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ABSTRACT 

The fault diagnosis of turn-to-turn short circuit of permanent magnet synchronous motor (PMSM) often results in low 

diagnostic accuracy due to insufficient sample size. A fault diagnosis method based on deep learning PMSM inter-turn 

short circuit is proposed. According to the shortcomings of commonly used Generative Adversarial Networks (GAN), fault 

samples are expanded by using an optimized GAN to build a robust training set. Using stack sparse autoencoder (SSAE) 

combined with classifier to construct SSAE neural network can effectively solve the shortcomings of SAE’s limited 

learning ability and poor feature learning effect. In this paper, the PMSM three-phase stator current and zero-sequence 

voltage signals are used as the feature combination for synthetic fault diagnosis. We have conducted extensive experiments 

on the basis of the above method. The results show that the diagnostic accuracy of this method is as high as 99.4%. 

Outperforms traditional PMSM turn-to-turn short-circuit fault diagnosis methods. 
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1. INTRODUCTION 

A frequent problem with permanent magnet synchronous motors is interturn short circuit (PMSM). If the fault is not found 

in time, it will result in catastrophic failure of the entire drive system and motor operation fault. Deep learning-based 

PMSM defect diagnostics is therefore extremely important1, 2. The primary detection method for inter turn short circuit 

faults in PMSM is based on zero sequence voltage and stator current. The PMSM control system contains the stator current 

itself3. The zero-sequence voltage is more susceptible to inter turn short circuits than the stator current under the same 

fault4. In order to effectively lessen the impact of external influences on a single characteristic variable, the three-phase 

stator current and zero sequence voltage signal can be employed as the combined characteristic term of turn-to-turn short 
circuit fault detection. In addition, fault detection is accomplished using learning techniques such support vector machines 

(SVM), convolutional neural networks, and sparse self coding networks (SAE)5-8. An SAE and a GAN are often generated 

using9. To discover the internal properties of complex data, SAE use unsupervised approaches. However, SAE is a thin 

network with little capacity for learning. Reference10 uses SAE depth network and SoftMax classifier to implement six 

different fault diagnosis methods for asynchronous motors. More than 95% of predictions are correct. The results of 

document11 is use of a denoising sparse self coding network to diagnose six asynchronous motor faults are above 97 percent. 

It is challenging to enable the training of deep learning network model due to the lack of defect examples. To create a 

significant association between the output data and the input sample data, GAN employs the attack concept. As a result, 

fault samples can be used to generate fault sample data by being input into GAN. GAN, however, often uses random noise 

as the generation model’s input. The network can only enter a zero-sum game when the data volume is significantly greater 

than the generation model’s parameters, which can quickly result in the demise of GAN mode. 

This work proposes a deep learning-based PMSM inter turn short circuit defect diagnosis method based on the 

aforementioned research. The fault samples are extended using the optimized GAN, then the expanded samples are fed 

into the SSAE network, where the fault diagnostic and classifier are integrated. This essay suggests the following two 

approaches to address the aforementioned issues: (1) The trained self encoder (AE) is utilized as the GAN generation 

model, and the data collected while the motor is operating normally is sent into the GAN model as input. In this approach, 

network training can be finished, training time can be cut down, and model collapse is difficult even when the amount of 

fault data is relatively little. (2) To create an SSAE neural network, SSAE is superimposed upon SAE and paired with a 

classifier. We can naturally combine supervised fine-tuning and unsupervised self-learning to learn the feature expression 
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of input data and enhance the network’s generalization capacity. The findings of the engineering application demonstrate 

that this method can precisely categorize and effectively extract the characteristics of the interturn short circuit fault of 

permanent magnet synchronous motors. 

2. CHARACTERISTIC ANALYSIS OF PMSM TURN-TO-TURN SHORT CIRCUIT  

Collecting stator current signals in three directions with different severity under PMSM turn to turn short circuit fault and 

signals during normal operation. The waveform is shown in Figure 1a. Orange indicates phase A current; Blue indicates 

phase B current and green indicates phase C current. By observing Figure 1, it can be concluded that with the increase of 

the turn ratio of PMSM interturn short circuit fault, the amplitude of phase a current change significantly. The zero-

sequence voltageV can be expressed as the voltage difference between the stator winding and the converter, which can be 

expressed as equation: 
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In the above formula, u  represents the ratio of short circuit turns, sR  represents the three-phase resistance value, fi

represents fault current, L  is the self-inductance coefficient, M  is mutual-inductance coefficient, ,0PM  represents the 

mean value of back electromotive force of three short circuit windings). Collect the zero-sequence voltage signals of 

PMSM under normal working state and fault state with different short circuit turn ratio. The waveform is shown in Figure 

1b. It is evident that the zero-sequence voltage waveform dramatically alters following the turn-to-turn short circuit 

malfunction of the PMSM. 

