
Feature pyramid graph convolutional networks for temporal action 

detection 

Shanshan Dua, Xiaomeng Zhangb, Shanbang Zhuc, Ruiwei Zhaod, Weidong Xuc*, Rui Fengb,d# 
a School of Information Science and Technology, Fudan University, Shanghai, China; b School of 

Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan 

University, Shanghai, China; c Department of Orthopedics, Changhai Hospital, Naval Medical 

University, Shanghai, China; d Academy for Engineering and Technology, Fudan University, 

Shanghai, China 

ABSTRACT 

In some long and untrimmed videos, locating the important and key segments can be a very challenging task for temporal 

action detection. Current methods make remarkable progress when it comes to RGB images. The aim of this paper is to 

develop a method with the assistance of dynamic model of human body skeletons to address this problem. To this end, we 

propose a Feature Pyramid Graph Convolutional Network (FP-GCN). The introduced model contains a Feature Encoding 

Module to encode skeleton data with graph convolutional networks, a Feature Pyramid Module to exploit the inherent 
pyramidal hierarchy and an Action Detection Module to generate the final prediction results of the detection. We 

experiment our approach on NTU RGB+D and THUMOS14 datasets and obtain a satisfactory result. 

Keywords: Temporal action detection, feature pyramid, graph convolutional networks 

1. INTRODUCTION 

With its diverse values in various applications such as intelligent surveillance and human-computer interaction, human 

action detection in untrimmed videos is a fundamental which attracts lots of research attention yet remaining a very 

challenging computer vision problem1, 2. Large amount of research in action recognition and action detection have been 
conducted in the recent decade. Along with impressive progress in action recognition3-5, the topic of temporal action 

detection has attracted considerable focuses from researchers all over the world in recent years6. 

The task of action detection is to predict temporal locations of the containing action segments or instances in the untrimmed 

videos, as well as to make estimation on the categories of each detected action segments or instances. Therefore, the 

traditional pipeline of action detection models can be mainly categorized into two consecutive major steps. The first major 

step is named as temporal proposal generation, which produces some candidate action locations from the long untrimmed 

video data. And the second major is called proposal categorization, which is to predict the semantic meaning of each 

generated action proposals. Most previous state-of-the-art methods rely on traditional hand-crafted visual features extracted 

from the video data, but their performances are always not so good to reach the bar of real applications. Recently, inspired 

by two-stage object detection framework, many newly proposed and reported competitive approaches7, 8 adopt two-stage 

pipeline when address the temporal action detection issue. They propose temporal proposals first and then perform 
temporal boundary regression and classification. This kind of two-stage framework is tough to train and is not end-to-end. 

Besides, most of the existing action detection methods operate on raw videos. As a result, they are sensitive to the 

background and illumination changes in the videos. On the contrary, human body skeleton data is very robust under the 

changing video shooting environment. In other words, it is preferable to use the skeletal data of human bodies to address 

the issues and problems of action detection in untrimmed videos. 

Our proposed Feature Pyramid Graph Convolutional Network, namely FP-GCN, is akin to the combination of FPN9 and 

ST-GCN10. The former is an excellent feature pyramid network, and the latter is an extraordinary spatial-temporal skeleton 

modeling network. First, we establish human action spatial-temporal graphs on skeletal data from depth sensors or pose 
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estimation algorithms, and then encode graph features by ST-GCN. Finally, we apply several lateral connections between 

the feature maps with different strides to obtain the high-level features and then try to estimate the boundaries of the action 

segments in the temporal axis based on these extracted features. Moreover, we conduct our experiments on the NTU 

RGB+D11, 12 and THUMOS1413 dataset, which are two widely used benchmarks in the field of action detection. The results 

show that our proposed method can achieve very competitive performance compared to the state-of-the-arts. The overall 

architecture of our network structure is shown in Figure 1. 

 

Figure 1. Overview of our FP-GCN. 

FP-GCN adopts ST-GCN as the backbone to extract the high-level and representative features from the generated skeleton 
graph. Then we construct an in-network feature pyramid. Finally, we feed the features into the action detection module to 

obtain the results. 

