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ABSTRACT 

Gliomas comprise around 80 percent of all malignant brain tumors which can be further classified into the low-grade 

glioma and high-grade glioma categories. Compared to low-grade gliomas, high-grade gliomas show more malignant 

behaviour since they usually grow rapidly and frequently destroy healthy brain tissue. Therefore, it is important to 

determine the malignancy of gliomas for initial treatment plan. Most existing methods are based on radiomics or transfer 

learning which extract features from single-slice without considering that 3D features between adjacent slices can provide 

stronger discriminative power. In this work, we propose to incorporate the attention mechanism and pseudo-3d module 

into a deep convolutional network architecture, which can reduce model size and produce fine features for glioma grading. 

Our work focuses on the inter-slice relationship and propose an attention unit, named “Inter-Slice Attention Module”, 

which adaptively refines intermediate feature maps by modelling dependencies between adjacent slices. We evaluate our 

method on an open dataset of gliomas, achieving mean accuracy of 89.47%. 
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1. INTRODUCTION 

Gliomas are the brain tumors that originate from glial cells. They are the most common primary type of tumor of the brain. 

World Health Organization (WHO) classifies glioma into grade I to IV by both histology and molecular features. These 

grades strongly indicate whether the tumor is benign or malignant and tell the malignancy scales of the tumor1,2. In real 

practice, the correct diagnosis of glioma grades, such as low-grade (WHO grade II), intermediate-grade (WHO grade III) 

gliomas (LGG), high-grade gliomas (HGG) and glioblastoma (WHO grade IV) is very important to initial treatment 

decision3-5. For example, glioblastoma (GBM, WHO grade IV) has the highest incidence rate of 46.1%, which is more 

malignant and highly heterogeneous compared to lower grade gliomas6. 

At present, the radiologists evaluate the malignancy of tumor by studying the patients’ head scan images. The 

complementary information between different imaging modalities not only imposes a burden on the radiologist, but also 

requires certain experience. Therefore, it is of great value to develop advanced and reliable AI methods to classify the input 

glioma images automatically and intelligently into LGG and HGG. 

To this end, machine learning techniques has gradually been applied to the study of gliomas, especially radiomics. These 

methods include both shallow models7,8 and deep learning models9-11. However, most of these stronger deep learning 

methods only extract features from single slice, ignoring the sequential information between slices, which is effect very 

important for human experts to make diagnosis. 

In clinical diagnosis, radiologists will pay attention to individual slices that contain abnormal region and consider 

complementary information in images of different modalities. Specific slices can provide more discriminating features. 
Emphasizing these features and suppressing others will improve the representative power of intermediate features 

throughout network. Considering the huge computational cost and memory requirement of a very deep 3D CNN, in this 

work, we try to use Pseudo-3D convolutional neural network with inter-slice attention to simulate such process. 

The major contributions of this paper can be summarized as follows. 
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(1) A novel inter-slice attention module with both channel-wise and spatial-wise attention submodules is proposed. The 

proposed attention module can work well with the Pseudo-3D features and is effective to generate better feature maps for 

improved glioma grading. 

(2) A full glioma grading network framework with both Pseudo-3D convolutions and inter-slice attention modules are 

designed. It can achieve automatic glioma grading in an end-to-end manner. 

(3) The effectiveness of our proposed modules and networks are verified in the experiments on the popular BRATS 2017 

benchmark. Results shows that our proposed inter-slice attention module and networks can achieve improved performances 

compared to the state-of-the-arts. 

This rest of this paper is organized as follows. In Section 2, we briefly review the recent related methods. In Section 3, our 

proposed network framework and inter-slice attention module are introduced. Experimental evaluations of the proposed 

method are conducted in Section 4. Finally, Section 5 concludes this paper. 

2. RELATED WORK 

Both shallow and deep models have been studied to solve the glioma grading problem. Regarding shallow models, an 

extreme gradient boosting classifier was used by Chen et al.7 for the grading of gliomas based on 105 Radiomic features 

which are all obtained from the whole tumor region of each modality and selected by SVM-RFE, including numbers of 

texture features, shape features as well as first-order features. Zacharaki et al.8 extract three kinds of features from four 

ROI (enhancing & non-enhancing neoplastic, necrotic, edematous) to classify tumors into different types and grades. 