3. CONSTRUCTION OF DEEP LEARNING MODEL 

3.1 Optimized generative countermeasure network 

The richness of data sets is very important for the training of deep learning. This paper proposes an optimized GAN model. 

As shown in Figure 2, the trained AE is used as the generation model G  of GAN, discriminant model D  is usually a 

multilayer perceptron, the input of G in GAN is the data of normal motor operation, and the input of D is the data generated 

by G and the real fault data. D andG compete with each other. Finally, G depicts the distribution of fault samples by 

learning the characteristics of fault samples, and then generates pseudo data similar to it, achieve the purpose of data 

expansion. Define data parameters such as equation: 
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where ( )t
a and ( )t

c are the t-th fault sample and the t-th normal sample respectively, ( )t
m belongs to [1,0], which means that 

the profile that judges the sample data as true is 1, and the profile that judges the generated data as true is 0. T represents 

the total number of samples). Relationship between G and D such as equation: 
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In which a means generate data. By fixingG ,The loss function corresponding to D can be obtained, such as equation: 
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In the above formula,
D

 represents the parameters to be optimized in the discrimination model. ~ ( )a p a represents the 

motor sample distribution. ~ ( )a p a represents the distribution of generated data). The design requirements of D are: the 

likelihood of evaluating the created data to be fake is higher than the likelihood of judging the real defect sample to be true. 

The following are the design requirements for G : When D is fixed, the distribution features of the generated data shall, 

to the greatest extent possible, agree with the real fault samples., and the maximization objective function as equation: 
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Figure 1. PMSM three-phase stator current and zero sequence voltage signal sequence diagram. 
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G
 represents the parameters to be optimized in the generated model. Combining the loss functions of equations (4) and 

(5), the final objective function of GAN is obtained, as shown in equation: 
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The parameters G
 and D

 ofG and D are optimized by gradient descent to shorten the difference between created and 

actual data. When ( ( ))  1D G c = , the optimal state is reached between created and actual data.  

3.2 SSAE neural network 

SAE uses regularization strategy to restrict the network on the basis of ordinary AE, so as to improve the generalization 

ability of the network. The learning ability of the model is limited by adding norm penalty R(θ) to the objective function. 

At this time, the SAE optimization objective function as equation: 
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In the above formula, represents the network parameter set{ , }W b ,W represents the parameter weight, b represents the 

offset vector, M represents the total number of motor samples.
( )m

x represents the m-th motor sample. ( )m

x is the prediction 

of input sample ( )m
x . ( )R  is a regular term. is a super parameter that weighs the relative contribution between ( )R  and

( )J  .  

 

Figure 2. Optimized generative countermeasure network. 

 

Figure 3. Sparse self-coding network structure. 

The schematic diagram of network structure is shown in Figure 3. In the coding stage, the important features of the input 

data are extracted, the sparse regular term is introduced, and the 1L  constraint is used to punish the output of the hidden 

layer nodes. In the decoding stage, the extracted features are recovered and the prediction results are output. The reliability 
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of diagnosis results and actual results is compared by objective function. 1L norm has the advantages of small amount of 

calculation and convenient operation. Therefore, the optimization objective function of sparse self-coding network based 

on 1L norm as equation: 
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The objective function ( )sparseJ  is minimized through the back-propagation algorithm, and the gradient descent method 

is used to optimize the parameter weightW and offset b in the process of continuous iteration.  

SAE consists of a three-tier network. Only one hidden layer limits the ability of feature extraction. In order to better learn 
the features with strong representation ability, SAE stack is formed into SSAE, and then a classification layer is added to 

construct SSAE neural network. The specific scheme is: when multiple SAE are superimposed, the hidden layer of the 

previous SAE is used as the input layer of the next SAE. Set the network coding phase parameter corresponding to layer l

as 
( ) ),1 , ,( 1 
v v

v W b = and the decoding phase parameter as  )* ,2 , 2( ,) ( v

v vW b = . For N -layer stack networks, the 

coding sequence is from front to back. The corresponding coding process of each layer as equation:  
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( ( )le refers to the output of layer l , ( )f  is the activation function. ( )y l and ( 1)y l + are the input of layer l and layer 1l +
respectively). if the multi-layer SAE behind the stack performs decoding from back to front, the decoding steps 

corresponding to each layer as equation: 
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( ( )N le + is the output of the deepest hidden unit, ( )g  is the activation function). The last hidden layer of SSAE can only 

reconstruct the original data and has no classification ability. Therefore, in order to realize the classification and diagnosis 

function of inter turn short circuit fault, a classification layer is added after the last hidden layer. The network model is 

shown in Figure 4. The number of neurons in the classification layer is the number of inter turn short circuit faults with 

different degrees. 