Our work applies human skeletal data in temporal action detection. Main contributions of our work are described below: 

(1) We present a novel approach to detect human action time intervals directly on skeletal data instead of on RGB videos. 

(2) We improve ST-GCN and combine it with a feature pyramid module to extract multi-scale features and help detect 

human actions in the untrimmed videos. 

(3) On two popular action detection benchmarks, which are NTU RGB+D and THUMOS14, the achieved performances 

of our proposed method are reported. Its effectiveness and advantages are demonstrated and discussed in the experiment. 

2. RELATED WORK 

Graph Neural Network (GNN) is widely adopted in modeling graph-structured data such as social networks14, knowledge 

graphs15, recommendation systems16 and physical systems17. A graph can be described in terms of its containing graph 

nodes and graph edges. Given the initial node features of a graph, we can construct neural networks to learn the feature 

representations of its containing vertices, or nodes, and edges. The way to construct a graph neural network typically 

follows two mainstreams respectively form the spatial or spectral perspectives. In the spatial domain, message passing in 

graph convolutional networks following the paradigm of propagating and aggregating information to update node 

features18. While in the spectral domain, the convolution operation is performed with the help of the eigenvectors plus the 

eigenvalues of the Laplacian matrix corresponding to the graph19. Our work follows the setting from the first spatial stream. 
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The motion of human skeletons and joints conveys quite much important information about the underlying human action. 

Usually, conventional skeleton-based action recognition methods rely on manually designed traversal rules which present 

unreasonable human factors and thus leading to unsatisfactory performance20, 21. Human skeleton data can be less affected 

by the diversity of illuminations and the variation of viewpoints. Generally speaking, there exist three deep learning 

methods in skeleton-based human action recognition. One is based on the RNN model. RNN is originally designed to 
model temporal data. Here it is used to model skeleton data as a collection of sequential joint features in vector form22-24. 

Another treats skeleton data as pseudo-images and applies the convolution operation on them25-27. But these two approaches 

are unable to model the relationship between space and time. Instead of representing skeleton data as sequences or images, 

the ST-GCN construct spatial-temporal graphs from the skeleton joint data and make further inference based on graph 

modeling results. 

Object detection on images remains fundamental yet challenging for a long time. Algorithms in this direction aim at 

determining the location and category of existing objects in each image. SSD28 is one of the notable multi-class one-stage 

detector. This very kind of detector in single shot form with multiple boxes conducts all computation in one network 

structure and outperforms previous representative Faster R-CNN29 from both aspects of speed and accuracy. Moreover, 

object detection method like Feature Pyramid Network (FPN)9 exploits lateral connections that using a ConvNet’s 

pyramidal feature, which can both take spatial resolutions and semantic strength into account. The design of our FP-GCN 

for the purpose of creating in-network feature pyramids is similar to the architecture of FPN in exploiting the pyramidal 
shape of the feature hierarchy in convolutional neural networks. Besides, our work applies focal loss30 to deal with class 

imbalance typically caused by limited amount of positive examples and large amount of negative or background samples. 

The R (2 + 1) D network31 are also adopted to provide complementary information encoded from the raw input videos, 

which is called video content encoder. Compared with conventional network with 3D convolutions, R (2 + 1) D replaces 

a 3D convolutional layer with a two-dimensional convolutional layer followed by a one-dimensional convolution layer. 

Experiments show that such kind of convolution block can decompose spatial and temporal modeling and achieve lower 

error rate than 3D convolution block. Furthermore, it also follows the architecture of ResNet32. R (2 + 1) D takes T frames 

of the video as input and predicts the category. The output of the last global average pooling layer is kept as the encoded 

feature representation of the input video data. Moreover, to encode every anchor in the video, we sample the video content 

in original videos from the same positions of the corresponding anchor locations regarding the interested feature maps and 

get the features of these video clips by R (2 + 1) D. So given K anchors, we will get the encoded feature of shape (K, D), 
where D is the quantity of output feature map channels from the very last global average pooling layer of the adopted 

network architecture. The setting of the anchors will be described in Section 3.3. 