Obviously, in radiomic-based methods, the prior information of domain expertise is very important, especially for the 

design of quantitative features, which leads to inefficiency and dependency on experience. 

Compared to massive amounts of conventional machine learning methods that are dependent on fully hand-crafted features, 

deep learning methods can implicitly learn to more effectively extract representative features from the image data. The 

success of deep learning models demonstrates the outstanding ability of convolutional neural networks (CNN) to feature 

extraction. For example, Decuyper et al.9 compare the discrimination ability of features extracted by two different methods 
of radiomics and pre-trained CNN. Note that the accuracy of pretrained CNN is 82% without requiring ROI annotations, 

7.6% lower than radiomics-based method. Ge et al.10 introduce a saliency-aware approach to enhance the tumor region 

which scale down the non-tumor regions by a factor and has shown marked improvement on the performance of glioma 

classification. Yang el al.11 evaluate the performance of AlexNet and GoogleNet simply pre-trained on ImageNet to study 

transfer learning on glioma grading. Note that these deep learning methods only extract features from single slice and 

ignore to exploit the valuable sequential information between slices. 

3. METHODOLOGY 

In this section, we first introduce a deep learning framework based on Pseudo-3D12 and the proposed inter-slice attention 

module (IAM) for glioma grading. Pseudo-3D decouples the traditional 3 × 3 × 3 convolutions into 2D intra-slice 

convolutions and 1D inter-slice convolutions. Then, the attention mechanism based on inter-slice is introduced to refine 

the intermediate feature map throughout the network to enhance the discriminant feature. 

 

Figure 1. Framework of the proposed glioma grading networks with Pseudo-3D convolutional layers and inter-slice attention modules 
(IAM). 

3.1 Network framework 

The overall framework for the proposed end to end glioma grading networks is illustrated in Figure 1. It takes 3D MRI 

image volume as input. After the first convolutional layer, it will go through repeated ResNet blocks with Pseudo-3D 

convolutional layers and inter-slice attention modules. Then the obtained feature map will be average pooled to reduce the 
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size and be forwarded into the fully convolutional layers and softmax layer to produce the final glioma grading predictions. 

Next, the Pseudo-3D CNN backbone and the proposed inter-slice attention module will be discussed in detail. 

3.2 Pseudo-3D CNN 

Deep Residual Network (ResNet)13 offers the possibility to train deep neural networks and achieves state-of-the-art 

performances in a wide range of computer vision tasks. In the conventional ResNet, only 2D convolutional filters are 
widely used to extract the image features. In order to encode the multiple dimensional information from image volumes 

(like MR images), the intuitive method is to replace the 2D convolutional filters of CNN with 3D filters. In this way, it not 

only processes the spatial information in within individual slices, but also establish the connection between adjacent slices. 

However, training a 3D ResNet from scratch requires large amount of computational cost and memory demand. As 

described in Reference12, a standard 3 × 3 × 3 convolutional layer can be replaced by the combination of a 1 × 3 × 3 

convolutional filter for intra-slice domain feature extraction plus a 3 × 1 × 1 convolutional filter for inter-slice domain 

feature extraction. In this way, the associations between adjacent slices can be captured by the later 3 × 1 × 1 filter, while 

significantly reduce the model size. Such combination of 1 × 3 × 3 convolutional layer followed by 3 × 1 × 1 convolutional 

filter is also abbreviated as P3D convolutional layer. 

