 14.5 

Our method 93.4 8.7 
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Detection rate and false alarm rate are important indicators of target detection. Table 2 shows the average results of 

infrared target detection in different scenarios and different clutter and noise conditions by 3 different algorithms. Table 

2 shows that the algorithm proposed by us has better detection performance than other algorithms. The traditional 

detection method only uses a certain feature of the target to segment the target, which cannot be adapted to the complex 

and changeable situation. The method in this paper uses the method of multi-feature fusion to separate the candidate 

target and the background and detect it directly, a simple threshold method for effective target detection. 

According to the subjective results in Table 4 and objective evaluation results in Table 2, it is shown that the algorithm 

proposed by us has high effectiveness in infrared image small target detection. 

5. CONCLUSION

This paper proposes an infrared dim target detection on the ground of the partial combining Gaussian curvature and 

singular values. The infrared block image is obtained by preprocessing the infrared image by Gaussian curvature 

filtering. On the infrared block image, the RPCA method based on low-rank matrix and sparse matrix restoration is not 

effective in dealing with the edge effect, and the singular value part is used instead of the kernel norm. The method 
suppresses the background, and adopts a model solving algorithm based on the imprecise augmented Lagrangian 

multiplier method (IALM). The algorithm proposed in this paper can effectively deal with the clutter in the infrared 

image, and can be used for precise infrared guidance of remote small targets under complex background conditions. It is 

compared with other classic methods under different backgrounds, the results of simulation experiments verify the 

availability of the proposed algorithm. 
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