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ABSTRACT 

Visual correspondence refers to building dense correspondences between two or more images of the same category. 

Ideally, the predicted keypoints output by the model can be back to the source image’s keypoints through the same type 

of network. However, in practical situations, the predicted keypoints usually do not perfectly map back to the source 
image keypoints. In order to strengthen the cycle-consistency of the model, we propose a cycle-consistent reciprocal 

network. The network uses joint loss functions to alternately train forward and inverse models, which makes the two 

models subject to cycle constraints and perform better with the help of each other. Experiment results demonstrate the 

performance of the model is improved on three popular benchmarks and set a new state-of-the-art on the benchmark of 

PF-WILLOW. 
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1. INTRODUCTION 

Establishing visual correspondence as a fundamental problem has long been concerned by the computer vision 

community. The task aims to establish pixel-level correspondences between two or more semantically similar images, 

which have proven useful in a variety of applications such as object detection1, scene understanding2, and semantic 

segmentation3. With the development of deep networks and abundant data available, great breakthroughs have been 

made in representation learning for establishing visual correspondences4, 5. However, it is still challenging to establish 

visual correspondences because there are large intra-class variations between images of the same class due to 

illumination, scale, translation, blur and occlusion, etc.6-9. 

Geometric constraint is an effective method to reduce the number of uncertain candidate regions and is adopted by many 

methods. Recent approaches use neighbourhood consensus10-12 to establish semantic correspondence. The first learnable 

neighbourhood consensus network (NC-Net)10 used 4D tensor to store pixel-level matching scores and refined it through 

neighbourhood consensus based on local spatial context. Li et al.11 developed NC-Net to adaptive neighbourhood 
consensus network (ANC-Net) with the kernels of non-isotropic 4D convolution. Jae Lee et al.12 introduced Patch-Match 

Neighbourhood Consensus (PMNC), which used PatchMatch13 to find the candidate regions with the highest similarity 

iteratively. However, these approaches mainly focus on translation and heavily influenced by the quality of the original 

correlation map under features representation. 

To address the problems above, the latest methods14-17 consider enhancing the feature representation. Cho et al.16 pay 

attention to the stage of cost aggregation, aiming to reduce the effect of background clutter and achieve global consensus 

among refined correlation maps. Zhao et al.14 propose a multi-scale matching network (MMNet) to enhance the 

network's ability of handling scale changes. Convolutional Hough Matching Networks (CHMNet)17 extern 4D 

convolution to 6D convolution, adding the dimension of scale. But they ignore the cycle-consistency of the model during 

training, for the predicted position should be back to the starting position of the source image through the same type of 

network. 

In this work, we introduce a cycle-consistent reciprocal network to improve the performance of CHMNet, and the 
improved model called CCR-CHM. Cycle consistency is a simple but useful technique in machine learning, which can 

also be used for training visual correspondence models. Taking a pair of cats as an example, we hope to build the map 
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from the source image cat eyes to the target image cat eyes, and the predicted target position also should be mapped back 

to the source image cat eyes through an inverse network. In order to build this mapping relationship, we use cycle 

constraints to train forward and inverse networks alternately so that the two networks can be improved together during 

training. The experiment result shows that the model has a great improvement in three standard benchmark datasets and 

sets a new state-of-the-art on the dataset of PF-WILLOW18. 

This paper is organized as follows. Section 2 introduces the related work. The architecture of cycle-consistent reciprocal 

network is presented in Section 3. Section 4 reports the experimental results compared with other methods and offers 

ablation studies. Finally, we make a brief conclusion in Section 5. 

2. RELATED WORK 

2.1 Semantic correspondence 

Early works18, 19 mostly used hand-crafted features such as SIFT and ORB to establish a semantic correspondence, which 

existed the disadvantage of insufficient semantic patterns and hard to deal with background clutter, non-rigid 
deformation and blur. Convolutional neural network (CNN) is powerful in extracting deep feature representation20, 21, 

and it becomes popular in the task of semantic correspondence soon22-25. They set CNN that has been pretrained on 

image classification as the backbone module, and then use different algorithms to build a correlation map based on the 

output of CNN. Rocco et al.26 propose a CNN regressor model that estimated affine transformation parameters with deep 

learning method. NC-Net [10] uses 4D convolution for neighbourhood consensus task, which can effectively filter 

unreliable matches. PMNC and ANC-Net make progress on this basis, improving the calculation efficiency and accuracy. 

Jeon et al.27 construct a multiple affine network with a pyramid structure, realizing estimation from coarse to fine. 

Subsequent methods14, 15, 17, 24 mostly focus on feature representation enhancement and the method to build a correlation 

map efficiently. 