In this work, the famous ResNet-5013 is adopted as backbone with some modifications for glioma grading. We first build 

the ResNet-50 and replace the 2D convolutional layers with the P3D convolutional layers according to the P3D-A 

architecture introduced in Reference12. The P3D convolutional layers were adopted to replace standard 3 × 3 × 3 
convolutional layers, which makes spatial 2D filters followed by 1D filters in a cascaded manner. In brief, its calculation 

can be expressed as 

P3D(𝑥) = 𝑓3×1×1,𝐶(𝑓1×3×3,𝐶(𝑥)),                                                               (1) 

where 𝑓3×1×1,𝐶 stands for a convolutional layer whose kernel size is 3 × 1 × 1 and output channel C; 𝑓1×3×3,𝐶 denotes a 

convolutional layer with kernel size of 1 × 3 × 3 and output channel C. 

After the P3D convolutional layer, both ReLU an BatchNorm layers are applied. The conventional ReLU function14 is 

defined as 

𝑓(𝑥) = ReLU(𝑥) = max(0, 𝑥).                                                                 (2) 

While the adopted ReLU activation functions in this work are in the form of Leaky ReLU15, whose activation function has 

a normal slope on the positive axis and usually much smaller slope on the negative axis. Mathematically, its calculation 

can be expressed as 

𝑓(𝑥) = { 𝑥 if 𝑥 > 0
𝑎𝑥 otherwise.

                                                                        (3) 

We can preset the slope coefficient a before training. In other word, it is not learned during training. It can help alleviate 

the suffer from sparse gradients. The default slope coefficient is set to 10-2 in this work. 

The BatchNorm layers perform the batch normalization operation16. Usually, the input feature map to deep neural networks 

had better be normalized for the sake of numerical computation. BatchNorm essentially performs the mean 0 and variance 

1 normalization, or Whitening, to the intermediate layers of the deep neural networks. By using BatchNorm, the neurons’ 

activation can become closer to a standard gaussian distribution, which has been proved to effective in reducing the 

exploding and vanishing gradients in computation. 

In summary, the proposed architecture of Pseudo-3D CNN backbone is listed in Table 1. 

Table 1. Detailed backbone architecture of our proposed model for glioma grading.  

Layer/block Output shape Kernel settings 

Conv1 64 × 64 × 64, 64 7 × 7 × 7, 64, s = 2 

block_1 32 × 32 × 32, 256 

k = 3, s = 2, Max-Pool 

1 × 1 × 1, 64 

1 × 3 × 3, 3 × 1 × 1, 64 
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Layer/block Output shape Kernel settings 

1 × 1 × 1, 256 

block_2 16 × 16 × 16, 512 

1 × 1 × 1, 128 

1 × 3 × 3, 3 × 1 × 1, 128 

1 × 1 × 1, 512 

block_3 8 × 8 × 8, 1024 

1 × 1 × 1, 256 

1 × 3 × 3, 3 × 1 × 1, 256 

1 × 1 × 1, 1024 

block_4 4 × 4 × 4, 2048 

1 × 1 × 1, 512 

1 × 3 × 3, 3 × 1 × 1, 512 

1 × 1 × 1, 2048 

avgpool 4 × 4, 2048 k = 4, d = 2, Avg-Pool 

dropout + fc 2 - 

Note: Leaky ReLU and Batch Normalization layers are added sequentially after every 
convolution. Block Size: [3, 4, 6, 3]; Input Size: channel × 128 × 128 × 128. k, s and d stand 

for kernel size, stride and dimension, respectively. 

3.3 Inter-slice attention 

When reading MRI scans, the radiologists first obtain the regions of interest by quickly browsing the whole scan. Then 
they pay more attention into these regions, so as to suppress the useless information and focus on the details provided by 

the targets, and finally make the diagnosis. 

As we mentioned before, information that can discriminate tumor grade only locate on specific slices. In order to make the 

model to judge like the experts, we propose a network module named Inter-slice Attention Module (IAM) to efficiently 

emphasize meaningful features and suppress others in this part. Recently, quite a number of studies17,18 investigated the 

mechanism of attention and its role in convolutional neural networks, and the characteristics of attention mechanism are 

well suited to simulate such process. 