 

Figure 4. Deep sparse self coding neural network structure. 
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SSAE neural network includes two training steps: forward network pre training (unsupervised mode) and reverse fine 

tuning (supervised mode). It is pre trained by layer-by-layer greedy training method. The steps are as follows: 

(1) Input the data into the first layer of SAE after preprocessing, and train the first layer of SAE in an unsupervised manner 

to obtain the parameter weight ( )1W and offset ( )1b . 

(2) The hidden layer of the upper layer of SAE is used as the input of the next layer of SAE, and the 

next layer of SAE is trained to obtain the parameter weight ( )2W and offset 2( ) b . of the second layer. 

(3) Repeat step (2), take the output of the trained hidden layer of layer ( N -1) as the input of layer N , obtain the parameter 

weight ( )NW and offset ( )Nb  of the last layer, and complete the training of all SAE. 

(4) The output of the last hidden layer is used as the input of the classifier to prepare for the next supervised fine-tuning. 

After pre training SAE of each layer through the above steps, establish SSAE network. Monitor and fine tune the network 

through labeled samples. All layers of SSAE are regarded as a model, and the parameters of SSAE are adjusted by back 

propagation algorithm. After several iterations, the parameter weight W and deviation b of each layer are optimized. The 

output of the last hidden layer and the category label are used as the input of the classification layer. The objective function 

of overall optimization as equation:  
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( )i
h is the fault type label. SSAE organically combines unsupervised self-learning with supervised fine-tuning, which can 

better extract the deep features of input data. By outputting the probability of fault type in the classification layer, the 

classification of PMSM inter turn short circuit fault is realized. 

4. EXPERIMENTAL ANALYSIS 

4.1 The proposed method 

Figure 5 illustrates the deep learning-based fault diagnostic approach used in this study for turn-to-turn short circuits in 

permanent magnet synchronous motors.  

 

Figure 5. Overall flow diagram of PMSM turn to turn short circuit fault diagnosis. 
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4.2 Experimental description 

A permanent magnet synchronous motor experimental test platform is constructed, as illustrated in Figure 6, to confirm 

the efficacy of this approach. One serves as the load motor, while the other serves as the experimental motor in the 

utilization of two permanent magnet synchronous motors. We decided to conduct the test when the motor operates at low 

speed, and the test parameters are stated in Table 1, in order to prevent the motor from suffering long-term damage as a 

result of high short-circuit current during the test. 

 

Figure 6. PMSM inverter open circuit experiment platform. 

Table 1. PMSM parameters. 

Value Parameters Parameters value 

550W  Rated power (W) Rated speed (Ω) 1500 

3.5 Rated torque (N·m) Winding turns 512 

2 Polar logarithm Stator resistance 10.5 

1.5A  Rated current (A) self inductances (H) 0.16 

0.636 Permanent magnet chain (Wb) Mutua linductances (H) 0.16 

We use current sensor to collect PMSM three-phase stator current signal and zero sequence voltage signal. Collect the data 

of 4000 groups of motors in normal operation and 1000 groups of motors in 5%, 10% and 15% fault operation. After 

preprocessing the collected data, the real data sets of PMSM with different degrees of inter turn short circuit fault are 

constructed. 

4.3 The validity analysis of our method 

In order to verify the efficiency of the optimized GAN extended fault sample data proposed in this paper, we use the general 

GAN and the optimized GAN to extend the real fault samples we collected respectively. The data volume and training 

batch (training time) required for the training of the two models are shown in Table 2. 

As can be seen from Table 2, even when the real data is a small sample, the optimized GAN can complete the training of 
the network model. However, for general GAN training, the amount of data in the training set should be much larger than 

the number of parameters in the generator. The training batch of optimized GAN is also less than that of ordinary GAN, 

indicating that its training time is shorter. The superiority of the optimized GAN proposed in this paper is verified. 

We created a 3:1 split between the training and test sets from the real data set, and a fault type label is added to one quarter 

of the data in the divided training set. Firstly, the training set without label is used for unsupervised pre training of SSAE, 

and then the training set with label is used for supervised fine-tuning of SSAE. The last hidden layer of SSAE connects 

the classification layer and outputs the probability value of fault type. The test set verifies the diagnosis efficiency and 

generalization ability of the network. Considering the influence of the number of SSAE network layers on the diagnosis 
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results, we construct a multilayer SSAE network, where N = 1,2,3,4,5. The recognition accuracy of N -layer network is 

shown in Table 3. 

Table 2. A slightly more complex table with a narrow caption. 