3. APPROACH 

3.1 Problem formulation 

Temporal action detection is to locate the starting frame and ending frame of the action instances based on the content 

analysis on the input untrimmed videos and predict their action categories. Without loss of generality, any untrimmed 

video data can be treated as a collection of sequential frames denoted as 𝑇 = {𝑡𝑛}𝑛=1
𝑇𝑛 , where 𝑡𝑛 is the n-th frame data in 

the form of RGB images. The annotation set of T is composed of two subsets. One contains temporal boundary information 

and the other contains category labels. Temporal boundary information is represented by a set of temporal annotations 

Φ𝑔 = {𝜙𝑔 = (𝑡𝑠,𝑛 , 𝑡𝑒,𝑛)}𝑛=1
𝑁

, where N refers to the quantity of labeled action segments or instances in video which are 

treated as ground-truth. 𝑡𝑠,𝑛 marks the starting frame of the action segment  𝜙𝑛, and 𝑡𝑒,𝑛 , on the other side, indicates the 

ending frame of the same action instance. Category information is denoted by a set of class labels 𝐶𝑔 corresponding to 

ground-truths in 𝜙𝑔, where 𝐶𝑔 = {𝑐𝑔,𝑛}𝑛=1
𝑁

. During inference, temporal action detection method should generate a temporal 

anchor set Φ𝑝 = {𝜙𝑝 = (𝑡𝑠,𝑛
𝑝
, 𝑡𝑒,𝑛

𝑝
)}

𝑛=1

𝑁𝑝

 and a label set 𝐶𝑝 = {𝑐𝑝,𝑛}𝑛=1
𝑁𝑝

, where 𝑁𝑝 is the total amount of predicted action 

segments or instances in T. Temporal anchor set should cover annotation set with high temporal overlap and the predicted 

category of each detected action instance should also be accurate. 

In Spatial-Temporal GCN (ST-GCN), inspired from the natural properties and structure of human skeletons, the skeleton 

graph takes joints as vertices and bones as edges, and construct the graph thereby. Specifically, we consider a skeleton 

with joint nodes and edges as an undirected spatial-temporal graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑡𝑖|𝑡 ∈ {1,2,… , 𝑇}}
𝑖=1

𝑁𝑣
 is the 

collection of 𝑁𝑣 body joints and E is the set of m bones. There are two different sorts of edges in graph G, namely spatial 
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edges and temporal edges. Formally, the spatial edges feature intra-body connection at each frame t and can be denoted as 

𝐸𝑠 = {(𝑣𝑡𝑖 , 𝑣𝑡𝑗)|𝑣𝑡𝑖 , 𝑣𝑡𝑗 ∈ {1,2,… , 𝑇}}. The temporal edges 𝐸𝑡  feature inter-frame connection, which create connection 

between the same joints across consecutive frames, where 𝐸𝑡 = {(𝑣𝑡𝑖 , 𝑣(𝑡+1)𝑖)|𝑣𝑡𝑖 ∈ {1,2, … , 𝑇 − 1}}. 

3.2 Feature pyramid graph convolutional network 

3.2.1 Feature Encoding Module. The goal of convolution in graph is to capture the dynamic skeletal data within an image 

at time t along the spatial dimension, which can be formulated as10 

𝐹𝑜𝑢𝑡(𝑣𝑡𝑖) = ∑
1

𝐶
(Θ ⋅ (𝐹𝑖𝑛(𝑣𝑡𝑗)))𝑣𝑡𝑖∈𝑁(𝑣𝑡𝑖)∪{𝑖}

                                                 (1) 

where 𝐹(𝑣𝑡𝑖) = (𝑥𝑡𝑖 , 𝑦𝑡𝑖 , 𝑧𝑡𝑖) is the coordinate vector of the target node. 𝑣𝑡𝑗 denote its 1-hop neighbors. Θ is the weighting 

function responsible for feature transformation and the summation function aggregates the normalized results. Usually, the 

normalized constant C is the degree of 𝑣𝑡𝑖 aiming to balance the contribution of each neighbor. Following the idea of ST-

