
Optimization of recovery bandwidth utilization in erasure code storage

systems

Zhezhe Xing*

Department of Software Engineering, Jilin University, Changchun, Jilin, China

ABSTRACT

In the erasure code storage systems, failure is very common, so a great amount of data needs to be recovered in the system.

For each recovery task, we need to select some nodes from the nodes of a stripe to read data to recover the failed data.

However, due to the limitation of the bandwidth of each node, the number of simultaneous recovery tasks is limited, and

the inappropriate task selection causes the waste of bandwidth, resulting in slow recovery. This paper proposes two greedy

approaches Gre-N and Gre-T to solve the above problems. Gre-N assigns tasks to nodes with high bandwidth first. Gre-T
sorts tasks in weighted order. The node with the lowest bandwidth utilization is selected each time to avoid the bandwidth

exhaustion of a large number of nodes. In addition, the bandwidth utilization of the system is balanced by the low

bandwidth node compensation policy. According to the experimental results, compared with the original approach, Gre-N

and Gre-T increase the bandwidth utilization by up to 20.2% and 29.7%.

Keywords: Erasure code, cloud system, failure recovery, greedy, bandwidth utilization

1. INTRODUCTION

As cloud storage systems become more and more widely used, it is a good choice to use erasure codes with low space
overhead for data fault tolerance. However, erasure codes involve multiple storage nodes, they significantly increase

network traffic for failure recovery.

Due to the frequent processing of massive data, failure recovery becomes an unavoidable problem for the erasure code

storage system. When there are a large number of tasks that need to be recovered, we need to take full advantage of

parallelism to recover as many tasks as possible with limited bandwidth. The blocks of an erasure code stripe are distributed

in independent nodes. When recovering data, some blocks need to be selected. When there are a large number of tasks,

bandwidth utilization will be very low if our selection causes some nodes to take on too many tasks, low bandwidth

utilization is meaning that low recovery speed. The actual situation is that the bandwidth of the nodes in the system is

unbalanced. Instead of simply distributing tasks randomly to all nodes in the system, the bandwidth of the nodes should be

considered to achieve maximum bandwidth utilization.

Some linear programming methods and graph algorithms can accurately solve this problem, but the time complexity is too
high, so it is not suitable for scenes requiring high efficiency. In the existing distributed storage systems, most of them use

the method of random extraction to randomly extract enough blocks from the surviving blocks of a strip for recovery, but

due to the uneven bandwidth of nodes, this method has not achieved good results. based on the above problems, this paper

proposes two greedy methods, Gre-N and Gre-T. Gre-N firstly sorts nodes according to their bandwidth size and selects k

blocks with the highest bandwidth among nodes required for each task to participate in recovery, so as to make full use of

system bandwidth. Gre-T is further optimizing to solve the problem of bandwidth imbalance. The main technical points

are as follows:

• For the recovery tasks in the wait queue, the order is weighted by bandwidth.

• For each recovery task, we select the lowest bandwidth utilization nodes within the nodes of the task, the bandwidth of

all nodes is not fully occupied.

• Dynamically monitor the utilization of nodes with high bandwidth. If the utilization reaches a certain level, we select

tasks with lower weighted order in the task queue to improve the utilization of nodes with low bandwidth.

* xingzz19@mails.jlu.edu.cn

Third International Conference on Computer Science and Communication Technology (ICCSCT 2022)
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12506, 1250657

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2662530

Proc. of SPIE Vol. 12506 1250657-1

According to our results, compared with the original approach, the Gre-N and Gre-T improve the total bandwidth utilization

by up to 20.2% and 29.7%.

2. RELATED WORKS

2.1 Erasure code

Erasure code has lower storage overhead than replication, which are widely used in cloud systems1-3, there is various kind

of erasure codes, RS code4 is a traditional code and widely deployed in the storage system, it is because it can tolerate any

m blocks are lost, m is the number of parity blocks of a stripe there. After the Google disclosed Google File System5, which

used triple replication with the diffusion of commodity disks. Since the data generated by multiple services started to grow

explosively, the erasure code’s space efficiency was revalued again.

2.2 Failure recovery

In recent years, recovery overhead is important, it has been regarded as a serious problem in storage, especially in large

storage systems6, 7. Many methods aim at failure recovery in Erasure code, including local parity techniques to decrease
the recovery overhead. WEAVER Codes8 suggested a generic method that contains almost all of the possible placements.

Followed by Azure’s Local Reconstruction Codes6 and Facebook Xorbas7, Microsoft Pyramid Codes9 studies the durability

of local parities.