Given an arbitrary feature map denoted as 𝑥 ∈ ℝ𝐶×𝐷×𝐻×𝑊, where C, D, H, W respectively refer to the channel size, depth, 

height, and width of the input image volume, our IAM blocks performs feature re-calibration to get a refined feature map 

denoted as 𝑥′. The whole process can be formulated as 

𝑥′ = 𝑎𝑠⨂𝑎𝑐⨂𝑥,                                                                            (4) 

where ⊗ means the operation of element-wise multiplication; 𝑎𝑐  and 𝑎𝑠 are the attention maps inferred by our inter-slice 

channel-wise and spatial-wise attention submodules. Its framework is depicted in Figure 2. 

In order to produce attention map, we need to exploit the inter-slice relationship between feature maps. Each H × W feature 

map along the depth axis represent contextual information captured by convolutional filters with a local receptive field. 

We adopt average-pooling to aggregating the spatial information, generating descriptor 𝑥𝑐 ∈ ℝ𝐶×𝐷×1×1. Then, to fully 

capture channel-wise inter-slice dependency, a gating mechanism is employed to obtain channel-wise inter-slice attention 

map 𝑎𝑐 ∈ ℝ𝐶×𝐷×1×1 

𝑎𝑐 = σ(𝑓3×1×1,𝐶(δ(𝑓3×1×1,𝐶/𝑟(𝑥𝑐)))),                                                          (5) 

where 𝑓3×1×1,𝐶 is a convolutional layer of kernel size 3 × 1 × 1 and output channel C; r is the channel reduction ratio; and 

σ, δ denote the sigmoid and ReLU activation function respectively. 

Likewise, average-pooling is adopted to aggregating the feature along the channel axis, generating feature descriptor 𝑥𝑠 ∈
ℝ1×𝐷×𝐻×𝑊. Then, a single-layer network is applied to generate a spatial inter-slice attention map 𝑀𝑠 ∈ ℝ1×𝐷×𝐻×𝑊 
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𝑎𝑠 = σ(𝑓3×1×3,𝐶(𝑥𝑠)),                                                                            (6) 

where 𝑓3×1×3,𝐶 stands for a three-dimensional convolutional layer of kernel size 3 × 3 × 3. 

These two attention modules are placed in a sequential manner. The input feature map x is first squeezed along spatial (H 

and W) axis and forwarded to channel-wise submodule, generating the attention map 𝑎𝑠. Feature 𝑥𝑎
𝑐  is obtained by element-

wise multiplying x and 𝑎𝑐 . Then feature 𝑥𝑎
𝑐  is squeezed along the channel (C) axis and forwarded to spatial-wise submodule 

to generate the attention map 𝑎𝑠. The final output 𝑥′ is obtained by further element-wise multiplying 𝑥𝑎
𝑐  with 𝑎𝑠. 

 

Figure 2. Framework of the proposed Inter-slice Attention Module (IAM). 

Note: The ⊗ symbol refers to the element-wise multiplication operation. 

4. EXPERIMENT 

4.1 Dataset 

The dataset evaluated in this work is BRATS 201719,20. It provides clinical imaging data from 285 glioma patients, 

including 210 patients with Glioblastoma (HGG) and 75 patients with lower-grade glioma (LGG, WHO grade II & III). 

Each case contains routine pre-operative multi-parameter MRI scans from multiple institutions and has been histologically 

diagnosed. These scans include pre-contrast and post-contrast (1) T1-weighted (T1 and T1ce), (2) T2-weighted (T2) 

together with (3) T2 Fluid-Attenuated Inversion Recovery (Flair) volumes. A series of pre-processing methods were 

applied to each sequence, including co-registering to the same anatomic template, resampling in a standardized axial 

orientation by a chosen linear interpolator to 1mm voxel resolution, skull-stripping, noise reduction and histogram 
matching. Finally, the four categories of annotations of the tumor sub-region are obtained through the computer-aided 

segmentation21 and manual correction, which respectively represent (1) the enhancing part of the tumor core, (2) the non-

enhancing part of the tumor core, (3) necrotic and (4) the peritumoral edema. 

4.2 Experimental setups 

In the following, we briefly describe the training setting in our experiment including the pre-processing details. We will 

also explain our strategies to select some key parameters. 