GCN, we group 𝑣𝑡𝑖 and 𝑣𝑡𝑗 into three subsets, including (1) the target node itself, (2) the centripetal nodes near the skeleton 

gravity coordinates compared to the target node, and (3) otherwise the centrifugal ones. Then, equation (1) is transformed 

into 

    𝐹𝑜𝑢𝑡 = ∑ 𝐴𝑘(Θ𝑘 ⋅ 𝐹𝑖𝑛)
3
𝑘=1                                               (2) 

where 𝐴𝑖 ∈ {0,1}𝑛×𝑛 refers to the adjacent matrix of each sub-graph with respect to three subsets, and element 𝐴𝑝,𝑞 = 1 if 

there exists an edge between joint p and joint q and 0 otherwise. In the temporal dimension, we capture high-level temporal 

motion features by applying a 179 kernel of 𝑇𝑘×1 dimension to perform graph convolution on 𝑇𝑘  consecutive frames. Given 

a spatial-temporal human skeleton graph as constructed above, multiple layers of ST-GCN are built, which empower 

information to be fused along both the temporal and spatial domain. The ST-GCN encoder transforms feature map 

(𝑁 × 𝐶𝑖𝑛 × 𝑇𝑖𝑛 × 𝑉)  into (𝑁 × 𝐶𝑜𝑢𝑡 × 𝑇𝑜𝑢𝑡 × 𝑉)  ,where 𝐶𝑖𝑛  and 𝐶𝑜𝑢𝑡  records the numbers of channels, 𝑇𝑖𝑛  and 𝑇𝑜𝑢𝑡  
writes the length of skeleton frames, while V denotes the amounts of vertexes. 

We also use R (2 + 1) D to provide complementary information encoded from the raw input videos, which is called video 

content encoder. Comparing conventional network with 3D convolutions, R (2 + 1) D replaces a 3-dimensional convolution 

layer with a 2-dimensional convolution layer followed by a 1-dimensional convolution layer. Experiments show that such 
kind of convolution block can decompose spatial and temporal modelling and achieve lower error rate than 3D convolution 

block. R (2 + 1) D takes T frames of the video as input and predicts the category. The final encoded feature of the input 

video is formed by the output of the last global average pooling layer. Moreover, to encode every anchor in the video, we 

sample the video content in original videos from the same positions of the corresponding anchor locations with respect to 

interested feature maps and get the features of these video clips by R (2 + 1) D. So given K anchors, we will get the encoded 

feature with shape (K, D), where D is the number of output channels of the last global average pooling layer of R (2 + 1) 

D. 

3.2.2 Feature Pyramid Module. The functionality of the Feature Pyramid Module (FPM) is to exploit the inherent pyramidal 

hierarchy of spatial-temporal graph convolution networks. Features in deeper GCN layers have finer temporal boundary 

information but semantically strong while features in lower GCN layers have coarser temporal boundary information but 

semantically weak. The bottom-up path involves the feed forward calculation implemented by the backbone networks ST-

GCN. It contains several GCN-TCN blocks. Each GCN-TCN block consists of a first graph convolution module in spatial 
domain. In addition, it also contains another convolution module in temporal domain. We divide the whole graph 

convolution layers into two parts and each part is called one network stage. Graph convolution layers at the very end of 

each network stage have strides of {2, 4} frames with respect to input feature vectors. We select features coming from the 

ending layer in every major step, because the deepest layers of each major step are expected to boast the strongest semantic 

features. Concretely, we choose features generated from st_gcn_6 and st_gcn_9. Given the input skeleton graph of 

dimension (𝑁 × 𝐶𝑖𝑛 × 𝑇𝑖𝑛 × 𝑉 ×𝑀),the output feature maps have the dimension of (𝑁 × 𝐶𝑜𝑢𝑡 × 𝑇𝑜𝑢𝑡 × 𝑉 ×𝑀). 

The top-down pathway includes two lateral connections and one top-down connections. 𝑆2 lateral layer is a (1 × 1) feature 

fusion layer, where the input data channels and output channels are both 128. Features from the top pyramid level of the 

network are first fed into a (1 × 1) 𝑆2 convolutional layer to half its channel to 128 and then go through an upsampling 

layer to get the (128 × 200) dimensional feature vectors. After that, an element-wise summation is laid upon the up-

sampled feature maps and the fused feature maps to obtain the enhanced features. Then, a top-down connection is 
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established thereof. In short, low-level but spatial-detailed description and high-level but semantic-rich information 

complement each other to build an in-network feature pyramid. 