2.3 Greedy algorithm

The greedy algorithm is widely studied and applied in different fields because of its simple design, easy implementation,

and low complexity compared with other methods. Reference10 uses powerful sampling methods to apply greedy

algorithms to the MapReduce paradigm, including maximum cover and submodular maximization subject to p-system

constraint problems. Based on the greedy strategy, Reference11 proposed a new method to obtain good space to solve a

parameter family partial differential equation. Reference12 proposed an improved the greedy algorithm, Carousel Greedy,

aiming at the defects of the greedy algorithm, and applied it to a variety of combinational optimization problems.

3. THE GREEDY APPROACHES GRE-N AND GRE-T

3.1 Problem definition

Here we define the problem to be solved in the form of mathematical symbols. The node-set in the system is 𝑁 =
{𝑁1,𝑁2, . . . , 𝑁𝑛}, the corresponding bandwidth of each node is 𝐵 = {𝐵𝑁1

, 𝐵𝑁2 , . . . , 𝐵𝑁𝑛}, where 𝐵𝑁𝑖
 is measured in the size

of one data block. We define the set of tasks awaiting recovery as 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑙}, 𝑙 represents the number of tasks,

corresponding to the task 𝑅𝑖, the optional node-set to participate in the recovery of the task is 𝑆𝑖 = {𝑆𝑖1 , 𝑆𝑖2 , . . . , 𝑆𝑖𝑝}, 𝑆𝑖𝑗 ∈

𝑁, where 𝑝 represents the number of nodes and is the same for all tasks, the actual number of nodes required by the task

is defined as 𝑞(𝑞 < 𝑝). Then the problem is defined as, on the premise that the bandwidth used for each node 𝑁𝑖(𝑁𝑖 ∈ 𝑁)
does not exceed 𝐵𝑁𝑖

(𝐵𝑁𝑖
∈ 𝐵), 𝑡(𝑡 ≤ 𝑙) tasks are selected from the set R, and each task selects a fixed number of nodes

from the optional set Si. And our goal is to maximize t, that is, to process as many recovery tasks as possible with limited

bandwidth.

3.2 Gre-N

Gre-N method considering the characteristics of the node bandwidth imbalance, priority is assigned to nodes with high

bandwidth, we first sort the nodes by bandwidth from high to low, and first assign tasks to the nodes with high

bandwidth. For each node, if there are enough tasks involving the node, select the same number of tasks as the node

bandwidth; otherwise, select all tasks until there are no qualified tasks to end the allocation process.

As shown in Figure 1, circles represent the nodes used to perform tasks, and they are arranged in descending order of

bandwidth. Squares represent tasks, and the gray grid on the right of each square represents the list of nodes needed to

perform the task. Gre-N’s policy is to assign tasks to nodes in descending order of bandwidth. As shown in Figure 1, since

the nodes involved in task 0 and task 3 have the highest bandwidth, they are preferentially processed, so task 1 and task 4

are subsequently processed.

Proc. of SPIE Vol. 12506 1250657-2

Figure 1. The strategy of Gre-N.

3.3 Gre-T

Compared with the random allocation method, Gre-N method takes into account the problem of bandwidth imbalance.

However, since the bandwidth of the top nodes is always inevitably occupied, it is difficult to consider the subsequent

better schemes and tasks. Therefore, we propose a better strategy based on the greedy algorithm: Gre-T. Gre-T contains

three technical points, which we will introduce separately.

3.3.1 Tasks Sorting. In the process of selecting tasks to be processed, how to select task combinations is very important.
Choosing the right task combination may improve the bandwidth utilization of nodes, so we take this into account in Gre-

T. Gre-T computes a bandwidth score for each task Ri as the sum of the initial bandwidth of the nodes involved in the task.

The calculation formula is as follows：

i

1

, ,
j j

w

R h j i h

j

F e h S e B
=

= (1)

where Si represents the node-set that the processing task Ri needs to participate in, w represents the number of elements in

the corresponding node-set, all elements in Si belong to the set N, 𝑒ℎ𝑗 represents the initial bandwidth of node hj.

Then, the tasks are sorted in ascending order according to the score, and the next tasks are selected in this order. This is

similar to Gre-N’s Greedy strategy, in which the tasks are preferentially allocated to nodes with high bandwidth for

processing. However, Gre-T adopts a more flexible policy to balance the bandwidth utilization of each node, rather than

exhausting the bandwidth of a node.