 2.2 Convolutional Hough matching 

The Hough transform is a classical algorithm for object detection, which can recognize objects of specified shape in an 
image by voting in parameter space, and it has been proven effective in non-rigid image matching28. Min et al. propose a 

trainable convolution Hough matching layer. They also set CNN as the feature extractor, and scaled the image features, 

extending the 4D correlation tensor to 6D. They design a trainable convolutional Hough matching kernel combined with 

geometric constraints and applied it to high-dimensional 4D and 6D convolutions, which makes impressive progress in 

the accuracy of predicting sparse keypoints. 

2.3 Cycle-consistency 

Cycle-consistency is widely used in practical applications. A typical application is the area of machine translation, where 

the model should be roughly consistent in the process of translation and back translation. In computer vision, cycle-

consistency has been applied to action prediction29, image-to-image translation30 and dense image alignment31. 

CycleGAN30 used a cycle-consistency loss to learn a pixel-wise mapping relationship in the area of image-to-image 

translation. Inspired by their work, we further propose a cycle-consistent reciprocal network and use joint loss functions 

to iteratively train the visual correspondence model. 

3. METHOD  

Let X = 𝑥1, 𝑥2, … 𝑥N  be the keypoints in source image 𝐼  , and visual correspondence model needs to map X  to the 

corresponding ground-truth Y = 𝑦1, 𝑦2, … 𝑦N  in target image 𝐼′ . As shown in Figure 1, cycle-consistency for visual 

correspondence considers such a relationship that if the predicted positions Ŷ in 𝐼′ is perfect, it can return to the starting 

points X from Ŷ through the same type of model. 

To encourage cycle-consistency of the model, we propose a reciprocal network based on cycle-consistency. Figure 2 

illustrates the architecture of our network. Firstly, we need to train two networks, a forward network 𝐹𝜃 which predicts 

the target positions Ŷ = 𝐹𝜃(X) and an inverse network 𝐺𝜑 which predicts the source positions X̂ = 𝐺𝜑(Y). The training of 

𝐹𝜃 as usual, and the 𝐺𝜑 needs to exchange the position of the source images and the target images when inputting the 

images, so that the flow estimation output by 𝐺𝜑 is mapped from the target images to the source images. It should be 
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noted that the target position is input to the model as a known condition during training, and we offer an ablation study in 

the 4.2 section. We hope the following mapping relationship can be established if 𝐹𝜃 and 𝐺𝜑 are well trained: 
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Figure 1. Illustration of cycle-consistency. 
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Figure 2. The architecture of cycle-consistent reciprocal network. Firstly, the forward and inverse networks are trained 

independently. Then, we use the first prediction loss 𝐿1  and cycle-consistency loss 𝐿2 to alternately train forward and inverse 
networks. 

  X ≈ 𝐺𝜑(𝐹𝜃(X))     (1) 

  Y ≈ 𝐹𝜃(𝐺𝜑(Y))     (2) 

It is obvious that the two networks are strongly correlated and can help each to improve   performance. We use cycle-

consistency constraints (1) to verify the accuracy of the forward prediction Ŷ. If the inverse network 𝐺𝜑 is trained well 

and the first prediction Ŷ  is accurate, the second prediction X̃  will be close to the starting positions X  with high 

probability. The same explanation can be applied to equation (2). Loss function consists of the L2 loss. As shown in 

Figure 3, we define the loss function  𝐿1 as the first prediction loss, and 𝐿2 as the cycle-consistency loss, which is the 

loss of re-prediction based on the first prediction results. 
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Figure 3. Illustration of joint loss. 

When the forward network 𝐹𝜃 and inverse network 𝐺𝜑 are successfully trained, we come to the next step — reciprocal 

training. We use a reciprocal network to leverage the forward network 𝐹𝜃 and the inverse network 𝐺𝜑, and via iterative 

training to make the two networks benefit from each other. We only update the parameters of one model and freezes the 

parameters of the opposing model during training. The training exchange epoch for  𝐹𝜃 and 𝐺𝜑 is set as 3 epochs in 

experiments.  

To successfully train 𝐹𝜃 and 𝐺𝜑 , we define two joint loss functions 𝐽𝜃 and 𝐽𝜑 as follows. λ takes a value between 0 and 1, 

and we set λ = 0.5. 

  𝐽𝜃 = λ𝐿1
𝜃 + (1 − λ)𝐿2

𝜃     (3) 

  𝐽𝜑 = λ𝐿1
𝜑

+ (1 − λ)𝐿2
𝜑

     (4) 

The inverse network 𝐺𝜑  can be regarded as a cycle constraint to check again the accuracy of the prediction result 

generated by 𝐹𝜃. The two networks are encouraged to be consistent through the loss function 𝐿2, and they also should 

perform well under the constraint of loss function 𝐿1. During the training of the cycle-consistent reciprocal network, the 

two networks are trained alternately, and their performance will have a noticeable improvement with the help of the 

opposing network. 