Number General network Optimized network 

 sample batch result sample batch result 

1 40 60 fault 20 40 fault 

2 60 80 fault 40 50 finish 

3 80 100 fault 60 60 finish 

4 100 120 finish 80 70 finish 

5 120 140 finish 100 80 finish 

Table 3. Curacy corresponding to n-layer network. 

Number of network layers Accuracy 

1 90.58% 

2 94.88% 

3 94.31% 

4 84.19% 

5 76.60% 

The same data is input into SSAE neural network with different network layers, the diagnosis results are obviously different. 

When the number of network layers is two, the diagnosis accuracy reaches the maximum. From the second layer, with the 

increase of the number of layers, not only the training time becomes longer, but also the diagnostic accuracy decreases. 

Therefore, we choose to use two-layer SSAE neural network. 

In order to verify the effectiveness of data expansion, the optimized GAN is used to expand three different degrees of inter 

turn short circuit fault samples, and 1000 groups of pseudo samples are generated respectively. The real data set and pseudo 

samples are mixed to form an extended data set, with a total of 10000 groups of data. According to the division proportion 

of the above real data set, the same processing is performed on the extended data set. Based on the same SSAE neural 

network, the fault diagnosis results under the real data set and the extended data set are compared experimentally, as shown 

in Figure 7. 

As shown in Figure 7, two groups of experiments were carried out. These two groups of experiments used SSAE neural 

network with the same parameters and the same number of network layers. Experiment 1 used real data sets as network 

input. Obviously, the insufficient number of samples directly affects the diagnostic efficiency. The accuracy of fault 

diagnosis tends to decline as sample size increases, and the final diagnosis accuracy is 97.4%. In Experiment 2, the 

extended data set was used as the network input because the pseudo samples in the extended data set contained irrelevant 

noise elements. Such samples can improve the generalization ability of the network. It can be seen from the figure that 

under the same number of samples, the diagnostic accuracy of the extended data set will be slightly higher than that of the 

actual data set. Too few samples will make the network unable to reach the optimal state. The additional sample set’s 

diagnosis results show that as sample size is increased, the accuracy rate of fault diagnosis begins to stabilize and eventually 

reaches 99.4%. Therefore, the pseudo data generated by GAN can not only make up for the shortage of network training 

samples, but also enhance the data set. 

We compare this method with conventional ones to show how effective it is. Table 4 displays the comparison’s results. 
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Figure 7. Comparison of diagnostic accuracy under different training sets. 

Table 4. Diagnostic results of different training methods. 

Method Accuracy 

EMD+SVM 56.78% 

SAE 90.60% 

1d-CNN 91.31% 

BP neural network 86.69% 

Our method 99.38% 

In the above table 4, the training results of other traditional methods except the method in this paper are from the same real 

data sets. The combination of EMD and SVM is used for PMSM fault diagnosis. Compared with deep neural network, it 

has simple structure and convenient calculation, but its efficiency is not as good as other methods. SAE is connected 

through KL divergence coefficient, and the network generalization ability can be significantly improved and the diagnostic 

accuracy is satisfactory. But SAE is a shallow network, which still has some room to improve the accuracy of fault 

diagnosis. One-dimensional convolutional neural network (1D-CNN) is a kind of deep feedforward neural network with 
local connections and shared weights. It is also a common method in the field of PMSM fault diagnosis. The diagnostic 

accuracy is also optimistic. BP neural network is a commonly used classification and regression network. The diagnosis 

results are satisfactory, but the overall efficiency needs to be greatly improved. The combination of optimized GAN and 

SSAE neural network for fault diagnosis proposed in this paper has the advantage that it not only increases the amount of 

data, but also enhances the data set by generating noise data in pseudo samples. More robust features are extracted through 

SSAE neural network, and unsupervised and supervised organic sets are used to improve the generalization ability of the 

network, prevent the network from over fitting, and finally get more accurate diagnosis results. 

5. CONCLUSIONS 

An effective and precise method for diagnosing PMSM inter turn short circuit faults is presented in this paper. It makes up 

for the lack of data samples and learning feature ability under the background of deep learning. The innovation of this 

method lies in:  

(1) The optimized GAN is used to extend PMSM in fault samples. Even if the real data set is a small sample, the training 

of the model can be completed, and the training time can be shortened, which is not easy to lead to the collapse of the 

model, which greatly improves the shortcomings in the training process of general GAN model. 

(2) SSAE neural network deep network adopts the organic combination of unsupervised self-learning and supervised fine-

tuning for model training, which can extract more robust feature expression from the input data, so as to improve the 

diagnosis ability of the network to deal with a variety of data and improve the accuracy of diagnosis. 
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