Image normalization: All volumes intensity values are normalized for computational concerns. The normalization is 

achieved by first subtracting the mean values and the dividing by the standard deviations. The normalization is 

independently performed to each example and each modality. 

Cropping and padding: All volumes are cropped to fixed size bounding boxes and with the tumor region kept in center. 

Bounding boxes are generated from annotations for fixed image size of 128 × 128 × 128 pixels. Padding operations are 

applied to ensure that all image patches meet the fixed size. 
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Train/Validation/Test subsets: The entire BRATS 2017 dataset containing 285 subjects. They are partitioned into three 

subsets: 171 subjects are used as the training set, 57 subjects as the validation set, and 57 subjects as the test set. HGG and 

LGG maintain the same ratio in all three subsets. 

Data augmentation: Only LGG is flipped left and right, in order to deal with class imbalance and avoid over-fitting. 

Learning rate scheduling and others: The total number of epochs in training is 100. We use the initial learning rate of 3 

× 10-4 and decayed by a factor of 0.1 at epoch 20 and 50. Batch size is set to 4. 

4.3 Results 

To test the effectiveness of the proposed IAM, we evaluate and compare the Pseudo-3D CNN with and without IAM on 

BRATS 2017 under five-fold cross-validation. The obtained performances are summarized in Table 2. It displays the 

average performance of proposed method, including the validation accuracy, validation AUC, test accuracy as well as the 

test AUC. In this experiment, the IAMs are placed after the last convolution layer of the non-identity branch of every 

residual module. 

Table 2. Performance of Pseudo-3D CNN with and without our proposed IAM on BRATS 2017. 

Model Accuracy (validation) AUC (validation) Accuracy (test) AUC (test) 

Pseudo-3D CNN w/o IAM 87.72 89.52 85.96 84.04 

Pseudo-3D CNN w/ IAM 91.58 91.52 89.47 86.42 

Note: Average scores of validation accuracy, validation AUC, test accuracy and test AUC are reported. 

In particular, the Pseudo-3D CNN model without IAM has the accuracy of 87.72% and 85.96% on the validation and test 

set respectively. And it has the AUC scores of 89.52% and 84.04% on the validation set and test set respectively. While 

the Pseudo-3D CNN model with IAM has the accuracy of 91.58% and 89.47% on the validation set and test set 

respectively. And it has the AUC scores of 91.52% and 86.42% on the validation set and test set respectively. It can be 

found that compared to Pseudo-3D CNN model without IAM, the model with our IAM achieves obvious improvements 

on test accuracy and AUC by more than 3% and 2% respectively. The displayed results discussed above successfully 

demonstrate that our proposed IAM is very effective. 

In addition, Figure 3 shows the performance of the best run in all five-fold cross-validation. The proposed method exhibits 

relatively high accuracy and performs well in both categories. 

 

Figure 3. Confusion matrix showing the performance of proposed method on BRATS2017 dataset. 

Table 3 shows comparison with 2 state-of-the-art methods. According to our evaluation, Decuyper (method 2)9 achieves 

an accuracy at 83.8% on the test set. Ge10 achieves a higher accuracy at 88.07% on the test set. Note that Ge10 scales down 
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the non-tumor regions by a factor of 1/3 as a saliency-aware strategy. Finally, our model reaches the highest accuracy at 

89.47%. These results are effective in demonstrating that the performance our proposed method is very competitive. 

Table 3. Comparison with state-of-the-art methods on the test set of BRATS 2017. 

Method Accuracy (test) 

Decuyper (method 2)9 83.80 

Ge (with enhancement)10 88.07 

Ours 89.47 

5. CONCLUSION 

In this work, we propose a Pseudo-3D CNN with inter-slice attention for glioma classification. Our results on the BRATS 

2017 benchmark show that the proposed Pseudo-3D CNN and inter-slice attention module in this work are effective for 

learning discriminate features, which also exhibit better performance. A possible future direction is to focus on automatic 

segmentation of glioma with the inter-slice attention under potential class imbalance. 
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