3.3.2 Assign Tasks Based on Bandwidth Utilization. We calculate the used bandwidth of all nodes in the system in real-

time, and then divide the used bandwidth by the initial bandwidth to get the bandwidth utilization of the current node. For

each selected task Ri, we first select p nodes corresponding to the task according to Si, and then select q (q<p) nodes with

the lowest bandwidth utilization as the final nodes to participate in the task, after the current task is complete, the bandwidth
utilization of the q nodes is updated in real-time. As shown in Figure 2, we first calculate the score of tasks according to

equation (1), and then sort the tasks in order of high score to a low score, and process the tasks in this order. As shown in

Figure 2, for task 0, among the four nodes (N-1, N-2, N-3, N-4) that can participate in the task, the two nodes (N-1, N-2)

with low bandwidth utilization are selected to participate in the task. At the end of task 0, we update the bandwidth

utilization of N-1 and N-2, and then repeat the above operations for task 1 and task 2. We avoid using a greedy

strategy based on the remaining available bandwidth (RAGS) to select nodes. This is because the task sequencing method

in Section 3.3.1 is based on the initial bandwidth of the corresponding node, we take the initial bandwidth order to represent

the bandwidth order at any time. If RAGS is used, the ranking of the available bandwidth of the node will change greatly

after completing part of the task, at this moment need the corresponding adjustment in order to adapt to the current

bandwidth scheduling state, because there are a large number of the task, sort of delay cost is very big, the Gre-T according

to the node is assigned to a task can guarantee the bandwidth of the node order bandwidth utilization is always consistent

with the initial basic bandwidth order. In this way, task reordering is not required.

Proc. of SPIE Vol. 12506 1250657-3

Figure 2. The strategy of Gre-T.

3.3.3 Low Bandwidth Node Compensation Policy. Since tasks are sorted according to the sum of initial bandwidth of

nodes involved in tasks, nodes with low initial bandwidth will not be frequently used in the whole process. The Gre-T

method uses low bandwidth node compensation policy (LBC) to alleviate the problem of the greedy policy over selecting

nodes with high initial bandwidth. In Gre-T, we define a constant f. When the node number is smaller than f, it is a low-

bandwidth node; when the node number is larger than f, it is a high-bandwidth node. As shown in Figure 3, we use an

on/off logic valve to control whether to trigger the LBC, specifically: LBC is disabled by default. When the bandwidth

usage of high-bandwidth nodes is low, LBC is disabled. In this case, the task selection sequence is front to back. When the
bandwidth usage of high-bandwidth nodes is too high, LBC is triggered to select tasks from the end of the task sequence.

The default LBC trigger conditions are as follows:

0

, ,
e u

fn

i i i

i f i

C D D D N f n
= =

= − ＜ (2)

where iD represents the node, and N is the set of nodes arranged in descending order of bandwidth,
ei

D represents the

remaining bandwidth of node iD , 𝐷𝑖𝑢
 represents the used bandwidth of node iD , n represents the total number of nodes.

In the beginning, obviously C is greater than 0, LBC is not triggered, and LBC is triggered when c is less than or equal

to 0. This indicates that LBC is triggered when the sum of the bandwidth used by all high-bandwidth nodes is greater than

or equal to the sum of the unused bandwidth of all low-bandwidth nodes.

Figure 3. Description of the conversion graph under bandwidth utilization control.

0 1 2 N-3 N-2 N-1

0

1

2

Node

Task List

N-1
(1%)

N-2
(4%)

N-4
(7%)

N-3
(5%)

Low

High

Score
N-1
(2%)

N-3
(5%)

N-2
(6%)

N-4
(7%)

N-1
(3%)

N-2
(6%)

N-3
(7%)

N-4
(7%)

Select low utilization nodes

Select low utilization nodes

Select low utilization nodes

OFFON

high bandwidth

utilization

high bandwidth

utilization

low bandwidth

utilization
low bandwidth

utilization

Proc. of SPIE Vol. 12506 1250657-4

4. EVALUATION

4.1 Test method

We use C++ language to simulate the implementation of our proposed two methods, Gre-N and Gre-T, in a Linux

environment. We simulate 1000 nodes in the implementation and use a random function to randomly generate bandwidth

for these 1000 nodes. During the experiment, our erasure code strip was composed of nine data blocks and three check

blocks. Therefore, for each recovery task, we randomly selected 11 different nodes as the optional node-set, and compared

our proposed method with the existing original method to test the effect of our proposed method.

The LBC policy is used when the valve is open and suspended when the valve is closed.