3.3 Action detection module 

The setting of anchors is following faster RCNN. For the feature map with stride 2 and 4, the anchor size is 64 and 128 

respectively. We use the parameterizations of 2 coordinates following 

𝑝𝑥 = (𝑥 − 𝑥𝑖)/𝑤𝑖 , 𝑝𝑤 = log(𝑤/𝑤𝑖)
𝑝𝑥
∗ = (𝑥∗ − 𝑥𝑖)/𝑤𝑖 , 𝑝𝑤

∗ = log(𝑤∗/𝑤𝑖)
                                                     (3) 

where x stands for the center coordinates of the temporal box and w is its width. The x, 𝑥𝑖 and 𝑥∗ are calculated to predict 

the temporal box location, anchor box location and the ground-truth box location respectively. 

The feature fusion block takes two kinds of features as input. One is from the graph encoder called graph features, and the 

other is from the video content encoder called video features. The graph features are denoted as a vector of 

(𝑁 × 𝐶1 × 𝑇 × 𝑉) dimension, where N refers to the batch size, 𝐶1 is the output channel size, T is the output frame quantity 

and V is the joint counts. The video features are in a vector of (𝑁 × 𝐶2 × 𝑇), where 𝐶2 is the amount of output channels. 

The graph features are then forwarded into an average pooling layer of kernel size (1 × 𝑉) and two convolutional layers 

to fuse the information of joints as shown in Figure 2. The video features are fed into a basic residual block to get an output 

tensor with dimension (𝑁 × 𝐶1 × 𝑇). Finally, the obtained graph features and the visual video features are combined 

together. The combination is implemented by the concatenation operation along the channel dimension. 

 

Figure 2. Average pooling and feature fusion of spatial-temporal graph. 

The action recognition head is built with a kernel size 1 convolutional layer and the output channel size is (𝐾 × 𝐶), where 

K stands for the quantity of anchors and C is the action categories quantity including background. In this way, every value 

in each output channel of this head represents the classification results of each anchor. 

The action recognition head is built with a convolutional layer with kernel dimension 1. Its output channel size is (2 × 𝐾), 
where (2 × 𝐾) means the predicted 𝑝𝑥 and 𝑝𝑤  of K anchors. 

4. EXPERIMENT 

4.1 Datasets and preprocess 

NTU RGB+D 60 dataset is a widely used large-scale human action recognition benchmark collected by three cameras. 

There are totally 60 action classes in the dataset and it contains 56880 video clips gathered from 40 distinct subjects. Two 

kinds of standard evaluation benchmarks are provided, i.e., cross-view benchmark x-view and cross-subject benchmark x-

sub, which means different setting of camera and different people respectively. The NTU RGB+D 120 dataset is in fact an 

expanded version of the preliminary 60-classes dataset with wider range of performer ages, richer categories of action 

classes and finer action granularity. The NTU RGB+D 120 dataset involves a larger number of 114,480 video samples. 

THUMOS14 is widely used in temporal action detection task which contains 20 action classes. The validation set and the 

testing set are both made up of temporal annotated untrimmed video which has 200 and 213 video samples respectively. 

In our experiments, we choose the processed training set and the original validation to train our model parameters and 

choose the testing set to evaluate our model performance. 

We reconstruct the above two skeleton datasets to make it suitable for our temporal action detection task. In order to 

simulate the data characteristics of untrimmed videos, we concatenate together every two of short video whose frames is 

shorter than 150 to get a new long video and keep the other videos. 

We utilize OpenPose33 to estimate the 25 key joint coordinates (𝑋, 𝑌) of human skeletons on the image and normalize 

them according to size of the image and then combine them with the confidence score. According to the distribution of 

video length, we choose 400 as the target frame length of our input skeleton data. For the trimmed videos whose frame 
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larger than 400, we sample the other videos with an appropriate interval to restrict its frame length within the range of 400. 