4. EXPERIMENT 

4.1 Datasets and metrics 

PF-WILLOW18, PF-PASCAL32 and Spair-71k33 are three standard benchmark datasets containing corresponding sparse 

annotations for visual correspondence. The most difficult dataset is SPair-71k33 which includes 70,958 pairs of images 
from 18 categories with large intra-class variations. PF-WILLOW18 and PF-PASCAL32 respectively contain 900 pairs of 

images from 4 categories and 1,351 pairs of images from 20 categories. For a fair comparison, we follow the previous 

assessment method that trains on the training spilt of PF-PASCAL32, and evaluate the model on the test splits of PF-

PASCAL32 and PF-WILLOW18. For SPair-71k33, the model is trained on its training set and evaluated on its test set. 

The percent of correct keypoints (PCK) is used as an evaluation metric. After the model outputs the predicted keypoints 

𝑘𝑝𝑟𝑒𝑑 , we can get the number of correct keypoints that satisfy the condition: ‖𝑘𝑝𝑟𝑒𝑑 − 𝑘𝑔𝑡‖
2

≤ 𝛼 ∙ max (H, W), where 

𝛼 ∈ {0.05, 0.1} denotes a threshold and 𝑘𝑔𝑡  denotes the ground-truth in target image. H and W respectively represent the 

height and width of the images or the bounding box of objects. 

4.2 Experiment results  

Figure 4 gives 3 pairs of images, which are the evaluation result on the test splits of PF-PASCAL with the threshold of 

𝛼𝑖𝑚𝑔 = 0.05. The images lie in the top is the result of CHMNet, and the bottom images get from the improved network. 

The image on the left is the source image and the right image is the target image. The red and green lines denote wrong 

and correct predictions. We also mark the ground-truth in the target image with solid yellow circles. 

We compare our experimental results with other methods, as shown in Table 1. The bold numbers mean the best 

performance, and the underlined numbers indicate the second best. Our model shows a significant improvement on each 

metric compared with original model, especially on the PF-WILLOW. Specifically, the PCK of 𝛼𝑏𝑏𝑜𝑥 = 0.05  on PF-
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WILLOW increase by 3.3%, and the other one 𝛼𝑏𝑏𝑜𝑥 = 0.1 increase by 2.4%, which set a new state-of-the-art on PF-

WILLOW. On PF-PASCAL, our model also performs better on both thresholds, and ranks second in the list. 

 

Figure 4. Matching results at original network and improved network. 

Table 1. Comparison with other methods. 

Methods 

SPair-71k 

PCK @ αbbox 

PF-PASCAL 

PCK @ αimg 

PF-WILLOW 

PCK @ αbbox 

0.1 0.05 0.1 0.05 0.1 

NC-Net10 20.1 54.3 78.9 - - 

ANC-Net11 - - 86.1 - - 

HPF23 28.2 60.1 84.8 - - 

SCOT34 35.6 63.1 85.4 - - 

DHPF15 37.3 75.7 90.7 49.5 77.6 

PMNC12 50.4 82.4 90.6 - - 

MMNet-FCN14 50.4 81.1 91.6 - - 

Cats16 49.9 75.4 92.6 50.3 79.2 

CHMNet17 46.3 80.1 91.6 52.7 79.4 

CCR-CHM (Ours) 46.7 81.1 92.3 56.0 81.8 

4.3 Ablation study 

We exchange the position of source and target images, which can be regarded as a method of image augmentation. 

Therefore, we study the effect of this behaviour on the performance of the original network. In the ablation study, we 

swap the position of the input images every other epoch. 

In addition, we remove the reciprocal network and train the forward network by cycle-consistency only. Specifically, we 

replace the inverse network with the forward network, which conducts a cycle-consistency training on itself. The 

ablation study results are shown in Table 2, which proves that the reciprocal training network is effective. 
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Table 2. Ablation study of CCR-CHM. 

Methods 

SPair-71k 

PCK @ αbbox 

PF-PASCAL 

PCK @ αimg 

PF-WILLOW 

PCK @ αbbox 

0.1 0.05 0.1 0.05 0.1 

Baseline 46.3 80.1 91.6 52.7 79.4 

+ image augmentation 46.4 80.5 91.7 53.3 79.5 

+ cycle-consistency 46.2 81.0 91.3 53.1 77.0 

CCR-CHM (Ours) 46.7 81.1 92.3 56.0 81.8 

5. CONCLUSION 

In this paper, we introduce a cycle-consistent reciprocal network for visual correspondence, which uses a joint loss 

function to train forward and inverse networks alternately. The two networks can be improved together with the help of 

each other. We apply our network to the training of CHMNet, and the model performs better on the test splits of the three 

standard benchmarks. The evaluation results show our network can be used to improve the performance of the visual 

correspondence model based on deep learning. And we provide ablation studies to verify our network. We believe 

further research on cycle-consistency can help to establish visual correspondence. 
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