4.2 Results

First, for a total of one million tasks, we tested the total bandwidth utilization of the original versus Gre-N and Gre-T. The

duration of executing a recovery task reflects the advantages and disadvantages of a recovery policy. If the total number

of recovery tasks is constant, the higher the bandwidth usage, the faster the task execution speed and the shorter the task
execution time, indicating that the better the recovery policy is. According to Figure 4, when the total number of tasks is 1

million, the total bandwidth utilization of the original method is 74%, Gre-N is 89%, which is 20.2% higher than that of

the original method, Gre-T is 96%, which is 29.7% higher. When the total number of tasks is 3 million, the bandwidth

utilization of the original method is 77%, 87% for Gre-N, and 94% for Gre-T, Gre-N improves by 13.0% and Gre-T by

22.1% compared with the original method, which proves that our method is effective under the different total number of

tasks.

We did a further experiment with a total of one million tasks to compare Gre-N and Gre-T. After multiple rounds of task

selection, all tasks are executed, and the bandwidth utilization after each round is calculated, as shown in Figure 5. As can

be seen from the figure, Gre-T has higher bandwidth utilization than Gre-N in most of the iterations, and Gre-T needs

fewer rounds of iteration (about 2200) to complete all tasks than Gren (about 2500).

Figure 4. Performance of the three approaches in the case of
tasks of 1 million and 3 million.

Figure 5. The bandwidth utilization ratio curve of Gre-N
and Gre-T.

5. CONCLUSION

Erasure code is widely used in Cloud systems, and recovery is an important part, as for accelerating the speed of recovery,

the bandwidth utilization overall system should be as high as good. In order to improve the bandwidth utilization of

recovery, we designed and implemented two greedy approaches Gre-N and Gre-T, Gre-N assigns the tasks that invole high

bandwidth nodes, and Gre-T makes a further optimization by ordering tasks and selecting the lowest bandwidth utilization

nodes, in addition, Gre-T utilizes a dynamical strategy to balance the utilization between low bandwidth nodes and high

bandwidth nodes. By comparing with the original approach, the Gre-N and Gre-T improve the total bandwidth utilization

by up to 20.2% and 29.7%.

Proc. of SPIE Vol. 12506 1250657-5

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Foundation of China (62077027), the Ministry of Science and

Technology of the People’s Republic of China (2018YFC2002500).

REFERENCES

[1] Nachiappan, R., Javadi, B., Calheiros, R. N. and Matawie, K. M., “Adaptive bandwidth-efficient recovery techniques in
erasure-coded cloud storage,” Lecture Notes in Computer Science, 11014(2018).

[2] Li, X. L., Li, R. H., Hu, Y. C., et al., “Toward unified and configurable erasure coding management in distributed storage
systems,” 17th USENIX Conference on File and Storage Technologies (FAST 19), 331-344(2019).

[3] Hu, Y. C., Cheng, L. F. and Yao, Q. R., “Exploiting combined locality for wide-stripe erasure coding in distributed storage,”
19th USENIX Conference on File and Storage Technologies (FAST 21), 233-248(2021).

[4] Wicker, S. B. and Bhargava, V. K., [Reed-Solomon Codes and Their Applications], John W, Sons, (1999).
[5] Passing, J., The Google file system and its application in MapReduce, (2012). Available at: http://int3.

de/res/GfsMapReduce/GfsMapReducePaper.pdf.57
[6] Huang, C., Simitci, H., Xu, Y., et al., “Erasure coding in windows azure storage,” 2012 USENIX Annual Technical Conf.

(USENIX ATC 12), 15-26(2012).
[7] Caers, R., De Feyter, T., De Couck, M., et al., “Facebook: A literature review,” New Media & Society, 15(6), 982-1002(2013).
[8] Hafner, J. L., “WEAVER Codes: Highly fault tolerant erasure codes for storage systems,” Fast 05 Conf. on File & Storage

Technologies, 5, 16(2005).

[9] Huang, C., Chen, M. and Li, J., “Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage
systems,” ACM Transactions on Storage, 9(1), 1-28(2013).

[10] Kumar, R., Moseley, B., Vassilvitskii, S., et al., “Fast greedy algorithms in mapreduce and streaming,” ACM Transactions on
Parallel Computing, 2(3), 1-22(2015).

[11] DeVore, R., Petrova, G. and Wojtaszczyk, P., “Greedy algorithms for reduced bases in Banach spaces,” Constructive
Approximation, 37(3), 455-466(2013).

[12] Cerrone, C., Cerulli, R. and Golden, B., “Carousel greedy: A generalized greedy algorithm with applications in optimization,”
Computers & Operations Research, 85, 97-112(2017).

Proc. of SPIE Vol. 12506 1250657-6