For the other videos, we try clipping them with a window size of 400 which is designed to contain action instances as many 

as possible. 

4.2 Training details 

We use Focal Loss30 in our classification task. It can be defined as: 

𝐿𝑐𝑙𝑠(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾 log(𝑝𝑡)                                             (4) 

Here 𝛼𝑡 is the coefficient of target class and it is set to 0.25 for background and 0.75 for other classes. 𝑝𝑡 is the calculated 

possibility by the model of the actual class, and γ is a hyperparameter that is set to 2. Focal loss can reduce the impact of 

large numbers of easy background samples and focus the model’s attention more to the hard positive samples. The 

boundary regression loss is Smooth L1 Loss, which aims to gauge the gap between the position of the ground truths and 

the predicted anchors. The total loss is the weighted addition of the classification loss and the boundary regression loss. 

We define our loss as 

𝐿 = 𝐿𝑐𝑙𝑠(𝑝𝑡) + 𝛼𝐿𝑡𝑟𝑔                         (5) 

where 𝛼 in this equation is the hyperparameter to balance the loss of classification and boundary regression and is set to 

0.2 in our experiment. 

We build the backbone of FP-GCN with 10 ST-GCN blocks, in which both the bottom-up pathway and the top-down 

pathway are connected by two lateral connections. The input channels in these 10 ST-GCN blocks are 64, 128, and 256 

respectively. We train the model for a total amount of 150 epochs. The batch size is set to 128. We set the initial learning 

rate to 0.05. The training process warms up from 0 in the first 5 epochs and then scheduled by CosineAnnealingLR34. The 

optimizer is SGD-GC35 and the momentum value is set to 0.9. Its weight decay value is set to 5E-4. We define the samples 

whose threshold of Intersection over Union (tIoUs) with the actual box locations are larger than 0.7 as positive samples 

and those whose tIOUs with ground truth are smaller than 0.3 as negative samples. The NMS threshold is 0.4. 

4.3 Results and analysis 

The results of FP-GCN on each dataset are displayed in Table 1 shows with details. The header line in the table indicates 

different level of threshold of tIoU). Thanks to the introduction of ST-GCN, our model can extract discriminative spatial-
temporal features by analysing the massive skeleton data. In addition, the the lateral connections and top-down pathways 

for feature enrichment also play an important role during inference. It can be observed that our FP-GCN can successfully 

reach state-of-the-art performance and be very competitive on the evaluated NTU RGB+D datasets.  

Table 1. Results of action detection on various datasets in terms of mAP@tIoU. 

Dataset Name 0.3 0.4 0.5 0.6 0.7 

NTU RGB+D 60 x-sub 67.53 67.51 67.33 66.65 63.86 

NTU RGB+D 60 x-view 73.72 73.71 73.62 73.11 71.16 

NTU RGB+D 120 x-sub 43.95 43.91 43.77 43.22 41.35 

NTU RGB+D 120 x-view 64.75  64.73 64.67 64.24 62.73 

THUMOS14 33.59 27.85 20.34 11.29 4.60 

The reason why the mAP is relatively low on THUMOS 14 dataset is that for non-neglectable quantity of video samples, 

the skeleton results produced by OpenPose algorithm is not reliable. For example, for videos contain complex background 

contents, OpenPose pays its attention to the background contents rather than the action subjects, as shown in Figure 3. 

On the contrary, for quite a few action categories, the performance of FP-GCN is excellent, as shown in Figures 4 and 5. 
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Figure 3. Examples of wrong skeleton estimation by OpenPose. 

 

Figure 4. Qualitative examples of action instances detected ed by FP-GCN on THUMOS14. 

 

Figure 5. Statistics of action instances detected by FP-GCN on THUMOS14. 
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5. CONCLUSION 

In this work, we put forward a new solution for temporal action detection. We name our proposed algorithm as feature 

pyramid graph convolutional networks (FP-GCN). We also introduce skeleton modality data into the temporal action 

detection task. In addition, our study suggests the effectiveness of build-in feature pyramids in graph convolutional 

networks, which can enhance the features to better fit in the subsequent action detection and action classification tasks. 
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